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=~"A NONLINEAR MODEL FOR OPTIMIZATION OF SMALL RESERVOIR IRRIGATION SYSTEMS
FOR SEMI-ARID TROPICSl/
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1. INTRODUCTION

Water harvesting into small reservoirs.is .anage old concept for storing
water for Various uses in the semi-arid tropics of the world. Their use is
presently being expended in many developing countries including Brazil, due
to a variety of socio-economic and technical reasons. However, most of the
present day guidelines for planning, designing, location and storage
capacity of these small reservoirs have been based on traditional design
principles with out any optimization criteria. The first effort on

optimization of the small reservoir systems was carried out recently by
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Sharma (1981). The present paper is based on this work of Sharma (1981) which
is now in press (Sharma and Helweg; Helweg and Sharma, in press). The purpose
of the present paper is to make this work available immediately to the
brazilian collegues for their use. This work will also prove handy as a base
for their future research projects which have been.outlined -separately by -
Sharma (1982). In the present paper, first the concept of an elevated inlet type
small reservoir system is presented which is followed by the development of
the basic model and its solution technique. Finally a typical example of
optimization of small reservoir system is given for Alfisols in Hyderabad
region of semi-arid India which is based on the data collected at the Inter-
national Crops Research Institute for Semi-Arid Tropics (India). At the end,
suggestions for its applicability to various climatic zones (Sharma, 1982)

of North-East Brazil is discussed.

2. SMALL RESERVOIR IRRIGATION SYSTEM OPTIMIZATION: MODEL DEVELOPMENT

2.1. THE CONCEPT

The majority of traditional small reservoirs are shallow, occupy large
tracts of land, serve lesser land and lose high proportion of their storage
capacity due to evaporation and seepage. The small reservoirs recommended
noﬁ?days, also known as farm ponds, are usually dug type. They have a very
poo; storage to excavation ratio* (approximately equal to 1), hence make
the water expensive. Cluff (1977) has suggested compartmenting of shallow
reservoirs and then concentrating the water by pumping in to the deeper
compartment, for reducing evaporation losses. Sharma (1981) has suggested
the principle of elevated inlet type of reservoirs for more efficient

storage of water into small reservoirs which also increases the storage to

excavation ratio of reservoir thus reducing the cost of construction considerably.

*Storage to excavation ratio is defined as the ratio of capacity of a
reservoir and the excavation required to build it.




To construct an elevated inlet type of reservoir, runoff in a
catchment can be intercepted at a higher elevation. The runoff is then led
by an elevated earthen channel to the reservoir below so that water is
partly stored above ground and partially in the excavated portion below
ground level. The only excavation required is one needed to build the dyke
equal in height to the elevation of the point where runoff is intercepted.
This concept is demonstrated in Fig. 1 and has been successfully tried by
Sharma and Kampen (1976) at the International Cropé Research Institute for
Semi-Arid Tropics (ICRISAT), Hyderabad, India. Storage to excavation ratio
of 2.5 and as high as 2.9 were obtained in a 15 ha. Catchment varying in
slope from 1.25% to 3% (Shafma and Kampen, 1977). This system developed at
ICRISAT (Sharma and Kampen, 1977) is not an optimum and suffers from
location specificity. However, the concept of elevated inlet type reservoir
can be universally used in areas having s]dping topography. - The following
sections give the analytic background for optimization of such systems
though the methodology developed here for optimization is valid for any
other shape also.

K While there is no . doubt that there will be savings in evaporation
losség due to reduction in exposed water surface area in the case of
elevated inlet type reservoirs, the seepage losses are a function of depth
of water also. But if a swelling clay liner is used this effect can be
offsetted. Seepage from an earth-lined reservoir over an alluvial soil in an
arid environment fits Bouwer's (1969) descripition of a channel with a
clogged soil at its perimeter. In this case the underlying soil is
unsaturated and the flow according to Sposito (1975) is controlled by the
negative soil-water pressure in the underlying drier material. Sposito

finds that the depth of water in a shallow reservoir may not have much
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effect on the seepage particu]ar]y if a swelling-clay liner is used. The

effect of the swelling offsets the gravity forces, leaving the soil

pressure in the underlying unsaturated material as the contro]]ing factbr

in seepage. This finding indicates that in applying the concept of the

elevated inlet type reservoir system with an earth-liner there should be a

reduction in seepage loss due to concentrating the water and reducing the

area contributing to seepage.According to Sposito's findings this .reduction should be
greater than the increase in seepage caused by increasing the depth by-an

elevated inlet.
2.2..MODEL FORMULATION

There are three separable optimization prob]ehé in designing a
small reservoir or tank irrigation system. The first has to do with optimal
tank design, the second has to do with the optimal storage capacity and the
third with the location of the tank in the cafchment. For theoretical
analysis here, some basic assumptions are being made.

{
212.1. ASSUMPTIONS

1}‘Rainfa11 - runotf relationship for a catchment is known.

2. The general topography of the catchment is s]dping but for simplifi-
cation the land under a tank is considered flat. Other topographic
features at the location of a tank e.g. depressions, man made holes,
gullies etc. can be considered in the solution but are being ignored
to avoid complexities in analysis.

3. The most economic shape of a tankiis an inverted truncated cone with

circular cross section and trapezoidal dyke. This will permit least

length of the dyke (thus least excavation required), take least area




under it, will have least exposed surface available for evaporation
and minimum wetted perimeter (thus less seepage), compared to other
shapes. However, the general theory and approach holds good for any
definable shape.

Additional assumptions as and when made are explained at the point

of interested in thé.text.
2.2.2. SMALL RESERVOIR GEOMETRY:
To illustrate the approach to this problem, consider a simplified

des{gn of a tank constructed on level grbund as in Fig. 2,_. a hypothetic

cross sectional sketch of a truncated cone shaped tank. Let:

V] = Volume of excavation
V2 =  Volume of dyke
V3 =  Volume of tank above ground Tevel
Vt = Total volume of tank
h] = Design depth of excavation
a h2 = Design height of water above ground level

\ 1 :n=Side slopes of dyke

o = Inside radius of tank at the bottom

r = Inside radius of tank at ground level
r, = Inside radius of tank at design height
GL =  Ground level

Further assume the top width of the dyke is known, say 2 m, and free

board to be provided as 1 m.



Fig. 2 :Hypothetic cross sectional sketch of a truncated cone shaped tank,



The formulae for V] and V3 are straight forward solid geometry and
V2 can be found by Theorem II of Pappus. Using the notations in Fig. - 2,

the results are:

o 2 g2
v, = f;' h] (3r] 3nr]h] + n'hy ) (1)
Vo = 2m (r] + nhy, +n + 1) (nh2 +n+ 2) (h2 + 1)
_ 2.3 2 2,2 2
= 27 (n h2 + nr]h2 + 3n h2 + 3nh2 + 2nr1h2
+ 2rih, + 3n2h + 6nh, + 2h, + nr
172 2 2 2 1
+ 2r] + n2 + 3n + 2) (2)
2 2,2 :
Vv = T h, (3r; + 3nr;h, + n°h,) , (3)
3 -5 2 1 12 2

2.2,3. OPTIMUM SMALL RESERVOIR STORAGE CAPACITY, LOCATION AND DIMENSIONS

The optimum storage capacity and Tocation of a small reservoir for
an irrigation system as a whole and hence its dimensions, on a small
watershed basis are decided on the following two bases.

i

2.2.3. (A) UNCONSTRAINED SMALL RESERVOIR IRRIGATION SYSTEM OPTIMIZATION

Consider that there is an unlimited catchment area available for
producing unlimited runoff to be stored in a tank and that there is an
unlimited command area available for irrigation of any given crop or
cropping system. This situation is being termed 'unconstrained' since there
are no physical limits being imposed on the optimum storage capacity or
location of a tank. In such a case, for regions where water is a precious

commodity e.g. semi-arid tropics, the goal of an optimum irrigation system




should be to achieve the highest possible water utilization efficiency - in
turn maximum net benefits from a system of irrigation. Further more, it has
clearly been demonstrated by Sharma (1981) that minimization of excavation
only or minimization of total cost of excavation only will not Tead to an
optimal solution. The objective function of a small reservoir optimization
model, as explained earlier, should maximize the net benefits derived from
the harvested water after accounting for seepage. and evaporation losses.

The net benefits from small reservoir irrigation systems are calculated as:

Net benefits = Tota1 benefits - Total costs

Total benefits = (Benefits from crop production due to irrigation/

unit of water)

(Volume of the reservoir - Seepage losses -

Evaporation losses)

Total costs

Total cost of construction of a reservoir

\ +

Total cost of land occupied by the reservoir
Therefore, the objective function is:

Mex {By (Vi = S, - E)) = (CVy +0.05C vy + C Ap)) (4)
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where,
Bp = present worth of benefits per unit of water, Rs./m3
V% = optimum storage capacity of the reservoir, m3
. 3
Sp = cumulative seepage 1oss, m
Ev = cumulative evaporation loss, m3
Cu = unit cost of excavation, Rs./m3
C_ = cost of land occupied by the reservoir, Rs./ha.
AR = area occupied by the reservoir, ha.

The methodology for determination of various components of benefits and

costs is discussed here.

(i) DETERMINATION OF BENEFITS

The benefits of a system of irrigation depend on the yield of various
crops being irrigated by the system. The yield ‘of a crop is a function of
theqyantityof water available to it, if all other factors of production
e.g..%eeds, fertilizers, cultural practices and management are kept constant.
The aécurate data on water production functions is hard to find in many
developing countries although research work has been reported on the topic
of yield response to water in the past 25 years or so (for references see
Sharma, 1981). Often yield response to amount of irrigation water applied
relationships are available instead of yield response to total water use
functions. The latter only can accurately predict the true effect of small
quantities of supplemental irrigation (or deficit) on yield of a crop. For

the purpose of this model, as an example, some recent data from ICRISAT




(Annual Report, 1977-78) for postmonsoon season CSH-1 sorghum on Alfisols
was utilized. Though any crops or cropping system may be closen, Sorghum
was chosen due to its pronounced response to irrigation. In scarity of

many observations, it was decided to use these to develop water production
function of quadratic nature of the fo]]owing form which needs only 4 or

more observations to be statistically valid:

- 2 |
Y = AQT + AQ + A, | (5)
where,
Y = yield of a crop, Kg/ha.
Q = water use, m
A;s A, and Ay = regression coefficients.

For postmonsoon CSH-1 sorghum on Alfisols this equation will be

(Sharma, 1981):

Y = -399.0250% + 227.80Q - 16.60 (6)
|

\

‘Given this, the benefits of irrigation;

B = P xY - Cost of Inputs and Operations
2
or, B = P(A]Q + AZQ + A3) - (CI +L x NO)
where,
Y = yield of a crop, kg/ha.
B = benefits, Rs*/ha.

* One US $:= 9 indian Rupees, as per January 1982 exchange rate.
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P = existing market price of crop, Rs./100 kg.
CI

1]

fixed cost of inputs e.g. seeds, fertilizers,
" tillage operations and cultural operations, Rs./ha.
N0 = number of irrigations.

L = cost of labor for each irrigation, Rs/ha.

The total benefits can now be determined by multipliyng the price of
crop and yield obtained.at various levels of water use (equation 6). The
maximum yield is obtained at 28 cm of water use from equation 6.

Now assuming the life of irrigation project is Ny years and the benefits
of irrigation, B, are a uniform annual series spread over Ny years, the

present worth of the benefits,

' N
_ cq _ Y
Pw = B(Pw/A, i%, Ny) = B (1+12 1
Yy
i(1+41)

where,

(PW/A, i%, Ny) is the compound interest annual uniform series
dichunt factor and i is the annual discount rate. This discount rate may be
difféxent from standard bank interest rates as agricu]tural.dévelopment
interest rates, in countries like India and Brazil, are less in order to
encourage rural development, particularly so in dry and semi-arid regions.

The present worth of irrigation benefits per unit of water use for a

given cropping system in an irrigation project can therefore be summarized as:

By = (P/A, 13, N) 2 (PAQS + AQ + Ag) = (CT+LxN)Y (7))
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where,

n = project irrigation efficiency (assumed 80%)

Incedently, the term (1/Q)(A]Q2 + A2Q + A3) is the water utilization

efficiency.

For determining the total benefits, effective storage capacity of the
reservoir available for irrigation is required. The effective storage

capacity V' of a reservoir;

V =. Vt = Sp - EV

where v%ig the,total_stotage‘capacityhfor,unconsttained,case'and is' to be
optimized by the model. The cumulative seepage, Sp and cumulative ewaporation,
Ev are directly proportional to the wetted perimeter and exposed top surface
area of a reservoir respectively, presuming that the effect of depth of water
on seepage loss is offsetted by appropriate seepage liners. From Figure 2

(assuming dyke slope as 1:1), thus cumulative seepage;

1 2
= SN S - -
Sp pn{ 1/2(2r] hy + hy)(hy + hy) + (ry = hy)) (8)
\
\ where,
- . 3
Sp = cumulative seepage, m
S = average daily seepage rates, m/day
Np = the period during which water stays in a

reservoir after being filled and before being

empited, days



and cumulative evaporation;

£, = T EN T - h)? + (ry + 0y)% (9)
where,
E = Average daily evaporation rate during the period
Np, m/day
Ev = Cumulative evaporation losses, m3

Finally,

N ¢ _ _ (10)
Total Benefits = Bp(Vt Sp EV)

(ii) DETERMINATION OF COSTS

The total cost of a small reservoir irrigation system consists of its
construction cost (CuV]), operations and maintenance cost (O.OSCUV]) and

the cost of the land occupied by the reservoir (CLAR). In equation 4;

| v
To;a] cost = CuV + 0.05CuV] + C Ap {11)

1
the cost of operations and maintenance of the reservoir (O.OSCUV]) has
been assumed to be 5% of the initial cost of construction on a flat
basis. The unit cost of land CL, can be determined by a quick survey of
the farmers in the project area. The land to be occupied by a small
reservoir is a function of both ry and height of reservoir h2. This

can be expressed from Fig. 2 for a reservoir of 1:1 dyke slopes, 2 m

top width and 1 m free board as:

2
Ay = m(ry + 2h, + 4) (12)

14
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Cost of excavation Cu is a nonlinear function of lead and Tift. As
depth (1ift) increases, the cost of digging also increase. Similarly as
distance (1ead) of hauling the earth increases, the cost of building a
dyke also increases. The standard schedules of rates for all type of
construction activities including excavation are available with
appropriate governmental agencies. Intuitively the additional cost of
excavation due to lead and 1ift is of quadratic nature. The generalized

cost function can be written as:

C = FI+C +C

where,
FI = Fixed minimum cost
Cr = Incremental cost over FI
due to increase in lead
Ch = Incremental cost cover FI

dUe to increase in lift

l & ) «
In case the reservoir construction;

\
\

\

Average lead = ™

Average 1ift, h = (h] + h2)/2

As an example, the standard rates for excavation for 10 m3 of earth at
various leads and Tifts for Hyderabad, Ranga Reddy, Nalgonda and
Mahboobnager districts in Andhra Pradesh in Semi-Arid India, as used by their

irrigation and power department yields the following relationships:
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C, =-0.00037r$ + 0.0686r - - 0.22833 (13)
C, = - 0.03409h% -+ 0.73773h - 0.91363 (14)
and;

FI = 24.2

thus unit cost of construction Cu;

Cu = (FI + Cr - Ch)/10 (15)

By now all the cost and benefits of a small reservoir irrigation system
have been quantified, so the 'unconstrained' small reservoir irrigation
system optimization model can now be formulated as:

- I - (16)
MIN {B (¥} - S, - E,) = (1.05C,V; + € AR))

ryyb,

Subject to:

]. Excavation and dyke construction constraint;

\

\
\ Vi =V, (17)

V. + V, = Vt (18)

rys h], h2 >0 (19)
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where V{ is the unknown optimum size of reservoir and can be expressed

from Fig. 2 for a dyke of 1:1 slopes as:

() + b {(ry = 1)+ (g + 1y)°

w|=

+ (ry - hy)(ry +h )} (20)

2
It is to be noted that the terms Sp, Ev’ Cu and AR are all functions
of r h] and h2 as expressed in equations ( 8 ), ( 9 ), (15). and
(12) hence will effect the optimum size Vé. Thus the optimum design
dimensions res h] and h2 obtained from above model would be the values
adjusted for minimizing seepage, evaporation, cost of excavation, cost of
land occupied by the reservoir and will be for a storage capacity of the
small reservoir that will maxim{ze net benefits from supplemental irfiga-‘
tion.

In case h] and h2 become restrictive due to soil depth (h])
restrictions or avai]abi1ity of gravity drop (h2) for intercepting runoff,

these restrictions can easily be imposed as additional constraints on the

mod%l as:

h < s (21)
h2 < DG (22)
where
SD = depth of soil, m

o
[<p)
1]

gravity drop available (h2) within a reasonable

distance near the location of a reservoir, m.
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The optimum location of the reservoir for this ‘'unconstrained' case
can now be easily determined, knowing V%. The reservoir will be located

just under the catchment area which will produce Vé quantity of runoff.

A= Vi
o

—t (23)
Ru
where Ru is the seasonal runoff (m) expected from the catchment area.

2.2,3. (B) CONSTRAINED SMALL RESERVOIR IRRIGATION SYSTEM OPTIMIZATION

A small reservoir can be placed at various topographically suitable
Tocations on drainage ways in an agricultural watershed. The size
(storage capacity) of a small reservoir has two constraints which vary
with its location, (Fig. 3). It should not be greater than the available
runoff i.e. supply of water (which will increase as the tank is moved
toward the mouth of the watershed). Also the effective volume of the tank
should not be greater than amount of water than can be used 'down stream'
from the tank i.e. irrigation demand. (This amount will decrease as the

|

tank is moved towards the mounth of the basin). This case is being
\

called 'constrained' because of the above restrictions to be met by the
optimum location, storage capacity and dimensions of a small reservoir.
The first step is to find the functional relationships of

reservoir storage capacity, V, with respect to the distance d, the tank is

t
located from the mouth of the basin, i.e.:

¢(d) = min{h(d), k(d)} (24)
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Scale 1:5000

Total area, At

= 13.9 ha
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FIG 3..: ALTERNATE LOCATIONS OF A TANK IN A

HYPOTHETICAL SMALL WATERSHED.
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where,
d = distance of a tank from the mouth of the watershed.
®(d) = the functional relationshipe of total" vo]ume'vt
with respect to distance d.
h(d) = functional relationship between runoff and distance d.
k(d) = functional relationship between irrigable land

'downstream' and the distance d.

This formualtaion is for irrigatioh by gravity but if the value of water
'is such that it is economically feasible to pump water upstream for
irrigation then pumping can also be included. The value of water can be
found by an .indirect method such as derived demand as suggested by

Helweg and Sharma- (1982). If pumping of water upstream is justified,

then;
¢(d) = min{h(d), k(d) + Pe} ' (25)
where,
\ Pe = 1irrigation demand of the economic pumping
\, area upstream, m3

For gravity irrigation, at an optimum location d, equation 24 can be

written in general as:

h(d) = k(d) ' (26)
h(d) and k(d) can be determined as:

h(d) = RAL =S -E
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where,
Ru = seasonal runoff expected from catchment area, m
Ag = optimal catchment area upstream from the reservoir,
2
m.
and
k -
(d) =1 p;
n
where,
I = idrrigation requirements of the crops downstream, m
n = project irrigation efficiency
Ai = optimum irrigable aréa, m2
By substituiting these values of h(d) and k(d) in eqdation (26)

RuAc - Sp Y Y

n

or Ai = RuAc - SP - EV : (27)
I/n

b]so at a location where harvested water exactly meets the demand of all

\
the area below it (Ai,) in a basin:

AC = At - A1e

thus

Ry(Ay = Ai) - s - E, % .
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where,
At = total area of the basin, m2
Aie = all area of the basin below the small reservoir
located such that it exactly meets the irrigation
demand, or equilibrium irrigation area, m2
or,
. _ (RA_-S_-E)
(Ru + I/n)

The area Aie is not the optimum area available for irrigation because
the net benefits need not necessarily be maximum at this location of
reservoir due to nonlinear nature of vardious cost functions. In general
the area available for irrigation below a small reservoir on a basin may .
be either; (i) more than what can be irrigated by harvested water, or
(i1) exactly equal to the area, that can be irrigated by the tank Aie,
as in equation (28) or {iii) can be less than the area, that can be
irrggated by a.tank. The relationship of the distance from mouth of a
basih, d, and area of the basin, Ad up to distance d for a typical
wate}shed shown in Fig.3 (scale 1 : 5000) has been plotted in Fig. 4
as cufve AEB. This curve has been determined by simply finiding the
area up to various locations d], d2, . . . . and will vary according
to the shape of the basin. In this case a cubic regression equation was
easily fitted by using Ad as a dependent variable and d as an independent
variable. At a typical location L, on the curve pAgg in Fig. 4, = KL is
the catchment area from which water can be harvested into the tank and LN

is all the area below it that is available for irrigation but due to
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Timited runoff (At - Ad)Ru available only area MN = (At - Ad)Ru/(I/n) can
be irrigated by the capacity of the tank if seepage and eVaporation losses
are ignored. The curve CMD can be obtained in this manner by knowing the

Ad versus d relationship. Part of this area depicted by curve CMD cannot
be irrigated due to the volume of harvested water lost by seepage and evaporation
{=- (Sp + EV)KI/n)}. Thus the area that can be irrigated can be shown as
curve CEF which is having a shift from curve CMD by an amount equal to

-(Sp + Ev)/(I/n). Since seepage and evaporation losses are functions of the
size of the tank, these losses cannot be calculated straighforwardly but
are calculated in the model during the process of optimization. It is
obvious that the lbcation E on curve AB 1is the location where

harvested water just meets the irrigation demands-df.a11 the area (Aie)
below it. Thus the area that can either be irrigated, CE (which is
constrained by the storage capacity of a reservoir) or that is available
for irrigation, EA (which is constrained by the location of a small
reservoir) is the area on the curve QEA. The Ad versus d curve for

the typical example of a basin in Fig. 3., can be represented by the
fo]?owing polynomial regression equation:

\
\

{

Ad = - 0.00092d

3 o

+ 1.07995d° - 76.62125d + 1197.42878 (29)

where Ad is in square meters and d in meters. This relationship in
general accurately predicts the area Ad, as a function of distance d
(for tha small basin in Fig. 3), except for very Tow values of d (at d
less than 75 m). Hence the following straight line équation for

d 5_75 m was used:

Ay = 15.14d for d < 75 (30)
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Now, in equation (27), we can determine the irrigab]e area limited by
the capacity of a tank (curve CE in Fig. 4) as:
(Ay - Ad)Ru - 8§ = Ev

Ay = B (31)
(I/n)

and area that is limited by its availability (curve .EA in Fig. 4) upto

Ai as:
e

Ai, = Ay (32)

Thus now we can generalize; the optimum area to be irrigated by a tank:

Ai = Ai] if Ai §.Aie (33)
and Ai = Ai2 if Ai > Aie (34)
where,

Aiz Ad in equation (29)
if dMax >d>75 (35)

here,

dMax = total length of the basin

(= 575 in Fig. 3)

Aiz = Ad in equation (30)

if d < 75 (36)
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and  pi = 0 if d=0 (37)

By now the optimum irrigation area Ai has been determined. The optimum
total storage capacity or size of a reservoir V;,Vcan now be determined

by knowing the optimum catchment Ag from equation (27) as:

i Ai(I/n) +S_+ E
AC P v (38)
R
u
and hence optimum tank size:
Vt = RU.A (39)

(&

The objective of 'constrained' small reservoir itrigatioh system
optimization can now be defined as maximization of ﬁé% benefits (or
minimization of negative value of net benefits) exactly as in the
'unconstrained' case (equation 16) except that now the total capacity of
the reservoir in equation (18) is limited by the irrigation area in
equations_(33) and (34)>whichiintroducesta new decision variable:'d' into the

model. Thus the 'constrained’ optimization model can be formulated as:

\

1

\,

MIN v e i
rihih, {B, (V{ - 'S, - E,) - (1.05C,Vy + C AL} (40)
Subject to:
Vo=V (41)
Vot Vg = V% (42)
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where,
Vi o= RUAE
= Ai(I/n) + Sp + Ev
rys fys hys d> 0 (43)

If hy or h, are restricted due to soil depth (SD) or ayvailability of
gravity drop (GD) for intercepting ruoff at a higher location above the
reservoir, these limitations can be imposed here too as done in the
‘unconstrained' case in equations (21) and (22).

This model will give the optimum location d, optimum catchment area
Ag, the optimum storage capacity’V", and optimum dimensions rys h] and

t
h2 of a small reservoir for the 'constrained' case.

The Optimum Storage Capacity, Location and Dimensions of the Small

Reservoir Irrigation System

_ %he optimum location and storage capacity of a small reservoir,
irréspective of being 'unconstrained' or 'constrained', are the minimum
of these two. (This is because if 'unconstrained' case gives maximum
benefits for lesser capacity than the reservoir system design is not a
‘constrained' case. This can be determined only after solving both
cases.) The optimum Tocation is decided by the optimum.catchment, AZ

from equations (23) and (38):
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Aé = min (44)
AI
c
and the optimum storage capacity of a small reservoir, V¥, from equations

(20) and (39) is;

o
V{ = min (45)
Y

The optimum dimensions of a small reservoir r¥*, h? and h; are those
which give optimum storage capacity V{ in equation (45).

Depending on the optimum storage capacity and  location, the optimum
command areavdf'the.reserVoirucan be determined: ‘On relatively large
catchment or on regional basis, the 'unconstrained' criteria will govern
the plann{ng of a system of irrigation. This criteria can thus be used té
ascertain how many small reservoirs are needed and where they are to be
located, in order to derive maximum beneficial use of the system for

uplifting the agriculture in rainfed regions. In section 4 it is shown

|
that the unconstrained irrigation system design is usually optimal.

\

3. THE NONLINEAR PROGRAMMING ALGORITHM

The problem of optimization of small reservoir irrigation system
evidently is a problem of optimization of a nonlinear function subject
to nonlinear equality constraints. A complete review of various
nonlinear programming algorithm including their suitability to solve the
proposed model have been conducted by Sharma (1981). It was found that

the constrained Flecher - Powell (CONMIN) algorithum developed by
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Haarhoff, Buys and Mo]endorff (1969) is capable of solving the proposed
model. The CONMIN a1gorithm was modified to suit the specific requirements
of the model for optimization of small reservoir irrigation systems. For
obtaining a copy of the computer listing (in Fortran IV) of the proposed
model and its logic diagram along with the modified CONMIN algorithm, the
reader is advised to refer to Sharma (1981). Hence forth this model is
referred to as Small Reservoir Irrigation System Optimization (SRISO. FTN)

Model.
4, RESULTS AND DISCUSSIONS:

For demonstration}of the results of the model an example for optimizing
the small reservoir irrigation system for Hyderabad region in South India
is presented here. The input data used for this example is given in Table 1.
Average seepage and evaporation rates of 5 mm/day from a reservoir are
assumed. The future benefits of the irrigation system over the life of
reservoir (assumed 25 years) are discounted at an annual discount rate of 6%.
The§effect of increase in seepage rates and discount rates are discussed
in detail later. fhe irrigation system is planned to provide 28 cm of
1rrigation to post-monsoon season sorghum crop. The nature of yield
response to water use for this crop is given by equation (6). A1l the
water in the reservoir is expected to be used for irrigation within 120
days of filling (October_to February). The cost of land to be occupied by
the reservoirs a;sumedjx)cost Rs.2500/ha. For the 'constrained' case let
us further assume that the size of basin (At) is only e.g. 13.9 ha as for
the small basin in Fig. 3. Also assume that the runoff available from this
catchment is 100 mm/ha (Table 1). The area-distance (d) relationship for

this catchment is given by equations (33) and (34);
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Tabel 1. - Input data for the example solved by the small reservoir
irrigation system optimization model SRISO.FTN (for
Hyderabad in Semi-Arid India)

Input Data Value

P Rs.97/100 Kg, (Price of Sorghum)
Q 28 cm, (Quantity of irrigation delivered to field)
CI Rs.576/ha, (Fixed cost of inputs for sorghum)
L Rs.13}5/hé, (Cost of irrigations)
N, 3, (No. of irrigations)
S 5 mm/day, (Seepage rate from reservair)
E 5 mm/day s (Evaporatioh rate from reservoir)
Np 120, (No. of days for emptying the.reservoir)
N 25 years, (Life of a reservoir)
L Rs.2500.00/ha, (Cost of land)
Ru 100 mm/ha, (Seasonal runoff expected)

? A 13.9 ha, (Total area of a basin)

dmax

0.8, (Project irrigaticn efficiehéy)

575 'm, (Maximum length of basin)




31

4.1. THE OPTIMUM SMALL RESERVOIR.IRRI§ATION SYSTEM:

Table 2 gives the solution of the above example by SRISO.FTN model
for both 'unconstrained' and 'constrained' cases. From these two cases
for the given example of 13.9 ha. basin in Fig. 3 it is evident from Table 2
that the optimum small reservoir irrigation system is the 'unconstrained'
system since its storage capacity and catchment area is less than the

‘constrained' case. Hence for the example, the‘optimum irrigation system has:

Optimum size Vt* = 1.05478 ha m

: * _
??glggToﬁ§tchment ACatch 10.547 ha

Optimum dimensions

*

r] = 39.76 m
*

h1 = 0.61m

*

h2 = 1.46 m

From this example we can generalize that most often, except for very small
basins (e.qg. < 10 ha), the unconstrained case will give the optimum small
res%rvoir 1frigation system. Hence the 'unconstrained' SRISO.FTN model

is tb be used for planning of the small reservoir irrigation system if the
system is desired on larger catchments. The optimum solution of the
SRISO.FTN which gives optimum storage capacity, optimum location (catchmeht)
and optimum dimensions can be used to predict how many reservoirs are

required and where. Within the general area predicted by the model for

locating a small reservoir, topographica]]y favorable spots are to be

preferred.
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Table 2. Optimum small reservoir irrigation system for Hyderabad region
in India for post-monsoon irrigation of sorghum crop (input
date as per Table 1) on Alfisols.

Given:  Topwidthof Dyke = 2 m, Free Board = 1 m, Dyke Slope = 1:1
Initial Guesses: r] = 40 m, h] =2m, h2 =1 m.

Optimum

Design Unconstrained Case ' Constrained Case

Variables

Size (V,)

g - 1.05478 1.18270

Upstream

“Catchment

Area (A .ich) 10.547 11.8270

rys m 39.76 33.38

h], m 0.61 1.13

h2’ m 1.46 2.16

vy, mo 2991.77 3843.51

V,, m° 2991.78 3854.68

Vo 7556.05 8078.21
*

Locition d

m:* 195.95

Storage/Excavation 3.53 3.07

(Vo /Vq)

*Distance from mouth of the basin for Fig. 3, . (example)
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Another general question often posed is whether it is advisable to
build many very small reservoirs (ponds) or one very large reservoir?
The model answers this question. Any reservoir size below or above the
optimum storage capacity (size) is not advised for a given set of topo-
graphic, hydrologic, climatologic and agronomic conditions. For the
example above reservoir size other than 1.05478 ha. m is below optimum
and not adivised to be built. However, large dams can become optimum on
topographically favorable Tlocations.

From the previous experience of.the author at the International
Crops Research Institute for Semi-Arid Tropics, Hyderabad, India (Sharma
and Kampen, 1975; Sharma and Kampen, 1976; Sharma and Kampen, 1977) the
final optimum dimensions obtained (r]* = 39.76 m, h]* = 0.61 m and hz* =
1.46 m) are very practical from the reservoir construction and its use
point of view because (i) with h]* = 0.61 m only (depth of tank below
ground Tevel) it will be very easy to deliver water by gravity for crop
irrigation and (i1) with h,* = 1.46 m (height of tank above ground level)
and given the rolling topography (2-5%) of Hyderabad (India) area along
wit? the steep drops found below property boundaries in this area it will
be ‘?ry convenient to intercept runoff at an elevation of 1.46 m from the
rese?voir location within reasonably small distance from the small

reservoir.

4.2, SENSITIVITY ANALYSIS:

Of the input to the design model, seepage and discount rate are
most uncertain. Evaporation is fairly stable a given location as are costs,
product prices, and other variables. Consequently a sensitivity analysis

was conducted on those two inputs. Figures 5 and 6 indicate the results.
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Both these figures demonstrate that investiment in seepage control will ,
increase net benefits substanially particularly if the seepage rate and

discount rates are high.
5. CONCLUSIONS

This work shows that in most cases, the unconstrained design model
is sufficient. The optimal design of these tanks show promise of significant
increases in efficiency measured either by storage to excavation ratio or by
net benefits.

The final optimizafion code was run on a LSI 11/23 mini computer
indicating that it can be utilized in any area with minimal computational
capability. Of course engineering judgement should modify the computer

solution when appropriate.
6. APPLICABILITY FOR NORTH-EAST BRAZIL:

\ The model can directly be used for planning and designing small
resérvoir irrigation system in North-East Brazil. In case the small
resgrvoir is planned for Cattle e.g. in very arid areas or for both Cattle
and irrigation e.g. in arid areas the livestock componeht should be added to

the objective function. These modifications are in progress at CPATSA.
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