Por favor, use este identificador para citar o enlazar este ítem:
http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/4885
Título: | Heuristics for protecting competitive knowledge in association rule mining. |
Autor: | OLIVEIRA, S. R. de M.![]() ![]() |
Afiliación: | STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA. |
Año: | 2006 |
Referencia: | Campinas: Embrapa Informática Agropecuária, 2006. |
Páginas: | 48 p. |
Descripción: | The sharing of data for mining has been proven beneficial in industry, but requires privacy safeguards. Some companies prefer to share their data for collaboration, while others decide to share only the patterns discovered from their data. The goal of these companies is to disclose only part of the knowledge and conceal a group of sensitive rules (competitive knowledge) that are paramount for strategic decisions. These rules must be protected before sharing and need to remain private. The challenge here is how to protect the sensitive rules without putting at risk the effectiveness of data mining per se. This work presents a framework for protecting sensitive knowledge in Association Rule Mining. The framework is composed of a set of heuristics and metrics to evaluate the effectiveness of these heuristics in terms of information loss and knowledge protection. |
Palabras clave: | Preservação de privacidade em mineração de dados Proteção de conhecimento Conhecimento competitivo Regras sensíveis Preservação de privacidade em mineração de regras de associação Privacy-preserving association rule mining Heurística Privacy-preserving data mining Knowledge protection Competitive knowledge Sensitive knowledge Sensitive rules |
Citación: | (Embrapa Informática Agropecuária. Boletim de pesquisa e desenvolvimento, 13). |
ISSN: | 1677-9266 |
Tipo de Material: | Folhetos |
Acceso: | openAccess |
Aparece en las colecciones: | Boletim de Pesquisa e Desenvolvimento (CNPTIA)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
bp13.pdf | 1.33 MB | Adobe PDF | ![]() Visualizar/Abrir |