Projeto abre caminho para mais inovação

Com o desenvolvimento das técnicas de briquetagem, uma nova linha de pesquisas se abre dentro da Embrapa. Com o domínio das bases tecnológicas de produção de briquetes e pellets combustíveis, diferentes inovações podem ser pensadas, como a associação (blends) com outros materiais combustíveis (por exemplo: coque verde de petróleo) aos briquetes desenvolvidos, de maneira a ofertar ao mercado consumidor um briquete de alto poder calorífico, alto tempo de residência, excelente curva de queima, baixa emissão de voláteis, baixa produção de resíduos, etc.

Biofábrica de briquetes

Realização

Patrocínio

Produção de biocombustíveis sólidos no Baixo-Açu, RN

Ano: 2013 Tiragem: 1000 Edição: NCO/Solc

> Embrapa Solos Rua Jardim Botânico, 1.024 - Jardim Botânico Rio de Janeiro, RJ - Brasil - CEP 22460-000 Tel.: (021) 2179 4500 - Fax: (021) 2274 5291 http://www.cnps.embrapa.br

Ministério da
Agricultura, Pecuária
e Abastecimento

O Problema

A utilização de florestas como fonte de energia é tão antiga quanto a história da humanidade. Desde os primórdios da história da civilização, a vegetação se constituiu como uma fonte energética, sendo utilizada em atividades domésticas e posteriormente em atividades manufatureiras e industriais.

O Rio Grande do Norte apresenta um quadro de forte dependência social e econômica em relação ao recurso florestal, principalmente nas microregiões (como as do Seridó e Baixo-Açu) que possuem parques industriais cerâmicos.

A biomassa oriunda, na sua maior parte de matas nativas, fornece energia para 35% do parque industrial do Estado e é a sua segunda fonte de energia com uma participação de 30% da sua matriz energética. Contudo, a exploração florestal com essa finalidade ainda utiliza-se de técnicas extremamente rudimentares que proporciona uma pressão sobre o meio-ambiente, afetando diretamente as espécies vivas que habitam esses espaços.

Convém destacar, que o desmatamento acelerado da caatinga coloca em risco a sua biodiversidade e a sobrevivência de camadas da população que dependem do potencial de seus recursos naturais para sobreviverem.

Tecnologia e criatividade

Diante deste quadro, o Projeto Caatinga Viva financiado pelo Programa Petrobras Ambiental, idealizado e capitaneado pela Embrapa Solos, tendo como parceiros: a ONG Carnaúba Viva: o Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN); a Associação Norte Riograndense de Engenheiros Agrônomos (ANEA) e a Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN), juntaram seus esforços e conhecimentos específicos para implementar na região uma verdadeira revolução no modo de produção energética, visando ofertar para a indústria da cerâmica vermelha local uma alternativa de biocombustível sólido que proporcionará a conservação do seu bioma caatinga, e consequentemente dos seus solos.

Este cenário trouxe a necessidade de inovação na área de uso de biomassa e aproveitamento de resíduos agrícolas, florestais etc. viabilizando o uso de técnicas industriais para a adequação térmica, física e química desses resíduos, permitindo a criação de novos biocombustíveis sólidos economicamente viáveis e ecologicamente corretos, bem como agregar valor nesta cadeia agro-energética para os produtores rurais e extrativistas florestais resultados destas ações podem e devem ser replicadas em várias regiões do semiárido nordestino que apresentam as mesmas características e problemas enfrentados na área de atuação do projeto.

Briquete

Briquete é uma peça sólida de biomassa comprimida com uma carga média de 6 tf a 8 tf, gerando uma temperatura de 170 a 270oC em uma câmara de briquetagem, visando a decomposição parcial da lignina, apresentando teor de umidade na base úmida de 5 a 15%, sendo o ótimo 8%, com ou sem aglutinante, com uma densidade entre 1,0 a 1,5 t/m3, apresentando peças cilindricas ou hexagonais entre 70 a 100 mm e comprimento e 10 a 40 cm.

Para a produção econômica de briquetes é necessário a seleção de biomassas vegetais que comporão os mesmos e que possuam determinadas características que os tornem aptos para a geração de energia térmica. Dessas características, o poder calorífico e algumas propriedades físicas e químicas (composição química elementar e imediata); teor de umidade; poder calorífico superior, inferior e líquido; granulometria; teor de cinzas, etc., tem influência direta sobre a viabilidade do uso do material como combustível.