Please use this identifier to cite or link to this item: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1167239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANDRADE JUNIOR, A. S. de
dc.contributor.authorSOBRAL, A. H. S.
dc.contributor.authorBASTOS, E. A.
dc.contributor.authorPESSOA FILHO, F. N.
dc.contributor.authorNUNES, L. P.
dc.contributor.authorROIG, H.
dc.date.accessioned2024-09-09T12:55:22Z-
dc.date.available2024-09-09T12:55:22Z-
dc.date.created2024-09-09
dc.date.issued2023
dc.identifier.citationTeresina: Embrapa Meio-Norte, 2023.
dc.identifier.urihttp://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1167239-
dc.descriptionModels based on vegetation indices (VI) from digital aerial images are promising for predicting biometric variables in agricultural crops. The objective of this study was to generate prediction models for leaf area index (LAI) and shoot dry weight (SDW) of cowpea crops (cultivar BRS-Inhuma) based on VI derived from aerial images captured by a multispectral camera attached to a drone. The study was conducted at the experimental station of the Brazilian Agricultural Research Corporation (Embrapa Mid-North), in Teresina, PI, Brazil (5°05’S, 42°29’W, and altitude of 72 m) from September to October 2022. LAI was measured in the field and in laboratory, while SDW was measured in eight samples at 13, 19, 26, 33, 40, 47, 51, and 61 days after sowing.
dc.language.isoeng
dc.relation.ispartofseries(Embrapa Meio-Norte. Boletim de Pesquisa e Desenvolvimento, 154).
dc.rightsopenAccess
dc.subjectSpatial variability
dc.subjectVariabilidade espacial
dc.subjectRPA
dc.titleModels for predicting biometric variables in cowpea using multispectral aerial images.
dc.typeFolhetos
dc.subject.thesagroAgricultura de Precisão
dc.subject.thesagroSensoriamento Remoto
dc.subject.nalthesaurusPrecision agriculture
dc.subject.nalthesaurusRemote sensing
dc.format.extent254 p.
riaa.ainfo.id1167239
riaa.ainfo.lastupdate2024-09-09
dc.contributor.institutionADERSON SOARES DE ANDRADE JUNIOR, CPAMN
dc.contributor.institutionAMANDA HELLEN SALES SOBRAL, FEDERAL UNIVERSITY OF PIAUIeng
dc.contributor.institutionEDSON ALVES BASTOS, CPAMNeng
dc.contributor.institutionFRANCINALDO NUNES PESSOA FILHO, STATE UNIVERSITY OF PIAUIeng
dc.contributor.institutionLEANDRO PESSOA NUNES, STATE UNIVERSITY OF PIAUIeng
dc.contributor.institutionHENRIQUE ROIG, INSTITUTO DE GEOCIÊNCIAS, UNB, BRASÍLIA, DF.eng
Appears in Collections:Boletim de Pesquisa e Desenvolvimento (CPAMN)

Files in This Item:
File Description SizeFormat 
ModelsPredictingBiometricVariablesCowpeaBP154.pdf6.69 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace