Boletim de Pesquisa 13

e Desenvolvimento . 20

ISSN 1677-9266

Heuristics for Protecting
Competitive Knowledge in
Association Rule Mining

Republica Federativa do Brasil

Luiz Indcio Lula da Silva
Presidente

Ministério da Agricultura, Pecuaria e Abastecimento

Roberto Rodrigues
Ministro

Empresa Brasileira de Pesquisa Agropecudria - Embrapa
Conselho de Administracao

Luis Carlos Guedes Pinto
Presidente

Silvio Crestana
Vice-Presidente

Alexandre Kalil Pires

Cldudia Assuncdo dos Santos Viegas
Ernesto Paterniani

Hélio Tollini

Membros

Diretoria Executiva da Embrapa

Silvio Crestana
Diretor-Presidente

José Geraldo Eugénio de Franca
Kepler Euclides Filho

Tatiana Deane de Abreu Sa
Diretores-Executivos

Embrapa Informatica Agropecuaria

Eduardo Delgado Assad
Chefe-Geral

José Ruy Porto de Carvalho
Chefe-Adjunto de Administracao

Kleber Xavier Sampaio de Souza
Chefe-Adjunto de Pesquisa e Desenvolvimento

Deise Rocha Martins dos Santos Oliveira
Supervisora da Area de Comunicacéo e Negécios

ISSN 1677-9266
Ura Maio, 2006

Empresa Brasileira de Pesquisa Agropecuéria

P grop
Ministério da Agricultura, Pecuéria e Abastecimento

Boletim de Pesquisa
e Desenvolvimento

Heuristics for Protecting
Competitive Knowledge in
Association Rule Mining

Stanley Robson de Medeiros Oliveira

Campinas, SP
2006

Embrapa Informatica Agropecuaria

Area de Comunicac&o e Negécios (ACN)

Av. André Tosello, 209

Cidade Universitaria "Zeferino Vaz" Barado Geraldo
Caixa Postal 6041

13083-970 - Campinas, SP

Telefone (19) 3789-5743 Fax (19) 3289-9594
URL: http://www.cnptia.embrapa.br

e-mail: sac@cnptia.embrapa.br

Comité de Publicacées

Adriana Farah Gonzalez (secretdria)

Ivanilde Dispato

Kleber Xavier Sampaio de Souza (presidente)
Luciana Alvim Santos Romani

Marcia Izabel Fugisawa Souza

Stanley Robson de Medeiros Oliveira

Suplentes

José Iguelmar Miranda

Laurimar Goncalves Vendrusculo
Maria Goretti Gurgel Praxedes
Silvio Roberto Medeiros Evangelista

Supervisor editorial: /vanilde Dispato
Normalizacédo bibliogréfica: Marcia Izabel Fugisawa Souza
Editoracdo eletronica: Area de Comunicacéo e Negdcios (ACN)

1°. edicdo on-line - 2006
Todos os direitos reservados.

Oliveira, Stanley Robson de Medeiros.

Heuristics for protecting competitive knowledge in association rule mining / Stanley Robson de
Medeiros Oliveira. — Campinas : Embrapa Informéatica Agropecuéria, 2006.

48 p. : il. — (Boletim de Pesquisa e Desenvolvimento / Embrapa Informatica Agropecuéria ; 13).

ISSN 1677-9266

1. Computer security. 2. Privacy-preserving data mining. 3. Protecting competitive knowledge.
I.Titulo. Il. Série

CDD - 005.8 (21" ed.)

Embrapa 2006

Summary

ADSTIraCT. . 5
RESUMO. .o e 6
INtrodUuCTioN. ... 7
Material and Methods.........ccoiiiiiiii e 8
Results and DiSCUSSION........ciieiiiiiiiiiiie i 34
CONCIUSIONS. .. 44
Acknowledgments.......cooouiiiiiiii e 45

R O BN C S . .ttt et 46

Heuristics for Protecting
CompetitiveKnowledge in
Association Rule Mining

Stanley Robson de Medeiros Oliveira’

Abstract

The sharing of data for mining has been proven beneficial in industry, but requires
privacy safeguards. Some companies prefer to share their data for collaboration,
while others decide to share only the patterns discovered from their data. The goal
of these companies is to disclose only part of the knowledge and conceal a group
of sensitive rules (competitive knowledge) that are paramount for strategic
decisions. These rules must be protected before sharing and need to remain
private. The challenge here is how to protect the sensitive rules without putting at
risk the effectiveness of data mining per se. This work presents a framework for
protecting sensitive knowledge in Association Rule Mining. The framework is
composed of a set of heuristics and metrics to evaluate the effectiveness of these
heuristics in terms of information loss and knowledge protection.

Index terms: privacy-preserving data mining; knowledge protection; competitive
knowledge; sensitive knowledge, sensitive rules, privacy-preserving association
rule mining.

" PhD in Computer Science, Researcher with Embrapa Agricultural Informatics, P.O. Box 6041, Bardo
Geraldo - 13083-970 - Campinas, SP, Brazil. (e-mail: stanley@cnptia.embrapa.br)

Heuristicas para Protecao de
Conhecimento Competitivo
em Mineracao de Regras de
Associacao

Resumo

O compartilhamento de dados entre empresas é benéfico no meio industrial, mas
exige protecdo de privacidade. Algumas empresas decidem compartilhar parte
dos seus dados, enquanto outras compartiiham somente padrdes (regras)
extraidos de seus dados. O alvo dessas empresas é disponibilizar somente parte
do conhecimento descoberto em seus acervos e proteger um conjunto de regras
sensiveis (conhecimento competitivo) que é essencial na tomada de decisdes.
Essas regras devem ser protegidas antes do compartilhamento e necessitam ser
mantidas privadas. O desafio aqui é como proteger o conhecimento competitivo
sem perder a utilidade do processo de mineracdo de dados. Este trabalho
apresenta um arcabouco para proteger regras sensiveis no processo de
descoberta de regras de associacdo. O arcabouco é composto por um conjunto
de heuristicas e métricas para avaliar a eficiéncia destas heuristicas em termos de
perda de informacao e protecao de conhecimento competitivo.

Palavras-chaves: preservacdo de privacidade em mineracdo de dados; protecao
de conhecimento, conhecimento competitivo; regras sensiveis; preservacao de
privacidade em mineracao de regras de associacao.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Introduction

In the business world, companies that once fiercely competed must now form
cooperative alliances to provide their customers with a whole product (Rea,
2002). This is collaboration at its best because of the mutual benefit it brings.
Such collaboration may occur between competitors or companies that have
conflict of interests, however as a result, the collaborators are aware that they
are provided with an advantage over other competitors.

Data mining has been used extensively to support business collaboration. In
particular, the discovery of association rules from large databases has proven
beneficial for companies. Such rules create assets that collaborating companies
can leverage to expand their businesses, improve profitability, reduce costs, and
support marketing more effectively (Berry & Linoff, 1997).

In a collaborative project, one company may decide to disclose only part of the
knowledge and conceal strategic patterns which we call sensitive rules. These
sensitive rules must be protected before sharing since they are paramount for
strategic decisions and need to remain private. Some companies prefer to share
their data for collaboration, while others prefer to share only the patterns
discovered from their data.

Despite its benefits in the business world, association rule mining can also, in the
absence of adequate safeguards, open new threats to business collaboration.
The concern among privacy advocates is well founded, as bringing data together
to support data mining projects makes misuse easier (Oliveira, 2005).

The challenging problem that we address in this paper is: how can companies
transform their data to support business collaboration without losing the benefit
of mining? Let us consider a motivating example in which knowledge protection
in association rule mining really matters.

Suppose we have a server and many clients, with each client having a set of sold
items (e.g., books, movies, etc.). The clients want the server to gather statistical
information about associations among items in order to provide
recommendations to customers. However, the clients do not want the server to
be able to derive some sensitive association rules. In this context, the clients
represent companies and the server hostes a recommendation system for an e-
commerce application. In the absence of ratings, which are used in collaborative
filtering for automatic recommendation building, association rules can be
effectively used to build models for on-line recommendations. When a client
sends its frequent itemsets to the server, this client sanitizes some sensitive
itemsets according to some specific policies. The sensitive itemsets contain
sensitive knowledge that can provide a competitive advantage. The server then

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

gathers statistical information from the sanitized itemsets and recovers from
them the actual associations. Is it possible for these companies to benefit from
such collaboration by sharing association rules while preserving some sensitive
rules?

The simplistic solution to address the motivating example is to implement a filter
after the mining phase to weed out/hide the sensitive discovered rules. However,
we claim that trimming some rules out does not ensure full protection. The
solution to remove a set of sensitive rules must not leave a trace that could be
exploited by an adversary. We must guarantee that some inference channels
have been blocked as well.

The main goal of this work is to design and implement a unified framework for
protecting sensitive association rules before sharing. This framework combines
techniques for efficiently hiding sensitive patterns: a set of heuristics to protect
sensitive knowledge; retrieval facilities to speed up the process of protecting
sensitive knowledge; and a set of metrics to evaluate the effectiveness of the
proposed heuristics in terms of information loss and to quantify how much
private information has been disclosed.

Our heuristics require only two scans regardless of the database's size and the
number of sensitive rules that must be protected. The first scan is required to
build an index for speeding up the sanitization process, while the second scan is
used to remove the sensitive rules from the released database. The previous
methods in the literature require as many scans as there are rules to hide (Dasseni
etal., 2001; Sayginetal., 2001; Verykios et al., 2004).

Materials and Methods

In this section, we describe the materials used in our work. We start by providing
the basics of association rules. Subsequently, we describe our heuristics to
protect sensitive rules in transactional databases. The heuristics have been
implemented in the language C + +.

* The Basics of Association Rules

One of the most studied problems in data mining is the process of discovering
association rules from large databases. Most of the existing algorithms for
association rules rely on the support-confidence framework introduced in
Agrawal et al. (1993) and Agrawal & Srikant (1994).

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Formally, association rules are defined as follows: Let / = {is, ..., in}be a set of
literals, called items. Let D be a database of transactions, where each transaction
tis anitemset such that ¢ < /. A unique identifier, called 7/D, is associated with
each transaction. A transaction t supports X, a set of items in/, if X C t. An
association rule is an implication of the form X = Y, where X /, Y C /and
X Ny = . Thus, wesaythatarule X = Yholds in the

| X UY|
)
| X

database D with confidence @ , if

where |A| is the number of occurrences of the set of items A in the set of
transactions D. Similarly, we say that arule X = Y'holds in the database D

| X UY|
N

While the support is a measure of the frequency of a rule, the confidence is a
measure of the strength of the relation between sets of items. A survey of
algorithms for association rules can be found in Hipp et al. (2000).

with support G if > o, Where Nis the number of transactions in D.

* The Framework for Knowledge Protection

In this section, we introduce the framework to protect sensitive knowledge in
association rule mining. As depicted in Figure 1, the framework encompasses an
inverted file to speed up the sanitization process, a library of sanitizing algorithms
used for hiding sensitive association rules from the database, and a set of metrics
to quantify not only how much private information is disclosed, but also the
impact of the sanitizing algorithms on the transformed database and on valid
mining results.

a) The Inverted File

Sanitizing a transactional database consists of identifying the sensitive
transactions and adjusting them. To speed up this process, we scan a
transactional database only once and, at the same time, we build our retrieval
facility (inverted file) (Baeza-Yates & Ribeiro-Neto, 1999). The inverted file's
vocabulary is composed of all the sensitive rules to be hidden, and for each
sensitive rule there is a corresponding list of transaction IDs in which the rule is
present.

9

10 Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Inverted File

»l

Sanitized
Database

\ 4

Sensitive Transaction IDs
Rules

Sanitizing
Algorithms

Transactional
Database

Metrics

Figure 1. The framework to protect sensitive knowledge in association rule
Mining.

Figure 2(b) shows an example of an inverted file corresponding to the
transactional database shown in Figure 2(a). For this example, we assume that
the sensitive rules are A,.B—D and A,C =D.

| TID | Items

T ABCD

T2 ABC AB =D » T1,T3

T3 ABD AC=D » T1,T4

T4 ACD Sensitive Transaction IDs

Rules
T5 ABC
T6 B D Inverted File
(a) (b)

Figure 2. (a) A sample transactional database. (b) The corresponding inverted
File.

Note that once the inverted file is built, a data owner will sanitize only the
sensitive transactions whose IDs are stored in the inverted file. Knowing the
sensitive transactions prevents a data owner from performing multiple scans in
the transactional database. Consequently, the CPU time for the sanitization
process is optimized. Apart from optimizing the CPU time, the inverted file
provides other advantages, as follows:

1. The information kept in main memory is greatly reduced since only the
sensitive rules are stored in memory. The occurrences (transaction IDs)
can be stored on disk when not fitted in main memory.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

2. Our algorithms require at most two scans regardless of the number of
sensitive rules to be hidden: one scan to build the inverted file, and the
other to sanitize the sensitive transactions. The previous methods in the
literature require as many scans as there are rules to hide (Dasseni et al.,
2001; Sayginetal., 2001).

b) The Library of Sanitizing Algorithms

In our framework, the sanitizing algorithms modify some transactions to hide
sensitive rules based on a disclosure threshold controlled by the database
owner. This threshold indirectly controls the balance between knowledge
disclosure and knowledge protection by controlling the proportion of transactions
to be sanitized. For instance, if Y = 50% then half of the sensitive transactions
will be sanitized, when W = 0% all the sensitive transaction will be sanitized, and
when VY = 100% no sensitive transaction will be sanitized. In other words,
represents the ratio of sensitive transactions that should be left untouched. The
advantage of this threshold is that it enables a compromise between hiding
association rules while missing non-sensitive ones, and finding all non-sensitive
association rules but uncovering sensitive ones.

As can be seen in Figure 1, the sanitizing algorithms are applied to the original
database to produce the sanitized one. We classify our algorithms into two major
groups: data sharing-based algorithms and pattern sharing-based algorithms, as
can be seenin Figure 3.

[Sanitizing Algorithms]

® |tem Grouping Algorithm (IGA)
——e Data Sharing-Based Algorithms —>
® Sliding Window Algorithm (SWA)

——¢ Pattern Sharing-Based Algorithms — ¢ pownright Sanitizing Algorithm (DSA)

Figure 3. A taxonomy of sanitizing algorithms.

In the former, the sanitization process acts on the data to remove or hide the
group of sensitive association rules representing the sensitive knowledge. To
accomplish this, a small number of transactions that participate in the generation
of the sensitive rules have to be modified by deleting one or more items from
them. In doing so, the algorithms hide sensitive rules by reducing either their
support or confidence below a privacy threshold (disclosure threshold). In the
latter, the sanitizing algorithm acts on the rules mined from a database, instead of
the data itself. The algorithm removes all sensitive rules before the sharing
process. The sanitizing algorithms are introduced later.

11

12

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

c) The Set of Metrics

In this section, we introduce the set of metrics to quantify not only how much
sensitive knowledge has been disclosed, but also to measure the effectiveness of
the proposed algorithms in terms of information loss and in terms of non-sensitive
rules removed as a side effect of the transformation process. We classify these
metrics into two major groups: Data sharing-based metrics and Pattern sharing-
based metrics.

\ Database D

@

Misses Cost

/«— Database D’

O S—8 o

Hiding Failure Artifactual Patterns

Figure 4. Data sharing-based sanitization problems.

1. Data sharing-based metrics are related to the problems illustrated in Figure
4. This Figure shows the relationship between the set R of all association
rules in the database D, the sensitive rules SR, the non-sensitive
association rules ~SR, as well as the set R’ of rules discovered from the
sanitized database D’'. The circles with the numbers 1, 2, and 3 are
potential problems that respectively represent the sensitive association
rules that were failed to be hidden, the legitimate rules accidentally
missed, and the artificial association rules created by the sanitization
process.

Problem 1 occurs when some sensitive association rules are discovered in the
sanitized database. We call this problem Hiding Failure (HF), and it is measured in
terms of the percentage of sensitive association rules that are discovered from D".
Ideally, the hiding failure should be 0%. The hiding failure is measured as follows:

7 5D (1)
#Sp(D)

where #SR(X) denotes the number of sensitive association rules discovered from
the database X.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Problem 2 occurs when some legitimate association rules are hidden as a side
effect of the sanitization process. This happens when some non-sensitive
association rules lose support in the database due to the sanitization process. We
call this problem Misses Cost (MC), and it is measured in terms of the percentage
of legitimate association rules that are not discovered from Do. In the best case,
this should also be 0%. The misses cost is calculated as follows:

_#~8,(D) — #~ S(D")
- #~ S, (D)

MC (2)

where #~SR(X) denotes the number of non-sensitive association rules
discovered from the database X.

Notice that there is a compromise between the misses cost and the hiding failure.
The more sensitive rules we hide, the more non-sensitive rules we miss. This is
basically the justification for our disclosure threshold VW , which with tuning,
allows us to find the balance between privacy and disclosure of information
whenever the application permits it.

Problem 3 occurs when some artificial association rules are generated from D' as
a product of the sanitization process. We call this problem Artifactual Patterns
(AP), and it is measured in terms of the percentage of the discovered association
rules that are artifacts, i.e., rules that are not present in the original database.
Artifacts are generated when new items are added to some transactions to alter
(decrease) the confidence of sensitive rules. For instance, in arule X =Y, if the
items are added to the antecedent part X of this rule in transactions that support
X and not Y, then the confidence of such a rule is decreased. Artifactual patterns
are measured as follows:

_|R|-|RNR|
| Rl

AP (3)

where | X| denotes the cardinality of X.

We could measure the dissimilarity between the original and sanitized databases
by computing the difference between their sizes in bytes. However, we believe
that this dissimilarity should be measured by comparing their contents instead of
their sizes. Comparing their contents is more intuitive and gauges more
accurately the modifications made to the transactions in the database.

13

14

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

To measure the dissimilarity between the original and the sanitized datasets, we
could simply compare the difference in their histograms. In this case, the
horizontal axis of a histogram contains all items in the dataset, while the vertical
axis corresponds to their frequencies. The sum of the frequencies of all items
gives the total of the histogram. So the dissimilarity between D and D"is given by:

1 n
Dif(D,D") = ——x 3" £, ()= £ (i
if (D,D") S 0 S - 70] "

where fx(i) represents the frequency of the /-th item in the dataset X, and n is the
number of distinct items in the original dataset.

2. Pattern sharing-based metrics are related to the problems illustrated in
Figure 5. Problem 1 conveys the non-sensitive rules (~SR) that are
removed as a side effect of the sanitization process (RSE). We refer to this
problem as side effect. It is related to the misses cost problem in data
sanitization (Data sharing-based metrics). Problem 2 occurs when using
some non-sensitive rules, an adversary may recover some sensitive ones by
inference channels. We refer to such a problem as recovery factor.

Side Effect Factor (SEF) measures the number of non-sensitive association rules
that are removed as a side effect of the sanitization process. The measure is
calculated as follows:

_(RI=(R+[Se 1)
(R|=[Sk]

SEF (5)

where R, R’ and SR represent the set of rules mined from a database, the set of
sanitized rules, and the set of sensitive rules, respectively, and |S]| is the size of
the set S.

Recovery Factor (RF) expresses the possibility of an adversary recovering a
sensitive rule based on non-sensitive ones. The recovery factor of one pattern
takes into account the existence of its subsets. The rationale behind the idea is
that all nonempty subsets of a frequent itemset must be frequent. Thus, if we
recover all subsets of a sensitive itemset (rule), we say that the recovery factor
for such an itemset is possible, and thus we assign it the value 1. However, the
recovery factor is never certain, i.e., an adversary may not learn an itemset even
with its subsets. On the other hand, when not all subsets of an itemset are
present, the recovery of the itemset is improbable, thus we assign value O to the
recovery factor.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

R: all rules

A

—
R’: rules to share / Problem 1: Rse (Side effect)

A

Rules to hide Problem 2: Inference Rules hidden
(recovery factor)

Figure 5. Pattern sharing-based sanitization problems.

In the pattern sharing-based approach, the set of sanitized rules to be shared (Ro)
is defined as R’ = R - (SR + RSE), where R is the set of all rules mined from a
database, SR is the set of sensitive rules, and RSE is the set of rules removed as a
side effect of the sanitization process.

* Heuristics for Protecting Sensitive Rules

The optimal sanitization has been proved to be an NP-hard problem (Atallah et al.,
1999). To alleviate the complexity of the optimal sanitization, we could use some
heuristics. An heuristic does not guarantee the optimal solution, but usually finds
a solution close to the best one in a faster response time (Cormen et al., 1992).

In this section, we describe three heuristics to hide sensitive rules in transactional
databases. The first two heuristics act on the data to protect or hide a group of
sensitive association rules. After sanitizing a database, the released database is
shared for association rule mining. We refer to these heuristics as data sharing-
based heuristics. The third heuristic falls into another category that we call
pattern sharing-based heuristics. In this approach, the sanitization process acts
on the rules mined from a database instead of the data itself. Rather than sharing
the data, data owners may prefer to mine their own data and share some
discovered patterns. In this case, the sanitization removes not only all sensitive
rules but also blocks other rules that could be used to infer the sensitive hidden
ones.

a) Heuristic 1: Sanitization Based on the Degree of Sensitive Transactions

Ouir first heuristic for data sanitization is based on the fact that, in many cases, a
sensitive transaction participates in the generation of one or more sensitive
association rule to be hidden. We refer to the number of sensitive rules supported
by a sensitive transaction as the degree of a sensitive transaction, defined as:

15

16

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Definition
database a

1 (Degree of a Sensitive Transaction) - Let D be a transactional
nd ST a set of all sensitive transactions in D. The degree of a sensitive

transaction ¢, denoted by degree(t), such thatt € ST, is defined as the number of
sensitive association rules that can be found in ¢.
Our Heuristic 1 has essentially four major steps, as follows:

Step 1:

Step 2:

Step 3:

Step 4:

scan a database and identify the sensitive transactions for each
sensitive association rule. This step is accomplished when the
inverted file is built

based on the disclosure threshold ¥, calculate for each sensitive
association rule the number of sensitive transactions that should be
sanitized and mark them. Most importantly, the sensitive
transactions are selected based on their degree (descending order);
for each sensitive association rule, identify a candidate item that
should be eliminated from the sensitive transactions. This candidate
item is called the victim item;
scan the database again, identify the sensitive transactions marked to
be sanitized and remove the victim items from them.

To illustrate how our presented heuristic works, let us consider the sample
transactional database in Figure 6(a). Suppose that we have a set of sensitive
association rules SR = {A,B = D; A,C = D}. This example yields the following

results:

Step 1:

Step 2:

Step 3:

Step 4:

we first scan the database to identify the sensitive transactions. For
this example, the sensitive transactions ST containing the sensitive
association rules are {T1, T3, T4}. The degrees of the transactions
T1,T3and T4 are 2, 1 and 1 respectively. In particular, the rule A,B=
D can be mined from the transactions T1 and T3 and the rule A,C=D
can be mined from T1 and T4.
suppose that we set the disclosure threshold Y to 50%. We then sort
thesensitive transactions in descending order of degree.
Subsequently, we sanitize half of the sensitive transactions for each
sensitive rule. In this case, only the transaction T1 will be sanitized.
in this step, the victim items are selected. To do so, we group sensitive
rules that share a common item. Both rules share the items A and D. In
this case, only one item is selected, say the item D. By removing the
item D from T1 the sensitive rules will be hidden from T1 in one step
and the disclosure threshold will be satisfied.
we perform the sanitization taking into account the victim items
selected in the previous step. The sanitized database can be seen in
Figure 6(b).

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

T ABCD T ABC
T2 ABC T2 ABC
T3 ABD T3 ABD
T4 ACD T4 ACD
T5 ABC T5 ABC
T6 B D T6 B D

(a) (b)
Figure 6. (a) A copy of the sample transactional
Database in Figure 2(a); (b) The sanitized
Database using Heuristic 1.

An important observation here is that any association rule that contains a
sensitive association rule is also sensitive. Hence, if A,B =D is a sensitive
association rule, any association rule derived from the itemset ABCD will also be
sensitive since it contains ABD. This is because if ABCD is discovered to be a
frequent itemset, it is straightforward to conclude that ABD is also frequent,
which should not be disclosed. In other words, any superset containing ABD
should not be allowed to be frequent.

b) Heuristic 2: Sanitization Based on the Size of Sensitive Transactions

We now introduce the second heuristic to hide sensitive knowledge in
transactional databases. The idea behind this heuristic is to sanitize the sensitive
transactions with the shortest sizes. The rationale is that by removing items from
shortest transactions we would minimize the impact on the sanitized database
since the shortest transactions have fewer combinations of association rules. As
a consequence, we would reduce the side effect of the sanitization process on
non-sensitive rules.

Our Heuristic 2 approach has essentially four steps as follows:

Step 1: distinguishing the sensitive transactions from the non-sensitives ones.
For each transaction read from a database D, we identify whether this
transaction is involved in the generation of any sensitive association
rule. If not, the transaction is copied directly to the sanitized database
D'. Otherwise, this transaction is sensitive and must be sanitized.

Step 2: selecting the victim item. In this step, we first compute the frequencies
of all items in the sensitive association rules presented in the current
sensitive transaction. The item with the highest frequency is the
victim item since it is shared by a group of sensitive rules. If a sensitive
rule shares no item with the other sensitive ones, the frequencies of its
items are the same (freqg = 1). In this case, the victim item for this
particular sensitive rule is selected randomly.The rationale behind this
selection is that removing different items from the sensitive

17

18 Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

transactions would slightly minimize the support of the legitimate
association rules that would be available for being mined in the
sanitized database D"

Step 3: computing the number of sensitive transactions to be sanitized. Given
the disclosure threshold, V , set by the database owner, we compute
the number of transactions to be sanitized. Every sensitive rule will
have a list of sensitive transaction IDs associated with it. In this step,
we sort the sensitive transactions computed previously for each
sensitive rule. The sensitive transactions are sorted in ascending
order of size. Thus, we start sanitizing the shortest transactions.

Step 4: sanitizing a sensitive transaction. Given that the victim items for all
sensitive association rules were selected in step 2, they can now be
removed from the sensitive transactions. Every sensitive rule now has
a list of sensitive transaction IDs with their respective selected victim
item. Every time we remove a victim item from a sensitive
transaction, we perform a look ahead procedure to verify whether
that transaction has been selected as a sensitive transaction for other
sensitive rules. If so, and the victim item we just removed from the
current transaction is also part of this other sensitive rule, we remove
that transaction from the list of transaction IDs marked in the other
rules. In doing so, the transaction will be sanitized and then copied to
the sanitized database D’. This look-ahead procedure is done only
when the disclosure threshold is 0%. This is because the look-ahead
improves the misses cost but could significantly degrade the hiding
failure. When y = O, there is no hiding failure (i.e., all sensitive rules
are hidden) and thus there is no degradation possible but an
improvement in the misses cost.

To illustrate how our Heuristic 2 works, let us consider the sample transactional
database in Figure 7(a). Suppose that we have a set of sensitive association rules
SrR = {A,.B= D; A,C= D} and we set the disclosure threshold ¥ = 50%.
This example yields the following results:

Step 1: the sensitive transactions are identified. In this case, the sensitive
transactions of A,B =D and A,C= D are {T1, T3} and
{T1,T4}respectively.

Step 2: after identifying the sensitive transactions, we select the victim items.
For example, the victim item in the transaction T1 could be either A or
D since these items are shared by the sensitive rules and consequently
their frequencies are equal to 2. However, the victim item for the
sensitive rule A,B=>D in T3 is selected randomly because the items A,
B, and D have frequencies equal to 1. Let us assume that the victim
item selected is B. Similarly, the victim item for the sensitive rule
A,C = D, in transaction T4, is selected randomly, say, the item A.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Step 3: in this step, we compute the number of sensitive transactions to be
sanitize, for each sensitive rule. This computation is based on the
disclosure threshold W . We selected W = 50% for both rules.
However, we could set a particular disclosure threshold for each
sensitive rule. We also sorted the sensitive transactions in ascending
order of size before performing the sanitization in the next step.

Step 4: we then sanitize the transactions for each sensitive rule. Half of the
transactions for each sensitive rule will be intact since the disclosure
threshold Y = 50%. We start by sanitizing the shortest transactions
(sorted in the previous step). Thus, transactions T3 and T4 are
sanitized. The released database is depicted in Figure 7(b). Note that
the sensitive rules are present in the sanitized database, but with
lower support. This is an example of partial sanitization. The database
owner could also set the disclosure threshold Y = 0%. In this case,
we have a full sanitization since the sensitive rules will no longer be
discovered. In this example, we assume that the victim item in
transaction T1 is D since this item is shared by both sensitive rules.

Figure 7(c) shows the database after a full sanitization. As we can see, the
database owner can tune the disclosure threshold to find a balance between
protecting sensitive association rules by data sanitization and providing
information for mining.

| TID I Items | | TID | Items | TID m
™ ABCD T ABCD T ABC
T2 ABC T2 ABC T2 ABC
T3 ABD T3 AD T3 AD
T4 ACD T4 cD T4 cD
T5 ABC T5 ABC T5 ABC
T6 B D T6 BD T6 B D

(a) (b) ()

Figure 7. (a): A copy of the sample transactional
database in Figure 2(a); (b): An example of partial
sanitization; (c): An example of full sanitization.

c) Heuristic 3: Rule Sanitization with Blocked Inference Channels

Recall that our previous heuristics are classified as data sharing-based heuristics
which rely on sanitizing a database before data sharing. Our third heuristic
sanitizes sensitive rules from a set of rules mined from a database, while blocking
some inference channels. The remaining association rules are shared. This
approach falls into the pattern sharing-based heuristics.

Before introducing our new heuristic, we briefly review some terminology from
graph theory. In particular, we represent the itemsets in a database as a directed
graph. We refer to such a graph as a frequent itemset graph and define it as
follows:

19

20

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Definition 2 (Frequent Itemset Graph) - A frequent itemset graph, denoted by G =
(C;E), is a directed graph which consists of a nonempty set of frequent itemsets
C, aset of edges £ that are ordered pairings of the elements of C, such that

Vu,v € Cthereis an edge fromutovifuNv = vand |v|-lul = 1, where | x| is the
size of itemset x.

Figure 8(b) shows a frequent itemset graph for the sample transactional database
depicted in Figure 8(a). In this example, the minimum support threshold © is set
to 2. As can be seen in Figure 8(b), in a frequent itemset graph G, there is an order
for each itemset. We refer to such an ordering as the itemset level and define it as
follows:

Definition 3 (The Itemset Level) - Let G = (C,E) be a frequent itemset graph. The
level of an itemset u, such that v € C, is the length of the path connecting an 1-

itemset to u.

Based on Definition 3, we define the level of a frequent itemset graph G as

follows:
TID m A B c D Level 0

T2 ABC
AB AC BC AD CD Level 1
T3 ACD
T4 ABC \ ‘ >& ’ /
T5 AB ABC ACD Level 2

(a) (b)
Figure 8. (a) A transactional database. (b) The
corresponding frequent itemset graph.

Definition 4 (Frequent Itemset Graph Level) - Let G = (C;E) be a frequent itemset
graph. The level of G is the length of the maximum path connecting an 1-itemset
uto any otheritemset v, such thatu,ve C,andu c v.

In general, the discovery of itemsets in G is the result of top-down traversal of G
constrained by a minimum support threshold G . The discovery process employs
an iterative approach in which k-itemsets are used to explore (k + 1)-itemsets.

Our Heuristic 3 has essentially three steps, as follows. These steps are applied
after the mining phase, i.e., we assume that the frequent itemset graph G is built.
The set of all itemsets that can be mined from G, based on a minimum support
threshold ¢ , is denoted by C.

Step1:identifying the sensitive itemsets. For each sensitive rule sri €
SR, convertitinto a sensitive itemsetc/i € C.

Step2: selecting subsets to sanitize. In this step, for each itemset ¢/ to be
sanitized, we compute its item pairs from level 1 in G, subsets of c/. If
none of them is marked, we randomly select one of them and mark it to
be removed.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Step3: sanitizing the set of supersets of marked pairs in level 1. The
sanitization of sensitive itemsets is simply the removal of the set of
supersets of all itemsets in level 1 of G that are marked for removal.
This process blocks possibilities of inferring sensitive rules. We refer
to these possibilities as inference channels that we describe later.

In the pattern sharing-based heuristics, an inference channel occurs when
someone mines a sanitized set of rules and, based on non-sensitive rules,
deduces one or more sensitive rules that are not supposed to be discovered. We
have identified some inferences against sanitized rules, as follows:

1. Forward-Inference Channel: let us consider the frequent itemset graph in
Figure 9(a). Suppose we want to sanitize the sensitive rules derived from
the itemset ABC. The naive approach is simply to remove the itemset ABC.
However, if AB, AC, and BC are frequent, a miner could deduce that ABC is
frequent. A database owner must assume that an adversary can use any
inference channel to learn something more than just the permitted
association rules. We refer to this inference as a forward-inference channel.
To handle this inference channel, we must also remove at least one subset
of ABC (randomly) in level 1 of the frequent itemset graph. This
complementary sanitization is necessary. In the case of a deeper graph, the
removal is done recursively up to level 1. Thus, the items in level O of the
frequent itemset graph are not shared with a second party. We could also
remove subsets of ABC recursively up to level O. In this case, the balance
between knowledge protection and knowledge discovery should be
considered in the released set of rules, since more frequent patterns are lost
by the sanitization process.

A B (o3 D Level0 A B C D Level0

AB AC BC AD CD Level 1 Level 1

@ ACD Level 2 ABC ACD Level 2
(a) (b)

Figure 9. (a) An example of forward-inference. (b) An example of
backward-inference.

2. Backward-Inference Channel: another type of inference occurs when we
sanitize a non-terminal itemset. Based on Figure 9(b), suppose we want to
sanitize any rule derived from the itemset AC. If we simply remove AC, it
is straightforward to infer the rules mined from AC, since both ABC and
ACD are frequent. We refer to this inference as a backward-inference
channel. To block this inference channel, we must remove any superset

21

22

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

that contains AC. In this particular case, ABC and ACD must be removed as
well. This kind of inference clearly shows that rule sanitization is not a simple
filter after the mining phase to weed out or hide the sensitive rules. Trimming
some rules out does not ensure full protection. Some inference channels must
be blocked as well.

To illustrate how our Heuristic 3 works, let us consider the frequent itemset
graph depicted in Figure 8(b). This frequent itemset graph corresponds to the
sample transactional database in Figure 8(a), with minimum support threshold
O = 2. Now suppose that we are sanitizing the sensitive rule A,B —> C before
sharing the frequent itemset graph. This example yields the following results:

Step 1: each sensitive rule is converted into its corresponding frequent
itemset. In this case, the rule A,B_—> C is converted into the itemset
ABC.

Step 2: in this step, the subsets for each rule are selected. In general, the
subsets are selected from the level 1 in the frequent itemset graph.
For this example, considering that there is no subset marked, we
select one of the subsets of ABC randomly. If we had subsets marked
previously, we would select one already marked to optimize the
sanitization process. Let us assume that we selected the subset AB
randomly. Then the subset AB was added to the list that contains all
the marked pairs to be sanitized.

Step 3: in this step, the sanitization takes place. We remove all supersets of
each pair marked to be sanitized. In this case, all the supersets of AB
will be removed. Figure 10 shows the frequent itemset graphs before
and after the rule sanitization. The sanitized frequent itemset graph is
shared for association rule mining.

A B C D Level 0 D Level0

</

BC AD CcD Level 1

ABN- AC s
N
<7A_BCD ACD Level 2 ACD Level 2

Level 1

Step 2 Step 1 Step 3

Frequent itemset graph before sanitization Frequent itemset graph after sanitization

Figure 10. An example of a frequent itemset graphs before and after
sanitization.

® The Sanitizing Algorithms

We now introduce our sanitizing algorithms to protect sensitive knowledge in
transactional databases. These algorithms correspond to the heuristics
presented previously and are categorized into two groups: data sharing-based
and pattern sharing-based algorithms.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

a) The Item Grouping Algorithm

The Item Grouping Algorithm, denoted by IGA, relies on Heuristic 1. The main
idea behind this algorithm is to group sensitive rules in groups of rules sharing the
same itemsets. If two sensitive rules intersect, by sanitizing the sensitive
transactions containing both sensitive rules, one would take care of hiding these
two sensitive rules at once and consequently reduce the impact on the released
database. However, clustering the sensitive rules based on the intersections
between items in rules leads to groups that overlap since the intersection of
itemsets is not transitive. By computing the overlap between clusters and thus
isolating the groups, we can use a representative of the itemset linking the
sensitive rules in the same group as a victim item for all rules in the group. By
removing the victim item from the sensitive transactions related to the rules in
the group, all sensitive rules in the group will be hidden in one step. This again
would minimize the impact on the database and reduce the potential accidental
hiding of legitimate rules.

In Step 1, the Item Grouping algorithm builds an inverted index, based on the
transactions in D, in one scan. The vocabulary of the inverted index contains all
the sensitive rules, and for each sensitive rule there is a corresponding list of
transaction /Ds in which the rule is present. From lines 7 to 11, the IGA builds the
inverted index, and in lines 4 and 5, the IGA computes the frequencies of all items
in the database D. These frequencies (support) are used for computing the victim
items in step 3.

In step 2, the algorithm sorts the sensitive transactions associated with all the
sensitive rules in 15 descending order of /0 (line 15). This is the basis of our
Heuristic 1. Then in line 16, the number of sensitive transactions to be sanitized,
in each sensitive rule sri, is selected based on the disclosure threshold .

The goal of step 3 is to identify a victim item per sensitive rule. The victim item in
one rule sri is fixed and must be removed from all the sensitive transactions
associated with this rule sri. The selection of the victim item is done by first
clustering sensitive rules in a set of overlapping groups GP (step 3.1), such that
all sensitive rules in the same group G share the same items. Then the groups of
sensitive rules are sorted in descending order of shared items (step 3.2). The
shared items are the class label of the groups. For example, the patterns "ABC"
and "ABD" would be in the same group labeled either A or B depending on
support of A and B (step 3.3). However, "ABC" could also be in another group if
there was one where sensitive rules shared "C". From line 26 to 32, the IGA
identifies such overlap between groups and eliminates it by favoring larger
groups or groups with a class label with lower support in the database.

Again, the rationale behind the victim selection in IGA is that since the victim item
now represents a set of sensitive rules (from the same group), sanitizing a
sensitive transaction will allow many sensitive rules to be taken care of at once
per sanitized transaction. This strategy greatly reduces the side effect on the

23

24

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

non-sensitive rules mined from the sanitized database.

In the last step, first the vector Victim is sorted in ascending order of #/b (line 40).
Then the algorithm scans the database again (for the second and last time) in the
loop from line 42 to line 47. If the current transaction (#/D) is selected to be
sanitized, the victim items corresponding to this transaction ¢ are removed from
it. In our implementation, transactions that do not need sanitization are directly
copied from D to D'. The sketch of the Item Grouping algorithm is given as
follows.

Algorithm 1: Ttem_Grouping_Algorithm
input : D, Sg, o
output: D’

1 begin

2 // Step 1: Identifying sensitive transacticns and building index T
3 foreach transaction t € D do

4 for k = I to size(t) do

5 Sup(itemy, D) «— Sup(item,, D) + 1;
6 Sort the items in ¢ in alphabetic orde

T foreach sensitive association rule sry € Sp do
s if items(sr;) C t then

9

| Tlsri]-tid list — T[sr].tidlist U TID of(t);

//Update support of each itemy, in t;

10 end

11 end

12 end

13 // Step 2: Selecting the number of sensitive transactioms

14 foreach sensitive association rule sr; € Sg do

15 Sort the veetor T[sr;].tid list in descending order of degree;

16 NumbTranse,, — |Tlsr]| » (1 —);

17 // |T'[sri]| is the number of sensitive transactions for sr;

18 end

19 // Step 3: Identifying victim items for each sensitive transaction
20 3.1 Group sensitive rules in a set of groups GP such that ¥V G € GP,

21 ¢ sri.sry € G, srg and sry share the same itemset I. Give the class label

22 e to & such that a € I and = I, sup(a, D) < sup(3, D);

23 3.2 Order the groups in GP by size in terms of number of sensitive rules

24 in the group;

25 // Compare groups pairwise (+; and G, starting with the largest

26 3.3 forall sry. € G; 11 Gy do

27 if size(G;) # size(G) then

28 ‘ remove sty from smallest(Gy, Gj);

20 else

30 remove sy, from group with class label & such that sup(a, D) > sup(3, D) and a, 3 are class

labels of either G; or Gy;

a1 end

32 end

33 3.4 fareach sensitive association rule sr; € Sp do

34 for j = 1 to NumbTrans,,, do

35 Chosenltem — o such that « is the class label of G and sry; € G

Vietims[T[sr;. j]].item list — Victims[T[sr;, j]].item_list U ChosenItem;

36 end

a7

a8 end

a0 // Step 4: D' — D

40 Sort the vector Victims in ascending order of ¢ p;
41 =1

a2 foreach transaction t € D do

43 if t;p == Victim trp then
a4 t — (t — Victims[j].item_list);
45 j—i+1

46 end

a7 end

48 end

Theorem 1. The running time of the Item Grouping algorithm is O(n7 x N x
log N), where n7 is the number of sensitive rules and N is the number
of transactions in the database.

The proof of Theorem 1 is given in Oliveira (2005).

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

b) The Sliding Window Algorithm

The Sliding Window Algorithm, denoted by SWA, relies on Heuristic 2. The
intuition behind this algorithm is that the SWA scans a group of K transactions
(window size) at a time. SWA then sanitizes the set of sensitive transactions,
denoted by ST, considering a disclosure threshold Y defined by a database
owner. All the steps in Heuristic 2 are applied to every group of K transactions
read from the original database D.

Unlike the previous sanitizing algorithm (IGA), which has a unique disclosure
threshold for all sensitive rules, the SWA has a disclosure threshold assigned to
each sensitive association rule. We refer to the set of mappings of a sensitive
association rule into its corresponding disclosure threshold as the set of mining
permissions, denoted by MP , in which each mining permission mp is
characterized by an ordered pair, defined as mp = <sri; Ji>, where Visri € SR
andV/€[0...1].

The inputs for the Sliding Window algorithm are a transactional database D, a set
of mining permissions MP, and the window size K. The output is the sanitized
database D"

The SWA has essentially four steps. In the first, the algorithm scans K
transactions and stores some information in the data structure 7. This data
structure contains: 1) alist of sensitive transactions IDs for each sensitive rule; 2)
a list with the size of the corresponding sensitive transactions; and 3) another list
with the victim item for each corresponding sensitive transaction. A transaction ¢
is sensitive if it contains all items of at least one sensitive rule. The SWA also
computes the frequencies of the items of the sensitive rules that are present in
each sensitive transaction. This computation will support the selection of the
victim items in the next step. Inline 11, the vector v_transac stores the sensitive
transactions in main memory.

In step 2, the vector with the frequencies, computed in the previous step, is
sorted in descending order. Subsequently, the victim item is selected for each
sensitive transaction. The item with the highest frequency is the victim item and
must be marked to be removed from the transaction. If the frequencies of the
items are equal to 1, any item from a sensitive association rule can be the victim
item. In this case, we select the victim item randomly.

In step 3, the number of sensitive transactions for each sensitive rule is selected.
Line 31 shows that Viis used to compute the number NumTranssri of transactions
to sanitize. The SWA then sorts the list of sensitive transactions for each
sensitive rule in ascending order of size. This sort is the basis of our Heuristic 2.

25

26

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

In the last step, the sensitive transactions are sanitized in the loop from line 35 to
42. If the disclosure threshold is O (i.e., all sensitive rules need to be hidden), we
do a look ahead in the mining permissions (MP) to check whether a sensitive
transaction need not be sanitized more than once. This is to improve the misses
cost. The function /ook_ahead() looks in MP from sri onward to determine
whether a given transaction ¢ is selected as a sensitive transaction for another
sensitive rule r. If this is the case and, Tlsril.tid _list[j]1and Tlsril.victim[j] are part
of the sensitive rule r, the transaction ¢ is removed from that list since it has
already just been sanitized. The sketch of the Sliding Window algorithm is given
as follows.

Algorithm 2: Sliding Window_Algorithm
input : D, Mp. K
output:

1 begin
2 foreach K transactions in D do
3 // Step 1: Identifying sensitive transactions & building index T'
4 foreach transaction t € K do
5 Sort the items in ¢ in alphabetic order;
6 foreach sensitive association rule sr; € Mp do
T if items(sr;) C ¢t then
8 Tlsry).tiddist — Tlsri].tid Jist UTID of(t); [/t is sensitive
9 Tsri].sizedist « T[sry).size list U size(t);
10 freqlitem;|— freq[item;] + 1;
11 v_transac — v_transac!J)t; [/Sensitive transactions in memory
12 end
13 end
14 // Step 2: Identifying the victim items
15 if ¢ is sensitive then
16 Sort vector freq in descending order;
17 foreach sensitive association rule sr; € Mp do
18 Select itemn, such that item, € sr; and ¥ item,, € sr;,
19 freqlitem,)] = freqlitemy];
20 if freglitem,) > 1 then
21 | Tlsri].victim «— T[sr;].victim U item,;
22 else
23 ‘ T'[sri|.victim « T[sri).victim U RandomItem(sr;);
24 end
25 end
26 end
27 end
28 end
29 // Step 3: Selecting the number of sensitive transactions
30 foreach sensitive association rule sr; € Mp do
31 NumTrans,,, — |[T[sri]| % (1 —dy):
32 Sort the vector T' in ascending order of size;
33 end
34 // Step 4: D' D
35 foreach sensitive association rule sr; € Mp do
36 for j = 1 to NumbT rans.,, do
37 remove(vtransac(l [sri] tid list[j], T [sr;].victim[j]]):
38 if ¢y =0 then
39 | do look_ahead (s, T[sr).tid list[j]. T[sr;].victim[j]);
40 end
41 end
42 end
43 end

Theorem 2. The running time of the SWA is O(n1x Nx log K) when Y # 0
and O (n”"x N x K) when ¥V = 0, where n7 is the initial number of
sensitive rules in the database D, K is the window size chosen, and N is
the number of transactionsin D.

The proof of Theorem 2 is given in Oliveira (2005).

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

c) The Downright Sanitizing Algorithm

The Downright Sanitizing Algorithm, denoted by DSA, relies on Heuristic 3. The
idea behind this algorithm is to sanitize some sensitive rules while blocking
inference channels as well. To block inference channels, the DSA removes at
least one subset of each sensitive itemset in the level 1 of the frequent itemset
graph. The removal is done recursively up to level 1. The DSA starts removing
from level 1 because we assume that the association rules recovered from the
sanitized itemsets (shared itemsets) have at least 2 items. A data owner could
also set DSA to start removing from level O, but this option would decrease the
usability of the shared knowledge since more itemsets would be removed,
increasing the side effect factor and misses cost. Thus, the items in level O of the
frequent itemset graph are not shared at all. In doing so, we reduce the inference
channels and minimize the side effect on non-sensitive rules mined from the
sanitized frequent itemset graph. The sketch of the Downright Sanitizing
algorithm is given as follows.

Algorithm 3: Downright_Sanitizing_Algorithm

input : G, Sp
output: &’

1 begin

2 // Step 1: Identifying the sensitive itemsets

3 fareach sensitive association rule sr; € Sp do

4 c; «— sryi //Convert each sr; into a frequent itemset ¢;

5 end

6 // Step 2: Selecting subsets to sanitize

L4 foreach ¢; in the level k of G, where k > 1 do

8 Pairs(e;); //Compute all the item pairs of ¢;

9 if (Pairs(c;) 1 MarkedPair = (1) then

10 p;i — random(Pairs(e;)): //Select randomly a pair p; € ¢;;

11 MarkedPair — MarkedPair\Jp;; [//Update the list Marked Pair
12 end

13 end

14 // Step 3: Sanitizing the set of supersets of marked pairs
15 1/ in level 1 (R'— R)

16 foreach itemset ¢; € G do

17 | Sort the items in ¢; in alphabetic order;

18 end

19 foreach itemset c; € G do

20 if 1 a marked pair p, such that p € MarkedPair and p C c; then
21 | Remc we(e;) from R'; ;’j’:‘, leungs to the set t:l'nllpl‘]‘hvls of »m
22 end

23 end
24 end

The inputs for the DSA are the frequent itemset graph G and the set of
sensitive rules SR to be sanitized. The output is the sanitized frequent
itemset graph G'.

Theorem 3. The running time of the Downright Sanitizing Algorithm is O(n
x(k*+m x log k)), where n is the number of sensitive rules to be sanitized,
m is the number of temsets in a frequent itemsets graph G, and k the
maximum number of items in a frequent itemsetin G.

The proof of Theorem 3 is given in Oliveira (2005).

27

28

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

* Datasets

We validated our sanitizing algorithms for knowledge protection using four real
datasets. These datasets are described as follows:

1

. BMS-Web-View-1 (BMS-1): this dataset contains click-stream data from the
web site of a (now defunct) legwear and legcare retailer. The dataset contains
59,602 transactions with 497 distinct items, and each customer purchasing
has 2.51 items on average. BMS-Web-View-1 (Zheng et al., 2001) has been
placed in the public domain of the company Blue Martini Software.

. Retail: this dataset contains the (anonymized) retail market basket data from

an anonymous Belgian retail supermarket store (Brijs et al., 1999). The data

were collected over three nonconsecutive periods. The first period ran from

mid December 1999 to mid January 2000. The second period ran from May

2000 to the beginning of June 2000. The third period ran from the end of

August 2000 to the end of November 2000. The total number of receipts

collected was 88,162 with 16,470 distinct items, and each customer

purchasing has 10.3 items on average.
Kosarak: this dataset contains (anonymized) click-stream data from a

Hungarian on-line news portal. Kosarak’ has 990,007 transactions with

41,270 distinct items, and each customer purchasing has 8.1 items on

average.

. Reuters: the Reuters-21578 text collection is composed of 7,774 transactions
with 26,639 distinct items and 46.81 items on average per transaction. The
Reuters dataset is available at the UCI Repository of Machine Learning
Databases (Blake & Merz, 1998).

Table 1 shows the summary of the datasets used in our experiments. The
columns represent, respectively, the database name, the total number of
records, the number of distinct items, the average number of items per
transaction, the size of the shortest transaction, and the size of largest
transaction.

BMS-Web-View-1 59,602 497 2.51 1 145
Retail 88,162 16,47 10.3 1 76

Kosarak 990,573 41,27 8.1 1 1065
Reuters 7,774 26,639 46.81 1 427

Table 1. A summary of the datasets used in our experiments.

2 This dataset was provided to us by Ferenc Bodon. A copy of the dataset is placed in the Frequent

Itemset Mining Implementations Repository: http://fimi.cs.helsinki.fi/data/

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

*Methodology to Evaluate the Heuristics

We now move on to describe the methodology used to validate our heuristics. We
first provide the intuition behind the process of protecting sensitive knowledge.

a) Sensitive Rules and Sensitive Transactions

Protecting sensitive knowledge in transactional databases is the task of hiding a
group of association rules which contains sensitive knowledge. We refer to these
rules as sensitive association rules and define them as follows:

Definition 5 (Sensitive Association Rules) - let D be a transactional database, R be
a set of all association rules that can be mined from D based on a minimum
support o, and RulesH be a set of decision support rules that need to be hidden
according to some security policies. A set of association rules, denoted by SR, is
said to be sensitive iff SR C R and SR would derive the set RulesH. ~ SR is the set
of non-sensitive association rules such that ~SRUSR = R.

A group of sensitive association rules is mined from a database D based on a
special group of transactions. We refer to these transactions as sensitive

transactions and define them as follows:

Definition 6 (Sensitive Transactions) - let 7 be a set of all transactions in a

transactional database D and SR be a set of sensitive association rules mined
from D. A set of transactions is said to be sensitive, denoted ST, if STC T and Vt
€ S7, 3 Sre SRsuch thatitems(sr) C t.

b) The Process of Protecting Sensitive Knowledge

The process of protecting sensitive knowledge in transactional databases is
composed of two major steps: identifier suppression and sanitization, as can be
seenin Figure 11.

Identifier

Suppression Sanitization
Original Transactional Sanitized

Database Database Database

Figure 11. Major steps of the process of protecting sensitive knowledge.
Step 1: Identifier Suppression

The first step of the sanitization process refers to the suppression of identifiers
(e.g., IDs, names, etc) from the data to be shared. The procedure of removing
identifiers allows database owners to disclose purchasing behavior of customers
without disclosing their identities (Kl6dsgen, 1995). To accomplish that, database
owners must transform the data into forms appropriate for mining.

29

30

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

After removing identifiers, the selected data which are subjected to mining, can
be stored in a single table, also called a transactional database. A transactional
database does not contain personal information, but only costumers' buying
activities. Although the deletion of identifiers from the data is useful to protect
personal information, we do not argue that this procedure ensures full privacy at
all. In many cases, it is very difficult to extract the specific identity of one or more
costumers from a transactional database, even combining the transactions with
other data. However, a specific transaction may contain some items that can be
linked with other datasets to re-identify an individual or and entity (Samarati,
2001; Sweeney, 2002).

Once the data is transformed into a transactional database, the process of hiding
sensitive rules from this transactional database is the next step to be pursued.

Step 2: Sanitization

After removing the identifiers from the data, the goal now is to efficiently hide
sensitive knowledge represented by sensitive rules. In most cases, the notion of
sensitive knowledge may not be known in advance. That is why the process of
identifying sensitive knowledge requires human evaluation of the intermediate
results before the sharing of data for mining. In this context, sensitive knowledge
is represented by a special group of rules referred to as sensitive association
rules.

An efficient way to hide sensitive rules is by transforming a transactional
database into a new one that conceals the sensitive rules while preserving most
of the non-sensitive ones. The released database is called a sanitized database.
To accomplish that, the sanitization process acts on the data modifying some
transactions. In some cases, a number of items are deleted from a group of
transactions (sensitive transactions) with the purpose of hiding the sensitive
rules derived from those transactions. In doing so, the support of such sensitive
rules are decreased below a certain disclosure threshold denoted by V.

Another way to hide sensitive rules is to add new items to some transactions to
alter (decrease) the confidence of sensitive rules. For instance, in a rule X=>Y, if
the items are added to the antecedent part X of this rule in transactions that
support X and not Y, then the confidence of such arule is decreased.

Clearly, the sanitization process slightly modifies some data, but this is perfectly
acceptable in some real applications (Atallah et al., 1999; Dasseni et al., 2001;
Sayginetal., 2001).

Although the sanitization process is performed to hide sensitive rules only, the
side effect of this process also hides some non-sensitive ones. By deleting some
items in a group of transactions, the support or even the confidence of non-

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

sensitive ones. By deleting some items in a group of transactions, the support or
even the confidence of non-sensitive rules are also decreased. Therefore,
sanitizing algorithms must focus on hiding sensitive rules and, at the same time,
reducing the side effect on the non-sensitive rules as much as possible.

c) The Methodology for Data Sharing-Based Algorithms

We performed two series of experiments. The first series was performed to
evaluate the effectiveness of our sanitizing algorithms, and the second to
measure their efficiency and scalability. One question that we wanted to answer
was:

Under which conditions can one use a specific sanitizing
algorithm to balance privacy and knowledge discovery?

We purposely selected the sensitive rules to be sanitized based on four different
scenarios, as follows:

S1: the sensitive rules selected contain only items that are mutually exclusive.
In other words, there is no intersection of items over all the sensitive rules.
The purpose of this scenario is to unfavor the algorithms IGA and SWA,
both of which take advantage of rule overlaps.

S2:inthis scenario, the sensitive rules were selected randomly.

S3: only sensitive rules with very high support were selected. Sanitizing such
rules would maximize the differential between an original dataset and its
corresponding sanitized dataset.

S4: only sensitive rules with low support were selected. Sanitizing such rules
would minimize the differential between an original dataset and its
corresponding sanitized dataset.

Our comparison study was carried out through the following steps:

Step 1: we selected the datasets BMS-1, Retail, Kosarak, and Reuters. The
first three datasets are specific for association rule mining, and the
last one contains long transactions, on average, with high frequency
items.

Step 2: we ran an association rule mining algorithm with a low minimum
support threshold to capture as many association rules as possible.
Subsequently, we selected the sensitive rules to be sanitized based
on the four scenarios described above.

31

32

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Step 3: we compared the sanitizing algorithms described previously against
each other and with respect to the following benchmark: the results
of association rules mined in the original (D) and sanitized (D’)
datasets. We used our metrics described previously to measure
information loss (misses cost, and the difference between D and D),
disclosure of private information (hiding failure), and fraction of
artifactual rules created by the sanitization process.

All the experiments were conducted on a PC (AMD 3200/2200) with 1.2 GB of
RAM running a Linux operating system. In our experiments, we selected four sets
of sensitive rules for each dataset based on the scenarios described above (S1 -
S4). Each set of rules has 6 rules with items varying from 2 to 8 items. Table 2
shows the parameters we used to mine the datasets before the selection of the
sensitive rules.

BMS-1 0.1 60 25,391 7 items
Retail 0.1 60 7,319 6 items
Reuters 5.5 60 16,559 10 items
Kosarak 0.2 60 349,554 13 items

Table 2. Parameters used for mining the four datasets.

The sanitizing algorithms, under analysis in this section, are those that rely on the
Heuristics 1 and 2 described previously. These algorithms are described as
follows:

1. The Item Grouping Algorithm (IGA) - groups sensitive association rules in
clusters of rules sharing the same itemsets. If two or more sensitive rules
intersect, by sanitizing the shared item of these sensitive rules, one would take
care of hiding such sensitive rules in one step.

2. The Sliding Window Algorithm (SWA) - scans one group of K transactions at a
time and sanitizes the sensitive rules present in such transactions based on a
set of disclosure thresholds defined by a database owner. There is a disclosure
threshold assigned to each sensitive association rule.

The similar counterparts in the literature used in our comparison study are:

3. The Round Robin Algorithm (RRA) - selects different victim items in turns
starting from the first item, then the second, and so over the set of sensitive
transactions. The process starts again at the first item of the sensitive rule as a
victim item each time the last item is reached (Oliveira & Zaiane, 2003). This
algorithm is based on Heuristic 1.

4. The Random Algorithm (RA) - selects a victim item for a given sensitive rule sri
randomly. For each sensitive transaction associated with sri, RA randomly
selects a victim item (Oliveira & Zaiane, 2003). This algorithm is also based on
Heuristic 1.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

5. Algo2a is a similar counterpart sanitizing algorithm which hides sensitive rules
by reducing support (Dasseni et al., 2001). The algorithm GIH, designed by
Saygin et al. (2001), is similar to Algo2a. The basic difference is that in
Algo2a, some items are removed from sensitive transactions, while in GIH a
mark "?" (unknowns) is placed instead of item deletions. To our best
knowledge there is no other similar sanitizing algorithm in the literature. The
algorithms published in Verykios et al. (2004) are an extension of the
algorithms published in Dasseni et al. (2001) and Saygin et al. (2001).

d) The Methodology for the Pattern Sharing-Based Algorithm

To the best of our knowledge, there are no known pattern sharing-based
algorithms for rule sanitization in the literature, except our algorithm Downright
Sanitizing Algorithm (DSA). However, data sharing-based algorithms can be used
for this purpose. Indeed, in order to sanitize a set of sensitive rules SR (before
sharing the patterns), one could use data sanitization to transform a database D
into D' and then mine D' to get the patterns to share. We used this idea to
compare our algorithm to existing data sanitization approaches. In particular, we
compare our algorithm DSA with IGA since the latter has yielded the best results
for data sanitization, as we reported in the previous section.

We performed two series of experiments: the first to evaluate the effectiveness
of DSA, and the second to measure its efficiency and scalability.

We considered the same datasets used in the performance evaluation for our data
sharing-based algorithms. In addition, we used the same sensitive rules selected
for the validations of our data sharing-based algorithms. Recall that such
sensitive rules were selected based on four different scenarios (S1-S4).

Our comparison study was carried out through the following steps:

Steps for IGA:

Step 1: we used the algorithm IGA to sanitize the sets of sensitive rules in the
fourinitial datasets.

Step 2: we applied an association rule mining algorithm on the sanitized
datasets to extract the rules/patterns to share.

Steps for DSA:

Step 1: we applied an association rule mining algorithm to extract rules from
the four initial datasets.
Step 2: we used DSA to sanitize these rules before sharing the rules/patterns.

33

34

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

The goal of our experiments here is to answer the same question raised in the
previous section: under which conditions can one use IGA or DSA to protect
sensitive knowledge mined from transactional databases?

e) The Road Map for the Experimentation

The road map for the experimentation includes two major steps as follows:

Step 1: we conducted the performance evaluation of our data sharing-based
algorithms (IGA and SWA) and the similar counterparts in the
literature (RRA, RA, and Algo2a) based on effectiveness and
scalability. To do so, we used our metrics presented previously. We
concluded the evaluation of the data sharing-based algorithms with a
discussion on the main results obtained.

Step 2: we conducted the performance evaluation of our pattern sharing-
based algorithm DSA based on effectiveness and scalability. We also
close the experimentation section with a discussion on the main
results.

Results and Discussion

In this section, we study the effectiveness and scalability of our algorithms. We
conclude this section discussing the main lessons learned from our experiments.

a) Evaluating the Window Size for SWA

We evaluated the effect of the window size, for the SWA algorithm, with respect
to the difference between an original dataset D and its corresponding sanitized
dataset D', misses cost, and hiding failure. To do so, we varied the K (window
size) from 500 to 100,000 transactions with the disclosure threshold Y = 25%.
We observed that for up to 5,000 transactions, the difference between D and D'
and misses cost improve slightly for the Reuters dataset. Similarly, these metrics
improve after 40,000 transactions for the datasets Kosarak, Retail, and BMS-1.
The results reveal that a window size representing 64.31% of the size of the
Reuters dataset suffices to stabilize the misses cost and hiding failure, while a
window size representing 4.04%, 45.37%, and 67.11% is necessary to
stabilize the same measures in the datasets Kosarak, Retail, and BMS-1,
respectively.

In this example, we intentionally selected a set of 6 sensitive association rules
with high support (scenario S3) to accentuate the differential between the sizes
of the original database and the sanitized database and thus to better illustrate

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

the effect of window size on the difference between D and D', misses cost, and
hiding failure.

Note that the distribution of the data affects the values for misses cost and hiding
failure. To obtain the best results for misses cost and hiding failure, hereafter we
set the window size Kto 50,000 in our experiments.

b) Measuring Effectiveness of the Data Sharing-Based Algorithms

The effectiveness of the sanitizing algorithms is measured in terms of the number
of sensitive association rules effectively hidden, as well as the proportion of non-
sensitive rules accidentally hidden due to the sanitization process.

We studied the effectiveness of the sanitizing algorithms based on the following
condition: we set the disclosure threshold \J to 0% and fixed the minimum
support threshold , the minimum confidence threshold ¢ , and the number of
sensitive rules to hide.

In the above condition, no sensitive rule is allowed to be mined from the sanitized
dataset. Later (in special cases section), we will show that a database owner
could also slide the disclosure threshold (Y> 0) to allow a balance between
knowledge discovery and privacy protection in the sanitized database.

Table 7 shows a summary of the best sanitizing algorithms, in terms of misses
cost. The algorithm IGA yielded the best results in almost all the cases. The
exceptions are the scenarios S2, S3, and S4 of the dataset Retail that contains
sensitive rules with high support items. In this case, the algorithms SWA and RA
benefit from the selection of the victim items, a choice which varies in each
sensitive transaction, alleviating the impact on the sanitized dataset. As a result,
the values for misses cost are slightly minimized. The detailed results of misses
costs on the different datasets are depicted in Tables 3, 4, 5 and 6.

IGA 2.06 28.56 62.11 29.88 IGA 1.03 9.16 66.31 3.1
RRA 28.98 42.22 74.42 37.92 RRA 2.66 5.87 64.02 3.25
RA 28.80 42.62 74.37 38.02 RA 2.48 5.77 63.86 3.10
SWA 29.15 42.49 72.70 37.97 SWA 2.77 5.64 65.29 3.15
Algo2a 26.03 45.14 62.58 36.53 Algo2a 5.05 10.04 82.43 3.97
DSA 5.41 19.34 24.02 8.05 DSA 0.19 0.47 46.03 9.31
Table 3. Results of misses cost on Table 4. Results of misses cost on

the dataset Kosarak. the dataset Retail.

35

36

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

IGA 45.67 46.96 67.10 45.00 IGA 21.73 15.36 28.01 15.36
RRA 64.36 67.47 89.00 49.06 RRA 39.79 41.30 53.13 41.30
RA 64.47 66.45 89.03 50.15 RA 37.77 43.05 50.35 43.05
SWA 64.50 64.46 75.22 47.32 SWA 40.77 32.84 49.80 32.84
Algo2a 47.35 66.81 77.32 45.60 Algo2a 2467 42.25 46.57 42.25
DSA 32.85 37.34 35.85 51.81 DSA 7.06 5.68 8.17 0.15
Table 5. Results of misses cost on Table 6. Results of misses cost on
the dataset Reuters. the dataset BMS-1.

Kosarak IGA IGA IGA IGA

Retail IGA SWA RA RA

Reuters IGA IGA IGA IGA

BMS-1 IGA IGA IGA IGA

Table 7. Summary of the best algorithms
In terms of misses cost.

We also investigated the differential between the initial size of the four datasets
and the size of the sanitized datasets. The algorithm SWA yielded results slightly
better than those in the other algorithms, as can be seen in Table 8. Details about
these results are depicted in Tables 9, 10, 11 and 12.

Based on the results for dif(D;D’), a natural question arises: how can SWA get the
best results for dif(D;D') and not for misses cost? The main reason is that the
victim items in this algorithm is dynamic, i.e., a new victim item is selected for
each sensitive transaction to be sanitized. This approach reduces support of
every item in a sensitive rule (one item is selected for each sensitive transaction)
regardless of whether an item has high or low support. Reducing items with high
support would prune the candidate generation of discovered rules in the sanitized
dataset, compromising the values of misses cost. On the contrary, the victim item
selected by the IGA, for a sensitive rule, is fixed for all sensitive transactions.
Moreover, the IGA always selects the item with lower support for each rule,
which greatly improves the values of misses cost.

Kosarak SWA SWA SWA SWA
Retail SWA SWA SWA SWA
Reuters SWA SWA SWA SWA
BMS-1 SWA SWA SWA SWA

Table 8. Summary of the best algorithms for
dif (D, D).

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

IGA 0.16 0.21 2.13 0.15 IGA 0.12 0.12 1.69 0.05
RRA 0.16 0.21 2.33 0.16 RRA 0.12 0.12 1.77 0.05
RA 0.16 0.21 2.33 0.16 RA 0.12 0.12 1.78 0.05
SWA 0.16 0.20 2.05 0.15 SWA 0.12 0.12 1.66 0.05
Algo2a 0.16 0.21 2.13 0.16 Algo2a 0.12 0.12 1.74 0.05
Table 9. Difference (D, D’) for the Table 10. Difference (D, D’) for the
dataset Kosarak. dataset Retail.

Regarding the third performance measure, artifactual patterns, one may claim that when we
decrease the frequencies of some items, the relative frequencies in the database may be
modified by the sanitization process, and new rules may emerge. However, in our
experiments, the problem artifactual pattern AP was always 0% with all algorithms
regardless of the values of /. Our sanitization, indeed, does not remove any transaction.
The same results could be observed for the counterpart algorithms. On the other hand,
some of the sanitizing algorithms introduced in Verykios et al. (2004) present the case in
which artifactual patterns appear (i.e., AP > 0), since the sensitive rules are hidden by
reducing their confidence below a privacy threshold. To do so, some items are added to
transactions that participate in the generation of the antecedent part X, but not the
consequent part Y of a rule, where the rule is the form X = Y. Adding items to some
transactions results in the generation of new association rules that are not supposed to exist
in the original database.

IGA 0.56 0.52 0.85 0.54 IGA 0.22 0.13 0.88 0.13
RRA 0.55 0.52 1.00 0.53 RRA 0.22 0.14 0.99 0.14
RA 0.55 0.52 1.01 0.53 RA 0.22 0.14 0.98 0.14
SWA 0.55 0.44 0.84 0.46 SWA 0.22 0.12 0.88 0.12
Algo2a 0.56 0.52 0.90 0.54 Algo2a 0.22 0.17 0.89 0.17
Table 11. Difference (D, D’) for Table 12. Difference (D, D’) for the
the dataset Reuters. dataset BMS-1.

c) Special Cases of Data Sanitization

There are two special cases of data sanitization regarding the data sharing-based
algorithms validated in the previous section. The first case occurs only for the
algorithm SWA, i.e., this algorithm has an advantage over the counterpart
algorithms. The advantage is that SWA allows a database owner to set a specific
disclosure threshold for each sensitive rule. In our previous examples, we set the
disclosure thresholds of all the sensitive rules with a unique value (Y = 0%). This
specific disclosure threshold works as a weight. In many cases, some rules are
more important than others. Thus, giving different disclosure thresholds to
different rules is reasonable and may reflect real-world needs. For instance, let us
consider the set of sensitive rules in scenario S3. Now we set the window size of
SWA to 100,000 transactions (K = 100,000) and give different disclosure
thresholds for each set of 6 rules in the four datasets, as follows: {[rule 1, 30%],
[rule 2, 25%], [rule 3, 15%], [rule 4, 45%], [rule 5, 15%], and [rule 6, 20%]},
where for each ordered pair [rule 7, W /], rule / represents a sensitive rule in each
dataset, and ¥V / is the corresponding disclosure threshold. In this example, we
obtained the following results for misses cost, hiding failure, and dif(D;D’) as
shownin Table 13.

37

38 Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

MC 3722 3107 4648 8.68
HF 5.57 7.45 0.01 21.84
Dif (D, D) 1.68 1.24 0.63 0.70

Table 13. An example of different thresholds
for the sensitive rules in scenario S3.

The second special case of data sanitization occurs when data owners slide the
disclosure threshold (> 0) to allow miners to find a balance between knowledge
discovery and privacy. This scenario is reasonable because here we are not
disclosing personal information but special association rules that are strategic in
decision making. Therefore, making a trade-off between privacy and data for
mining can be done as long as an application permits it.

While the algorithm Algo2a hides rules by reducing their absolute support below a
privacy threshold controlled by the database owner, our proposed algorithms
hide rules based on a disclosure threshold \y . Table 14 shows the effect of Y on
misses cost and hiding failure for the set of sensitive rules (scenario S3) in the
Kosarak dataset. We varied y from O to 25%. Since Algo2a does not allow the
input of a disclosure threshold, itis not compared with our algorithms.

An important observation drawn from our special cases of data sanitization is
that the values of misses cost can be improved. In the case of the algorithm SWA,
having different disclosure thresholds reduces the values of misses cost.
Similarly, sliding the disclosure threshold V improves the values of misses cost.
On the other hand, the values of hiding failure increase since misses cost and
hiding failure are typically contradictory measures, i.e., improving one usually
incurs a cost in the other.

IGA 62.11 0.00 61.85 0.00 61.66 0.08 61.38 0.08 60.33 0.24
R.Robin 74.42 0.00 73.42 0.00 72.32 0.00 70.94 0.00 67.70 0.12
Random 74.37 0.00 73.32 0.00 72.36 0.00 70.87 0.00 67.73 0.00
SWA 72.70 0.00 67.03 0.00 59.56 0.75 53.06 3.81 39.87 17.83

Table 14. Effect of W on misses cost (MC) and hiding failure (HF).

d) CPU Time for the Sanitization Process

We tested the scalability of the sanitization algorithms vis-a-vis the size of the
database as well as the number of rules to hide. To do so, we selected the Kosarak
dataset since it is the largest one used in our experiments. Our comparison study
also includes the counterpart algorithms.

We varied the size of the original database D from 150K transactions to 900K
transactions, while fixing the disclosure threshold Y = 0% and keeping the set of
sensitive rules constant (6 original sensitive rules that are mutually exclusive).

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

Figure 12(a) shows that our algorithms scale well with the database size. The
algorithms IGA, RRA and RA vyielded lower CPU time than that for SWA and
Algo2a. In particular, Algo2a requires six scans over the original database (one to
hide each sensitive rule), while the algorithms IGA, RRA and RA require only two.

Although the algorithm SWA requires only one scan, it performs many operations
in memory (e.g., sorting transactions in ascending order of size for each window),
which demands more CPU time as the dataset increases. Even though IGA, RRA,
and RA require two scans, they are faster than SWA. The main reason is that
these algorithms perform a sort in memory only once.

As can be observed, the algorithms IGA, RRA, and RA increase CPU linearly, even
though their complexity in main memory is not linear. If we increase the number
of sensitive rules or even if we select a group of sensitive rules with very high
support, these algorithms may not scale linearly. However, there is no compelling
need for sanitization to be a fast operation since it can be done offline.

40 10
E——TcTY ———IGA
a5}| ——RRA —~—RRA
—5—RA =5 RA
aol| ——swa E ——SWA
—&— Algo2a g 0 —&— Algo2a 4
§ o5t <] e
@
E o //—Ei
2 20 2 -]
£ E -
= E
& 15 z
=
10} T
5} i
= r_._)E,_f__e—Ez
B R
e L ' L s L 10"
200 300 400 500 800 700 800 a0 20 a0 40 50 80 70 80 a0 100
Dataset size (in thousands) Number of sensitive iles

(a) (b)

Figure 12. Results of CPU time for the sanitization process.

The 1/0 time (scans over the dataset) is also considered in these figures. This
demonstrates good scalability with the cardinality of the transactional database.

We also varied the number of sensitive rules to hide from approximately 20 to 100
selected randomly, while fixing the size of the dataset Kosarak and fixing the
support and disclosure thresholds to W = 0%. Figure 12(b) shows that our
algorithms scale well with the number of rules to hide. The values are plotted in
logarithmic scale because the algorithm Algo2a requires one scan for each rule to
hide.

Although IGA requires 2 scans, it was faster than SWA in all the cases. The main
reason is that the SWA performs a number of operations in main memory to fully
sanitize a database. The IGA requires one scan to build an inverted index where

39

40

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

the vocabulary contains the sensitive rules and the occurrences contain the
transaction IDs. In the second scan, IGA sanitizes only the transactions marked in
the occurrences. Another interesting result observed was that over 40 rules, the
SWA performed better than the algorithms RRA and RA. The reason is that the
heuristic behind the SWA is optimized especially when there are rules with the
intersection of items. Note that when the number of sensitive rules increases, the
intersection of items among the rules tends to increase as well. In this case, the
SWA touches fewer transactions than RRA and RA. As a result, SWA improves
the performance as the number of rules to hide increases since the number of
sorts in memory is the same (one by window size) for the dataset.

We should point out that the scalability of our sanitizing algorithms is mainly due
to the inverted files we use in our approaches for indexing the sensitive
transaction IDs per sensitive rule. There is no need to scan the database again
whenever we want to access a transaction for sanitization purposes. The
inverted file gives direct access with pointers to the relevant transactions. On the
other hand, the CPU time for Algo2a is more expensive due to the number of
scans over the database.

e) Discussion on the Data Sharing-Based Algorithms

We have evaluated our data sharing-based algorithms by performing a broad set
of experiments using real datasets. This evaluation was carried out to suggest
guidance on which algorithms perform best under different conditions.

Our experiments demonstrated that sanitization is not a trivial task. It can render
the released database almost useless when not done properly. For this reason,
we investigated different conditions under which a data owner can tune the
parameters of the sanitizing algorithms to get the most out of the sanitization
process.

We have learned several lessons from the experiments with our data sharing-
based algorithms, as follows:

* Large datasets are our friends: our results typically show that the best results
of misses cost and hiding failure can be obtained as the dataset increases.
The Kosarak dataset is a typical example.

* Our algorithms scale well: in the worst case, we scan a transactional dataset
twice, one to build the indexes and the other to sanitize the dataset. The
SWA algorithm requires only one scan.

* The algorithm IGA performs very well: our experiments have demonstrated
its outstanding performance. In almost all the cases, IGA yielded the best
results in terms of misses cost and hiding failure. Exceptions occur in
scenarios in which sensitive rules contain items with very high support. In

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

this particular case, the algorithms SWA, RA, and RRA may present better
results for misses cost.

* The data sanitization paradox: minimizing the impact on the sanitized
datasets does not guarantee the best results in terms of misses cost. We
showed that even though the SWA has yielded the best results for the
differential between the original and the sanitized datasets, it has not
achieved the best results for misses cost.

f) Measuring Effectiveness of the Pattern Sharing-Based Algorithm

The effectiveness is measured in terms of sensitive associations rules that can be
recovered by an adversary, as well as the proportion of non-sensitive rules hidden
inadvertently due to the sanitization.

In order to compare the sanitizing algorithms IGA and DSA under the same
conditions, we set the disclosure thresholds of the algorithm IGA to 0%. In this
case, all sensitive rules are completely sanitized. We purposely set these
thresholds to zero because DSA always sanitizes all the sensitive rules.

Table 15 provides a summary of the best sanitizing algorithms in terms of misses
cost when fixing the number of sensitive rules to be sanitized (6 rules). The
algorithm DSA yielded the best results in almost all the cases. The exceptions are
the scenarios S1 (the dataset Kosarak) and S4 (the datasets Retail and Reuters) in
which the values of misses cost for IGA are slightly better than those in DSA. In
particular, we observed that IGA yielded the best results only when the sensitive
rules had items with low support. This is the typical case in Scenario S4. The
same case occurred in Scenario S1 for the dataset Kosarak in which the rules
selected were composed of items with low support.

On the other hand, we can note that in Scenarios S2 (rules selected randomly)
and S3 (rules with high support items), the algorithm DSA yielded the best results
in all the cases, as expected.

Kosarak IGA DSA DSA DSA
Retail DSA DSA DSA IGA
Reuters DSA DSA DSA IGA
BMS-1 DSA DSA DSA DSA

Table 15. Summary of the best algorithms in terms of
misses cost.

41

42

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

After comparing the algorithms IGA and DSA in terms of misses cost, we
compared them in terms of the side effect factor. Table 16 summarizes the
results we observed in terms of the side effect factor. The details concerning the
values of side effect factor for IGA and DSA are represented in Tables 17, 18, 19
and 20.

Note that the values in Table 16 are exactly the same as those in Table 15. These
results were expected since misses cost and side effect factor are very similar
measures.

Kosarak IGA DSA DSA DSA
Retail DSA DSA DSA IGA
Reuters DSA DSA DSA IGA
BMS-1 DSA DSA DSA DSA

Table 16. Summary of the best algorithms
in terms of side effect factor.

IGA 2.17 28.94 69.16 29.93 IGA 1.64 9.40 69.05 3.33
DSA 5.52 17.32 38.15 8.11 DSA 0.82 0.79 50.44 9.51
Table 17. Results of side effect Table 18. Results of side effect factor
factor on the dataset Kosarak. on the dataset Retail.

IGA 45.26 47.63 71.10 45.12 IGA 21.85 15.43 29.80 15.94
DSA 33.59 37.91 43.64 51.91 DSA 7.20 5.75 10.46 0.16
Table 19. Results of side effect Table 20. Results of side effect factor
factor on the dataset Reuters. on the dataset BMS-1.

After identifying the side effect factor, we evaluated the recovery factor for DSA.
This measure is not applied to IGA since this algorithm relies on data sanitization
instead of pattern sanitization. Thus, once the data are shared for mining, there is
no restriction about the rules discovered from a sanitized database.

In the case of pattern sanitization, some inference channels can occur, as
discussed previously. We ran a checklist procedure to evaluate the effectiveness
of the sanitization performed by DSA. We then checked for the existence of any

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

subset of the sensitive rules removed in order to identify the recovery factor. If all
subsets of a rule were found, we assumed the rule could be recovered. As
expected, DSA blocked both forward-inference and the backward-inference
attacks. The results suggested that an adversary is highly unlikely to be able to
reconstruct the sensitive rules after the sanitization performed by DSA.

g) CPU Time for the Sanitization Process

We tested the scalability of the sanitization algorithms vis-a-vis the size of the
database as well as the number of rules to hide. Again, we used the Kosarak
dataset since it is the largest one used in our experiments.

---IGA

—=—DSA e
2 - 2
B L
Q © 10
S g g
| |
g g
& B
E E
E Ew
z & —
G S -

St o
200 300 400 500 600 700 8OO 800 20 30 40 50 80 70 80 80 100
Dataset size Number of sensitive rules

(a) (b)

Figure 13. Results of CPU time for the sanitization process.

We varied the size of the original database D from 150K transactions to 900K
transactions (150K, 300K, 450K, 600K, 750K, and 900K), while fixing the
disclosure threshold ¥ = 0% for IGA and keeping the set of sensitive rules
constant (6 original sensitive rules that were mutually exclusive). The
transactions in the six sub-datasets were selected randomly from the Kosarak
dataset. Figure 14(a) shows that our algorithms scale well with the database
size. In particular, the CPU time for the DSA decreases significantly as the size of
the datasets increased. Note that the CPU time for the DSA strongly changed.
The main reason is that the number of rules in these datasets did not increase
linearly for the same value of WV . For instance, the dataset with 150k had many
more rules than the dataset with 600K, resulting in this unexpected behavior of
the DSA. In contrast, the CPU time for the IGA increased linearly, as can be seen
in Figure 14(a). Note that the IGA sanitizes transactions which increase linearly in
our example, while the DSA sanitizes rules generated from the sub-datasets.

We also varied the number of sensitive rules to hide from approximately 20 to
100 selected randomly, while fixing the size of the dataset Kosarak and fixing the
support and disclosure thresholds to Y= 0%. Figure 14(b) shows that our

43

44

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

algorithms scale well with the number of rules to hide. The values are plotted in
logarithmic scale because of the significant difference between the CPU time for
both algorithms.

The 1/0O time (scans over the dataset) is also considered in these figures. This
demonstrates the good scalability of both algorithms with the cardinality of the
transactional database and of the number of sensitive rules to be sanitized.

h) Discussion on the Pattern Sharing-Based Algorithms

We have evaluated our data pattern-based algorithms by performing a broad set
of experiments using real datasets. Our experiments demonstrated the evidence
of attacks (inference channels) in sanitized databases. The figures revealed that
DSA is a promising solution to protect sensitive knowledge before sharing
associationrules.

DSA has a low value for side effect factor (and misses cost) and a very low
recovery factor. We have identified some advantages of DSA over the previous
data sharing-based sanitizing algorithms in the literature as follows:

¢ Using DSA, a database owner would share patterns (results) instead of the
data itself.

* By sanitizing rules, one drastically reduces the possibility of inference
channels since the support threshold and the mining algorithm are previously
selected by the database owner.

¢ Sanitizing rules instead of data results in no alteration in the support and
confidence of the non-sensitive rules, i.e., the released rules have the
original support and confidence. As a result, the released rules seem more
interesting for practical applications. Note that the other approaches reduce
the support and the confidence of the rules as a side effect of the sanitization
process.

On the other hand, DSA reduces the flexibility of information sharing since each
time a third party wants to try a different set of support and confidence levels, it
has to request the rules/patterns from the data owner.

Conclusions

In this paper, we have introduced a unified framework for protecting sensitive
knowledge in business collaboration, notably in the context of association rule
mining. This framework encompasses:

1. Retrieval facilities: to speed the process of hiding sensitive rules in
transactional databases, our framework is built on an index. As a result,
the sanitizing algorithms

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

require only two scans to protect sensitive rules regardless of the number of
association rules to be hidden: one scan to build an inverted index, and the
other scan to hide the sensitive rules. Other techniques proposed in the
literature require multiple scans.

2. A library of sanitizing algorithms: the algorithms are classified into two
major groups: Data-Sharing approach and Pattern-Sharing approach. In the
former, the sanitization acts on the data to hide the group of sensitive
association rules that contain sensitive knowledge. In the latter, the
sanitizing algorithm acts on the rules mined from a database, instead of the
dataitself. Our algorithms are based on our three heuristics to hide sensitive
association rules by reducing either the support or the confidence of these
rules.

3. A set of metrics: our proposed metrics were designed to quantify not only
how much sensitive knowledge has been disclosed, but also to measure the
effectiveness of the sanitizing algorithms in terms of information loss and in
terms of non-sensitive rules removed as a side effect of the transformation
process. The proposed metrics are classified into two major groups: Data
sharing-based metrics and Pattern sharing-based metrics.

We empirically validated our framework using a broad set of experiments. Our
evaluation took into account four representative datasets and considered the
existing sanitizing algorithms in the literature. The results of our performance
evaluation revealed that our framework is effective and achieves significant
improvement over the other approaches presented in the literature.

Acknowledgments

We would like to thank Elena Dasseni for providing us with the code of her
algorithm for our comparison study, and Osmar Zaiane for his helpful comments
on the manuscript.

45

46

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

References

AGRAWAL, R.; IMIELINSKI, T.; SWAMI, A. N. Mining association rules between
sets of items in large databases. In: ACM SIGMOD INTERNATIONAL
CONFERENCE ON MANAGEMENT OF DATA, 1983, Washington, D. C.
Proceedings... New York: ACM Press, 1983. p. 207-216. Disponivel em:
<http://delivery.acm.org/10.1145/180000/170072/p.207-
agrawal.pdf?key1 =170072&key2 =2558614411&coll=GUIDE&dI=GUIDE&
CFID=72920275&CFTOKEN =68564505 > . Acesso em: jan. 2005.

AGRAWAL, R.; SRIKANT, R. Fast algorithms for mining association rules. In:
INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, 20", 1994,
Santiago de Chile. Proceedings... [Santiago, 1994]. p. 487-499. Disponivel em:
< http://citeseer.ist.psu.edu/cache/papers/cs/1451/http:zSzzSzwww.almaden.
ibm.comzSzcszSzpeoplezSzragrawalzSzpaperszSzvidb94 rj.pdf/agrawal94fast.
pdf>. Acesso em: jan. 2005.

ATALLAH, M.; BERTINO, E.; ELMAGARMID, A.; IBRAHIM, M.; VERYKIOS, V.
Disclosure limitation of sensitive rules. In: IEEE KNOWLEDGE AND DATA
ENGINEERING EXCHANGE WORKSHOP (KDEX'99), 1999, Chicago.
Proceedings...[Chicago, 1999]. p. 45-52. Disponivel em:
< http://ieeexplore.ieee.org/iel5/6764/18077/00836532.pdf?tp = &arnumber
=836532&isnumber=18077>. Acesso em: jan. 2005.

BAEZA-YATES, R.; RIBEIRO-NETO, B. Modern information retrieval. New York:
ACM Press; Harlow: Addison-Wesley Longman, 1999. 513 p.

BERRY, M.; LINOFF, G. Data mining techniques - for marketing, sales, and
customer support. 2™. New York: John Wiley, 1997. 643 p.

BLAKE, C.; MERZ, C. UCI repository of machine learning databases. Irvine:
University of California - Dept. of Information and Computer Sciences, 1998.

BRIJS, T.; SWINNEN, G.; VANHOOF, K.; ANDWETS, G. Using association rules
for product assortment decisions: a case study. In: ACM SIGKDD
INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA
MINING, 5., 1999, San Diego. Proceedings... San Diego: ACM, 1999. p. 254-
260. Disponivel em: <http://delivery.acm.org/10.1145/320000/312241/p254-
brijs.pdf?key1=3122418&key2 =4952714411&coll =portal&dl = ACM&CFID =
72924495&CFTOKEN=4797518>. Acesso em: jan. 2005.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L. Introduction to algorithms.
Cambridge, Mass.: MIT Press, 1992. 1180 p.

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining 47

DASSENI, E.; VERYKIOS, V. S.; ELMAGARMID, A. K.; BERTINO, E. Hiding
association rules by using confidence and support. In: INFORMATION HIDING
WORKSHOP, 4", 2001, Pittsburg. Proceedings... London: Springer-Verlag,
2001. p. 368-383. (Lecture Notes in Computer Science, v. 2137).

HIPP, J.; GUNTZER, U.; NAKHAEIZADEH, G. Algorithms for association rule
mining - a general survey and comparison. SIGKDD Explorations, v. 2, n. 1, p.
58-64, June, 2000. Disponivel em:

< http://www.acm.org/sigs/sigkdd/explorations/issues/2-1-2000-
06/hipp.pdf>. Acesso em: jan. 2005.

KLOSGEN, W. Anonymization techniques for knowledge discovery in databases.
In: INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA
MINING (KDD'95), 1*., 1995, Montreal. Proceedings... [Montreal, 1995]. p.
1860191.

OLIVEIRA, S. R. M. Data transformation for privacy-preserving data mining.
2005. 167 p. Ph. D. Thesis (Computer Science) - Department of Computing
Science, University of Alberta, Edmonton, Canada.

OLIVEIRA, S. R. M.; ZAIANE, O. R. Algorithms for balancing privacy and
knowledge discovery in association rule mining. In: INTERNATIONAL DATABASE
ENGINEERING AND APPLICATIONS SYMOSIUM (IDEAS'03), 7., 2003, Hong
Kong. Proceedings... [Hong Kong, 2003]. p. 54-63.

REA, A. C. The cooperative side of competition: coopetition. In: THE WRITE
EDGE. News center. Gainesville, 2002. Disponivel
em: < http://www.writeedge.com/articles/Coopetition.asp>. Acesso em: jan.
2005.

SAMARATI, P. Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, v. 13, n. 6, p. 1010-1027,
Nov./Dec. 2001. Disponivel em:

< http://ieeexplore.ieee.org/iel5/69/20940/00971193.pdf?tp = &arnumber =97
1193&isnumber =20940>. Acesso em: jan. 2005.

SAYGIN, Y.; VERYKIOS, V. S.; CLIFTON, C. Using unknowns to prevent
discovery of association rules. ACM SIGMOD Record, v. 30, n. 4. p. 45-54,
Dec. 2001. Disponivel em:

< http://portal.acm.org/toc.cfm?id = J689&type = periodical&coll = GUIDE&dI =
GUIDE&CFID =68741206&CFTOKEN=97137733>. Acesso em: jan. 2005.

48

Heuristics for Protecting Competitive Knowlegde in Association Rule Mining

SWEENEY, L. k-Anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-Based Systems, v. 10, n. 5,
p. 557-5670, 2002. Disponivel em:

< http://privacy.cs.cmu.edu/people/sweeney/kanonymity.pdf>. Acesso em:
jan. 2005.

VERYKIOS, V. S.; ELMAGARMID, A. K.; BERTINO, E.; SAYGIN, Y.; DASSENI, E.
Association rule hiding. IEEE Transactions on Knowledge and Data Engineering,
v.16,n.4,p.434-447, 2004.

ZHENG, Z.; KOHAVI, R.; MASON, L. Real world performance of association
rules algorithms. In: ACM SIGKDD INTERNATIONAL CONFERENCE ON
KNOWLEDGE DISCOVERY AND DATA MINING, 7", 2001, San Francisco.
Proceedings... [San Francisco, 2001]. p. 401-406. Disponivel em:

< http://citeseer.csail.mit.edu/cache/papers/cs/22558/http:zSzzSzrobotics.sta
nford.eduzSz ~ ronnykzSzrealWorldAssocLongPaper.pdf/zhengO1real.pdf>.
Acesso em: jan. 2005.

En@a

Informatica Agropecudria

Ministério da Agricultura,

Pecuaria e Abastecimento 'ym eals DE ToDoS
GOVERNO FEDERAL

129§ 1

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51

