Por favor, use este identificador para citar o enlazar este ítem: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1167239
Título: Models for predicting biometric variables in cowpea using multispectral aerial images.
Autor: ANDRADE JUNIOR, A. S. de
SOBRAL, A. H. S.
BASTOS, E. A.
PESSOA FILHO, F. N.
NUNES, L. P.
ROIG, H.
Afiliación: ADERSON SOARES DE ANDRADE JUNIOR, CPAMN
AMANDA HELLEN SALES SOBRAL, FEDERAL UNIVERSITY OF PIAUI
EDSON ALVES BASTOS, CPAMN
FRANCINALDO NUNES PESSOA FILHO, STATE UNIVERSITY OF PIAUI
LEANDRO PESSOA NUNES, STATE UNIVERSITY OF PIAUI
HENRIQUE ROIG, INSTITUTO DE GEOCIÊNCIAS, UNB, BRASÍLIA, DF.
Año: 2023
Referencia: Teresina: Embrapa Meio-Norte, 2023.
Páginas: 54 p.
Descripción: Models based on vegetation indices (VI) from digital aerial images are promising for predicting biometric variables in agricultural crops. The objective of this study was to generate prediction models for leaf area index (LAI) and shoot dry weight (SDW) of cowpea crops (cultivar BRS-Inhuma) based on VI derived from aerial images captured by a multispectral camera attached to a drone. The study was conducted at the experimental station of the Brazilian Agricultural Research Corporation (Embrapa Mid-North), in Teresina, PI, Brazil (5°05’S, 42°29’W, and altitude of 72 m) from September to October 2022. LAI was measured in the field and in laboratory, while SDW was measured in eight samples at 13, 19, 26, 33, 40, 47, 51, and 61 days after sowing.
Thesagro: Agricultura de Precisão
Sensoriamento Remoto
NAL Thesaurus: Precision agriculture
Remote sensing
Palabras clave: Spatial variability
Variabilidade espacial
RPA
Citación: (Embrapa Meio-Norte. Boletim de Pesquisa e Desenvolvimento, 154).
Tipo de Material: Folhetos
Acceso: openAccess
Aparece en las colecciones:Boletim de Pesquisa e Desenvolvimento (CPAMN)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
ModelsPredictingBiometricVariablesCowpeaBP154.pdf6.69 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace