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I ~' A NONLINEAR MODEL FOR OPTIMIZATION OF SMALL RESERVOIR IRRIGATION SYSTEMS
FOR SEMI-ARID TROPICs!!

-PREM N. SHARM~I
OTTO J. HELWE~

1. INTRODUCTION

Water harvesting into small reservo irsj , ..an age old concept for storing
water for Various uses in the semi-arid tropics of the world. Their use is
presently being expended in many developing countries including Brazil, due
to a variety of socio-economic and technical reasons. However, most of the
present day guide1ines for p1anning, designing, 'location and storage

f . capacity of these sma11 reservoirs have been based on traditional design
principles with out any optimization criteria. The first effort on
optimization of the small reservoir systems was carried out recent1y by
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Sharma (1981). The present paper is based on this work of Sharma (1981) which
is now in press (Sharma and Helweg; Helweg and Sbarma, in press). The purpose
of the present paper is to make this work available immediate1y to the
brazilian collegues for their use. Thjs work will a1so prove handy as a base
for their future research projects which have been.outl ined -separate lyby ::.

Sharma (1982). In the present paper, first the concept of an elevated inlet type
small reservoir system is presented which is fo11owed by the development of
the basic model and its solution technique. Fjnally a typical examp1e of
optimization of sma11 reservoir system is given for A1fisols in Hyderabad
region of semi-arid India which is based on the data collected at the Inter-
national Crops Research Institute for Semi-Arid Tropics (India). At the end,
suggestions for its applicability to various c1imatic zones (Sharma, 1982)
of North-East Brazil is discussed.

2. SMALL RESERVOIR IRRIGATION SYSTEM OPTIMIZATION: MODEL DEVELOPMENT
2.1. THE CONCEPT
The majority of traditiona1 small reservoirs are shallow, occupy large

tracts of 1and, serve lesser 1and and lose high proportion of their storage
capac í ty due to evaporation and seepage. The small reservoirs recommended

\nowadays, also known as farm ponds, are usually dug type. They have a very
\

poor storage to excavation ratio* (approximately equal to 1), hence make
the water expensive. Cluff (1977) has suggested compartmenting of shallow
reservoirs and then- concentrating the water by pumping in to the deeper
compartment, for reducing evaporation losses. Sharm~ (1981) has suggested
the principle of elevated inlet type of reservoirs for more efficient
storage of water into sma11 reservoirs which also increases the storage to
excav.ation ratio of reservoir thus reducing the cost of construction considerab1y.

*Storage to excavation ratio is defined as the ratio of capacity of a
reservoir and the excavation required to bui1d it.
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To construct an elevated inlet type of reservoir, runoff in a
catchment can be intercepted at a higher elevation. The runoff is then led
by an elevated earthen channel to the reservoir below so that water is
partly stored above ground and partially in the excavated portion below
ground level. The only excavation required is one needed to build the dyke
equal in height to the elevation of the point where runoff is intercepted.
This concept is demonstrated in Fig. 1 and has been successful1y tried by
Shanna and Kampen (1976) at the 1nternational Crops Research 1nstitute for
Semi-Arid Tropics (1CR1SAT), Hyderabad, 1ndia. Storage to excavation ratio '
of 2.5 and as high as 2.9 were obtained in a 15 ha. Catchment varying in
slope from 1.25% to 3% (Sharma and Kampen, 1977). Th is system deve loped at
1CR1SAT (Shanna and Kampen, 1977) is not an opt imum and suffers 'f'rom

10cation specificity. However, the concept of e1evated inlet type reservoir
can be universally used in areas having sloping topography. 'The following
sections give the analytic background for optimization of such systems
though the methodology developed here for optimization is valid for any
othe shape a1so.

While there is no' doubt that there wi11 be savings in evaporation
10sses due to reduction in exposed water surface area in the case of
elevated in1et type reservoirs, the seepage 10sses are a function of depth
of water a1so. But if a swe11ing c1ay liner is used this effect can be
offsetted. Seepage from an earth-1ined reservoir over an a11uvia1 soi1 in an
arid environment fits Bouwerls (1969) descripition of a channe1 with a
clogged soi1 at itsperimeter. 1n this case the under1ying soi1 is
unsaturated and the flow according to Sposito (1975) is contro11ed by the
negative soil-water pressure in the underlying drier material. Sposito
finds that the depth of water in a sha110w reservoir may not have much
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effect on the seepage particularly if a swelli.ng-clay liner is used. The
effect of the swe 11ing offsets the gravity forces, 1eavi ng the so il
pressure in the underlying unsaturated material as the controlling factor
in seepage. This finding indicates that in applying the concept of the
elevated inlet type reservoir system with an earth-liner there should be a
reduction in seepage loss due to concentrating the water and reducing the
area contributing to seepage.According to.Spos t to.vs r f indinqs Lh:is··_reducti.on.shouldbe
greater than the increase in seepage caused by increasing the depth ·:9y'.an
elevated inlet.

2.2 ..MODEL FORMULATION

There are three separable optimization problems in designing a
small reservoir or tank irrigation system. The first has to do with optimal.
tank design, the second has to do with the optimal storage capacity and the
third with the location of the tank in the catchment. for theoretical
analysis here, some basic assumptions are being made.

2 2.1. ASSUMPTIONS

1.'Rainfal1 - runoff relationship for a catchment is known.
2. The general topography of the catchment is sloping but for simplifi-

cation the land under a tank is considered flat. Other topographic
features at the location of a tank e.g. depressions, man made holes,
guilies'etc. can be considered in the solution but are being ignored
to avoid complexities in analysis.

3. The most economi c shape of a tank ~isan inverted truncated cone with
circular cross section and trapezoidal dyke. This will permit least
length of the dyke (thus least excavation required), take least area
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under it, will have l~ast exposed surface available for evaporation
and minimum wetted perimeter (thus less seepage), compared to other
shapes. However, the general tbeory and approach holds good for any
definable shape.

Additional assumptions as and when made are explained at the point
of interested in thé.text.

2.2.2. SMALL RESERVOIR GEOMETRY:

To illustrate the approach to this problem, consider a simplified
design of a tank constructed on level ground as in Fig. 2,~ a hypothetic
cross sectional sketch of a truncated cone shaped tank. Let:

Vl = Volume of excavation
V2 = Volume of dyke
V3 = Volume of tank above ground level
Vt = Total volume of tank
hl = Design depth of excavation

\ h2 = Design height of water above ground level
1 . n = Side slopes of dyke.
rO = Inside radius of tank at the bottom
r1 = Inside radius of tank at ground level

- Inside radius of tank at design heightr2 =
GL = Ground level

Further assume the top width of tbe dyke is known, say 2 m, and free
board to be provided as 1 m.
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The formu1ae for V1 and V3 are straight forward solid geometry and
V2 can be found by Theorem II of Pappus. Using the notations in Fig. - 2,
the results are:

V1 -TI h (3 2 3 h 2h2
= 1 r1 - nr1 1 + n .1-r ( 1 )

V2 = 2TI (r1 + nh2 + n + 1) (nh2 + n + 2) (h2 + 1)

=

2+ 2r1 + n + 3n + 2)
222(3r1 + 3nr1h2 + TI h2)

( 2 )

2.2.3. OPTIMUM SMALL RESERVOIR STORAGE CAPACITY, LOCATION ANO OIMENSIONS

The optimum storage capacity and location of a sma11 reservoir for
an irrigation system as a who1e and hence its dimensions, on a sma11
wate shed basis are decided on the fo11owing two bases.

2.2.3. (A) UNCONSTRAINEO SMALL RESERVOIR IRRIGATION SYSTEM OPTIMIZATION

Consider that there is an un1imited catchment area avai1ab1e for
producing un1imited runoff to be stored in a tank and that there is an
un1imited command area avai1ab1e for irrigation of any given crop or
cropping system. This situation is being termed 'unconstrained' since there
are no physica1 1imits being imposed on the optimum storage capacity or
location of a tank. In such a case, for regions where water is a precious
commodity e.g. semi-arid tropics, the goa1 of an optimum irrigation system
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should be to achieve the highest possible water utilization efficiency - in
turn maximum net benefits from a system of irrigation. Further more, it has
clearly been demonstrated by Sharma (1981) that minimization of excavation
only or minimization of total cost of excavation only will not lead to an
optimal solution. The objective function of a small reservoir optimization
model, as explained earlier, should maximize the net benefits derived from
the parvested water after accounting for seepage. and evaporation losses.
The net benefits from small reservoir irrigation systems are calculated as:

Net benefits = Total benefits - Total ccsts

Total benefits = (Benefits from crop production due to irrigation/
unit of water)

x

(Volume of the reservoir - Seepage losses -
Evaporation losses)

MAX
V

( 4 )
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where,
3present worth of benefits per unit of water, Rs./m

Vt = optimum storage capacity of the reservoir, m3

cumu1ative seepage 105s, m3

3cumu1ative evaporation loss, m

= unit cost of excavation, Rs./m3

CL = cost of 1and occupied by the reservoir, Rs./ha.

AR = area occupied by the reservoi.r, ha.

The methodology for determination of various components of benefits and
costs is discussed here.

(i) DETERMINATION DF BENEFITS

The benefits of a system of irrigation depend on the yie1d of varjous
crops being irrigated by the system. The yi e1d -:of a crop is a functi on of
the quant i.ty of water available to t t , if all other factors of production
e.g. ~eeds, fertilizers, cultural practices and management are kept constant.

\ ,

The a~curate data on water production functions is hard to find in many
developing countries although research work has been reported on the topic
of yield response to water in the past 25 years or so (for references see
Sharma, 1981). Dften yield response to amount ,of irrigation water applied
relationships ~re available instead of yield re~ponse to total water use
functions. The latter only can accurate1y predict the true effect of small
quantities of supplemental irrigation (or deficit) on yield of a crop. For
the purpose of this model, as an examp1e, some recent data from ICRISAT
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(Annual Report, 1977-78) for postmonsoon season CSH-l sorghum on Alfisols
was utili.zed. Though any crops or cropping system may be c1osen, sorghum
was chosen due to its pronounced response to irrigation. In scarity of
many observations, it was decided to use these to deve10p water production
function Df quadratic nature Df the fo11owing form which needs on~y 4 or
more observations to be statistica11y valid:

( 5 )

where,

Y = yie1d Df a crop, Kg/ha.
Q = water use, m
A1' A2 and A3 = regression coefficients.

For postmonsoon CS~-l sorghum on A1fiso1s this equation wil1 be
(Sharma, 1981):

-399.025Q2 + 227.80Q - 16.60 ( 6 )

•:Given this, the benefits of irrigation;

B =
B =

P x Y - Cost of Inputs and Operations
2P(A1Q + A2Q + A3) - (CI + L x NO)or,

where,

Y = yie1d of a crop, kg/ha.
B = benefits, Rs~/ha.

* One US $"~ 9 Ind ian Rupees, as per January 1982 exchange rate.
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P = existing market price of crop, Rs./100 kg.
CI = fixed cost of inputs e.g. seeds, fertilizers,

~ tillage operations and cultural operations, Rs./ha.
NO = number of irrigations.
L = cost of labor for each irrigation, Rs/ha.

The total benefits can now be determined by multipliyng the price of
crop and yield obtained at various levels of water use (equation 6).'The
maximum yield is obtained at 28 cm of water use from equation 6.

Now assuming the life of irrigation -project is N years and the benefitsy

series spread over N years, theyof irrigation, B, are a uniform annual
present worth of the benefits,

N
= B (l+i) Y - 1

N
Yi(l+i)

where,

(PjA, i%, Ny) í s the conpound interest annual uniform series
discóunt factor and i is the annual discount rate. This discount rate may be
diffe~ent from standard bank interest rates as agricultural.development

\inter~~t rates, in countries like India .and Brazil, are less in order to
encourage rural development, particularly so in dry and semi-arid regions.

The present worth of irrigation benefits per unit of water use for a
given cropping system in an irrigation project can therefore be summarized as:

( -7 )
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where,

n = project irrigation efficiency (assumed 80%)

Incedently, the term (1/Q}(A1Q2 + A2Q + A3) is the water utilization
efficiency.
For determining the total benefits, effective storage capacity of the

reservoir available for irrigation is required. The effective storage
capacity VI of a reservoir;

VI = Vt - Sp - Ev

where Vtfs the .tota,l_stor:ag~.capac'ity fOT .unconstre í ned -case 'and Ls: to.be
optimized by the modelo The cumulative seepage, Sp and cumulative e~aporation,
E are direct1y proportiona1 to the wetted perimeter and exposed top surfacev .
area of a reservoir respective1y, presuming that the effect of depth of water
on seepage loss is offsetted by appropriate seepage liners. From Figure 2 .
(assuming dyke slope as 1:1), thus cumu1ative seepage;

( 8 )

\ where,

3cumu1ative seepage, m

S = average daily seepage rates, m/day
Np = the period during which water stays in a

reservoir after being fi11ed and before being
empited, days
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and cumulative evaporation;

( 9 )

where,

E = Average daily evaporation rate during the period

Np' m/day
Ev = Cumulative evaporation losses, m3

Finally,

(10)

(ii) DETERMINATION OF COSTS

The total cost of a small reservoir irrigation system consists of its
construction cost (CuVl), operations and maintenance cost (O.05CuVl) and
the cost of the land occupied by the reservoir (CLAR). In equation 4;

Td\.l cost = CuV1 + O.05CuV1 + CLAR (11)

the cost of opera tions and ma intenance of the reservoi r (O.05CuV1) has
been assumed to be 5% of·the initial cost of construction on a flat
basis. The unit cost of land CL, can be determined by a quick survey of
the farmers in the project area. The land to be occupied by a small
reservoir is a function of both rl and height of reservoir h2. This
can be expressed from Fig. 2 for a reservoir of 1:1 dyke slopes, 2 m
top width and 1 m free board as:

(12 )
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Cost of excavation C is a non1inear function of 1ead and 1ift. Asu
depth (lift) increases. the cost of digging a1so increase. Simi1ar1y as
distance (lead) of hau1ing the earth increases. the cost of bui1ding a
dyke a1so increases. The standard schedu1es of rates for a11 type of
construction activities inc1uding excavation are avai1ab1e with
appropriate governmenta1 agencies. Intuitive1y the additiona1 cost of
excavation due to 1ead and 1ift is of quadratic nature. The genera1ized
cost function can be written as:

where.

FI = Fixed minimum cost
Cr = Incrementa1 cost over FI

due to increase in 1ead
Ch = Incrementa1 cost cover FI

due to increase in 1ift
tIn case the reservoir construction;

\
,Average 1ead = r1

Average 1ift. h = (h1 + h2)/2

. .. 3As an examp1e, the standard rates for excavation for 10 m of earth at
vard ous 1eads and lifts for Hyderabad , Ranga Reddy, Na Iqonda and
Mahboobnager districts in Andhra Pradesh in Semi-Arid India, as used by their
irrigation and power department yie1ds the fo11owing re1ationships:
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2Cr = - 0.00037r1 + 0.0686r(- 0.22833 (13)

Ch = - O. 03409h2 .-+'. O; 73773h - 0.91363 (14)

and;

FI = 24.2

thus unit cost of construction C'u'

By now a11 the cost and benefits of a sma11 reservoir irrigation system
have been quantified, 50 the ~unconstrained' sma11 reservoir irrigation
system optimization mode1 can now be formu1ated as:

(16)

Subject to:

. Excavation and dyke construction constraint;

(17)

2. Storage capacity constraint;

(18)

3. Non negativity constraint;

(19)
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where Vi. is the unknown optimum size of reservoir and can be expressed
from Fig. 2 for a dyke of 1:1 slopes as:

It is to be noted that the terms S , E ,C and AR are a11 functionsp v u
of r1, h1 and h2 as expressed in equations ( 8 ), ( 9 ), (15). and
(12) hence wi11 effect the optimum size Vi. Thus the optimum design
dimensions r1, h1 and h2 obtained from above mode1 would be ..theva lues
adjusted for minimizing seepage, evaporation, cost of excavation, cost of
1and occupied by the reservoir and wi11 be for a storage capacity of the
sma11 reservoir that wi11 maximize net benefits from supp1ementa1 irriga-o
tion.

In case h1 and h2 become restrictive due to soi1 depth (h1)
restrictions or avai1abi1ity of gravity drop (h2) for intercepting runoff,
these restrictions can easi1y be imposed as additiona1 constraints on thérmode1 as:

\•

(21)

(22)

where

SO = depth of soi1, m
OG = gravity drop avai1able (h2) within a reasonable

distance near the 10cation of a reservoir, m.
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can now be easily determi.ned,
just under the catchment area

AI VI= tc
Ru

lhe opti.mum locati.on of the reservoi.r for this 'unconstrai.ned' case
knowi.ng Vi. lhe reservoir wil1 be located
which wi.ll produce Vi quantity of runoff.

(23)

where R is the seasonal runoff (m) expected from the catchment area.u

2.2.3. (8) CONSlRAINED SMALL RESERVO IR IRRIGATION SYSlEM OPTIMIZATION

A small reservoir can be placed at various topographica11y suitable
locations ondrainage ways in an agricultura1 watershed. lhe size
(storage capacity) of a small reservoir has two constraints which vary
with its location, (Fig. 3). It should not be greater than the avai1able
runoff i.e. supply of water (which wi1l increase as the tank is moved
toward the mouth of the watershed). Also the effective volume of the tank
should not be greater than amount of water than can be used 'down streaml

from the tank i.e. irrigation demando (lhis amount will decrease as the
\ -tank is moved towards the mounth of the basin). lhis case is being

call d 'constrained' because of the above restrictions to be met by the
optimum location, storage capacity and dimensions of a small reservoir.

lhe first step is to find the functional relationships of
reservoir storage capacity, Vt with respect to the distance d, the tank is
located from the mouth of the basin, i.e.:

~(d) = min{h(d), k(d)} (24)
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HYPOTHETICAL SMALL WATERSHED.
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where,

d = distance of a tank from the mouth of the watershed.
<I>(d) = the functional relationshipe of total "volume' Yt

with respect to distance d.
h(d) = functional relationship between runoff and distance d.
k(d) = functional relationship between irrigable land

'downstream' and the distance d.

This formualtaion is for irrigation by gravity but if the value of water
is such that it is economically feasible to pump water upstream for
irrigation then pumping can also be included. The value of water can be
found by an :indirect method such as derived demand as suggested by
Helweg and Sharrna. (1982).If pumping of water upstream is justified,
then;

<I>(d) = min{h(d), k(d) + Pel (25)

where,

\ Pe = irrigation demand of the economic pumping
area upstream, m3

For gravity irrigation, at an optimum location d, equation 24 can be
written in general as:

hCd) = k(d) (26)

h(d} and k(d) can be determined as:

h(d) = R Ali - S - E
u c P v
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where,

= seasona1 runoff expected from catchment area, m
Ali

C
optima1 catchment area upstream from the reservoir,

2m .
=

and

= I A'- . 1
n

where,

I = irrigation requirements of the crops downstream, m
n = project irrigation efficiency
Ai optimum irrigable area, m2=

By substituiting these values of h(d) and k(d) in equation (26)

R Ali - S - E = I 'A'u c P v - 1
n

or Ai = R Ali - S - E (27)u c p v
I/n

~lSO at a location where harvested water exactly meets the demand of all
~he area below it (Aie) in a basin:

Ali.= A - Aic t e

thus '
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where,

2total area of the basin, m
all area of the basin below the small reservoir
located such that it exactly meets the irrigation
demand, or equilibrium irrigation area, m2

or,

Aie = (RuAt - Sp - Ev)
(Ru + I/n)

(28)

The area Ai is not the optimum area available for irrigatión becausee
the net benefits need not necessarily be maxim~m at this location of
reservoir due to nonlinear nature of vardous cost functions. In general
the area available for irrigation below a small reservoir on a basin may
be either; (i) more than what can be irrigated by harvested water, or
(ii) exactly equal to the area, that can be irrigated by the tank Aie'
as in equation (28) or {iii) can be less than the area, that can be
irr\gated by a.tank. The relationspip of the distance from mouth of a
bas'n, d, and area of the basin, Ad up to distance d for a typica1
watershed shown in Fig. 3 (scale 1 . !iOOO) has been plotted in Fig. 4.
as curve AEB. This curve has been determined by simply finiding the
area up to various locations dl, d2, . . . . and will varyaccording
to the shape of the basin. In this case a cubic regression equation was
easily fitted by using Ad as a dependent variable and d as an independent
vari.able. At a typical location L, on the curve AEB in Fig. 4,.' KL is
the catchment area from which water can be harvested into the tank and LN
is all the area below it that is available for irrigation but due to
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limited runoff (At - Ad)Ru available only area MN = (At - AdlRu/(I/n) can
be irrigated by the capacity of the tank if seepage and evaporation losses
are ignored. The curve CMD can be obtained in this manner by knowing the
Ad versus d relationship. Part of this area depicted by curve CMD cannot
be irrigated due to the volume of harvested water lost by seepage and evaporation
{= - (5 + E Yn/n)L Thus the area that can be irrigated can be shown asp v
curve CEF which is having a shift from curve CMD by an amount equal to
-(~p + Ev)/(I/n). 5ince seepage and evaporation losses are functions of the

..size of the tank, these losses cannot be calcu1ated straighforwardly but
are calculated in the model during the process of optimization. It is
obvious that the location E on curve AB is the 10cation where
harvested water justmeets the irrigation demands of all the area (Aie)
below it. Thus the area that can either be irrigated, CE (which is
constrained by the storage capacity of a reservo ir) or that is available
for irrigation, EA (~hich is constrained by the location of a small
reservoir) is the area.on the curve CEA. The Ad versus d curve for
the typlical example of a basin in Fig. 3., can be represented by the
fo1h owing

} "
d

polynomial regression equation:

O.00092d3 + 1.07995d2 - 76.62125d + 1197.42878 (29)

where Ad is in sq~are meters and d in meters. This relationship in
general accurate1y predicts the area Ad' as a function of distance d
(for tha sm~11 basin in Fig. 3), except for very 10w va1ues of d (at d
less than 75 m). Hence the fo110wing straight 1ine equation for
d < 75 m was used:

Ad = 15.14 d for d < 75 (30)
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Now, tn equation (27), we can determi.ne the irri.gable area limi.ted by
the capaci.ty of a tank (curve CE in Fi.g. 4} as:

(At- Ad)Ru - Sp - Ev
( I/n)

(31 )

and area that is limited by its availability (curveEA in Fig. 4) upto
A· as:'e

(32)

Thus now we can generalize; the optimum area to be irrigated by a tank:

if Ai < Aie (33)

and Ai = Ai2 if Ai > Aie (34)

where,

Ai2 = Ad in equation (29)
I
\ if dM > d > 75 (35)\ ax - -

here,
dMax = total length of the basin

(= 575 in Fig. 3)

Ai2 = Ad in equation (30)

if d < 75 (36)
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and Ai2 = O if d = O (37)

By now the optimum irrigation area Ai has been determined. The optimum
total storage capacity or size of a reservoir Vt,can now be determined
by knowing the optimum catchment Ali from equation (27) as:c

Ali Ai(I/n) + S + E
= p vc

Ru
(38)

and hence optimum tank size:

V" =t R .A"
u C

(39)

The objective of Iconstrainedl small reservoir irrigation system
.,

optimization can now be defined as maximization of net benefits (or
minimization of riegative value of net benefits) exactly as in the
lunconstrainedl case (equation 16) except that now the total capacity of
the reservoir in equation (18) is limited by the irrigation area in
equation-s.(33) and (34) whi chrí ntr-oducesi a new dedis í onvár'iab le.j.d ' into the
modbl.

\
Thus. the Iconstrainedl optimization model can be formulated as:

\

Subject to:

(41)

(42)
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where,

V" = R Ali
t u c

= Ai(I/n) + Sp + Ev

(43)

If h1 or h2 are restricted due to soil depth (SD) or ayai1ability of
gravity drop (GD) for intercepting ruoff at a higher location above the
reservoir, these 1imitations can be imposed here too as done in the
'unconstrained' case in equat ions (21) and (22).

This mode1 wil1 give the optimum location d, optimum catchment area
A~, the optimum storage capacity'Vt, and optimum dimensions rl' h1 and
h2 of a small reservoir for the 'constrained' case.

The Optimum Storage Capacity, Location and Dimensions of the Small
Reservoir Irrigation System

I, The optimum location and storage capacity of a small
irr~spective of being 'unconstrained' or 'constrained',

reservoir,
are the minimum

of these two. (This is because if I unconstrained I case gives ma'x imum
benefits for 1esser capacity than the reservoir system design is not a
'constrained' case. This can be determined only after solving both
cases.) The optimum location is decided by the optimum catchment, A*c
from equation~ (23) and (38):
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{

AI

A~ = min c
AI

c
and the optimum storage

(44)

capacity of a small reservoir, Vt, from equations
(20) and (39) is;

V* = mint (45)
VI
t ..

V"
t

The optimumdimensions of a small reservoir ri, hi and h2 are those
which give optimumstorage capacity Vt in equation (45).,

Depending on the optimum storage capacity àn'd_~lóca:tion,'theup t'imum
command area ó:f .the.reservoir-.can be .detérminedr 'Or!:relati.,vély)arge
catchment or on regional bas is, the I unconstra tned I criteria wi 11 govern
the planning of a system of irrigation. This criteria can thus be used to
ascertain how many small reservoirs are needed and where they are to be
located, in order to derive maximum beneficial use of the system for
uplifting the agriculture in rainfed regions. In section 4 it is shown

Ithat the unconstrained irrigation system design is usually optimal.
\

3. THE NONLINEAR PROGRAMMING ALGORITHM

The problem of optimization of small reservoir irrigation system
evidently is a problem of optimization of a nonlinear function subject
to nonlinear equality constraints. A complete review of various
nonlinear programming algorithm including their suitability to solve the
proposed model have been conducted by Sharma (1981). lt was found that
the constrained Flecher - Powell (CONMIN) algorithum developed by
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Haa~hoff, Buys and Molendorff (1969) 15 capable Df solving the proposed
model. The CONMIN algorithm was modified to suit the specific requirements
Df the model for optimization Df small reservoir irrigation systems. For
obtaining a copy Df the computer listing (in Fortran IV) Df the proposed
model and its 10gic diagram along with the modified CONMIN algorithm, the
reader is advised to refer to Sharma (1981). Hence forth this model is
referred to as Sma11 Res.ervoir Irrigation System Optimi zation (SRISO. FTN)
Model.

4. RESULTS AND DISCUSSIONS:

For demonstration Df the results Df the model an example for optimizing
the small reservoir irrigation system for Hyderabad region in South India
is presented here. The input data used for this example is given in Table 1.
Average seepage and evaporation rates Df 5 mm/day from a reservoir are
assumed. The future benefits Df the irrigation system over the 1ife Df
reservoir (assumed 25 years) are discounted at an annual discount rate Df 6%.
The1effect Df increase in seepage rates and discount rates are discussed
in detai1 later. The irrigation system is p1anned to provide 28 em Df

\irrigation to post-monsoon season sorghum crop. The nature Df yie1d
response to water use for this crop is given by equation (6). A11 the
water in the reservoir is expected to be used for irrigation within 120
days of filling (October to February). The cost of 1and to be occupied by

tbe reservoir.f s as sumed.tocost Rs.2500/ha. For the 'constrained' case 1et
us further assume that the size Df basin (At) is on1y e.g. 13.9 ha as for
the sma11 basin in Fig. 3~ A1so assume that the runoff avai1ab1e from this
catchment 1S 100 mm/ha (Table 1). The area-distance (d) re1ationship for
this catcbment 1S given by equations (33) and (34)..
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Tabe 1 .1.. 1nput data for the examp1e solved by the sma11 reservoir
irrigation system optimization mode1 SR1SO.FTN (for
Hyderabad in Semi-Arid India)

1nput Data

P
Q

C1
L
No
S
E
Np
N
CL
Ru

\ At
n

\

dmax

Va1ue

Rs.97/100 Kg, (Priee of Sorghum)
28 em, (Ouant ityof irri,gation de1ivered to fie1d)
Rs.576/ha, (Fixed eost of inputs for sorghum)
Rs~11.5/ba, (Cost of irrigations)
3, (No. of irrigations)
5 mm/day, (Seepage rate froffi reservQir)
5 rnm/day, (Evaporation rate from reservoir)
120, (No. of days for emptying the reservoir)
25 years, (Life of a reservoir)
Rs.2500.00/ha, (Cost of 1and)
100 mm/ha, (Seasona1 runoff expeeted)
13.9 ha, (Total area of a basin)
0.8, (Projeet irrigation effieieney)
575m, (Maximum 1ength of basin)
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4.1. THE OPTIMUM SMALL RESERVOIR IRRIGATION SYSTEM:

..Table 2 gives the solution of the above examp1e by SRISO.FTN mode1
for both 'unconstrained' and 'constrained' cases. From these two cases
for the given examp1e of 13.9 ha. basin in Fig. 3 it is evident from Tab1e 2

.. .that the optimum sma11 reservoir irrigation system is the 'unconstrained'
system since its storage capacityand catchment area is 1ess than the
'constrained' case. Hence for the examp1e,the optimum irrigation system has:

Optimum size Vt* = 1.05478 ha m
Optimum catchment A* . = 10.547 ha
(location) catch

Optimum dimensions
*r1 = 39.76 m
*h1 = 0.61 m
*h2 = 1.46 m

From this examp1e we can generalize that most often, except for very sma11
bas"ns (e.g. < 10 ha), the unconstrained case wi11 give the optimum sma11

. . .res rvoir irrigation system ..Hence the 'unconstrained' SRISO.FTN mode1
is to be used for p1anning of the sma11 reservoir irrigation system if the
system is desired on 1arger catchments. The optÍmum solution of the
SRISO.FTN which gives optimum storagecapacity, optimum location (catchment)
and optimum dimensions can be used to predict how many reservoirs are
required and where. 'V1ithin the general area predicted by the mode1 for
locating a smal1 reservoir, topographically favorab1e spots are to be
preferred.
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Tab1e 2. Optimum sma11 reservoir irrigation system for Hyderabad region
in India for post-monsoon irrigation of sorghum crop (input
date as per Tab1e 1) on A1fiso1s.

Given: Topwidth of. Dyke = 2 m, Free Board = 1 m, Dyke Slope = 1:1
Initia1 Guesses: r1 = 40 m, h1 = 2 m, h2 = 1 m.

Optimum
Design
Variab1es

Unconstrained Case _Constrained Case

Size (Vt)
ha m

Upstream
~Catthmer'lt

Area (Acatch)

1.05478 1.18270

10.547 11.8270
39.76 33.38

0.61 1.13
1.46 2.16

2991.77 3843.51
2991. 78 3854.68
7556.05 8078.21

r1, m
h1, m
h2, m
V1, m3

V2, m3

3
V3'lm

\ *Location d
m \ 195.95

3.07Storage/Excavation
(Vt/V1)

3.53

*Distance from mouth of the basin for Fig. 3-.. (examp1e)
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Another general question often posed í s whe ther it is advisab1e to
bui1d many very sma11 reservoirs (ponds) or one very large reservoir?
The mode1 answers this question~ Any reservoir size be10w or above the
optimum storage capacity (size) is not advised for a given set of topo-
graphic, hydro10gic, c1imato10gic and agronomic conditions. For the
examp1e above reservoir size other than 1.05478 ha. m is b~low optimum
and not adivised to be bui1t. However, 1arge dams can become optimum on
topographically favorable 10cations.

From the previous experience of the author at the International
Crops Research Institute for Semi-Arid Tropics, Hyderabad, India (Sharma I

and Kampen, 1975; Sharma and Kampen, 1976; Sharma and Kampen, 1977) the
final optimum dimensions obtained (rl* = 39.76 m, h1* = 0.61 m and h2* =
1.46 m) are very practica1 from the reservoir construction and its use
point of view because (i) with hl* = 0.61 m only (depth of tank be10w
ground 1evel) it wil1 be very easy to deliver water by gravity for crop
irrigation and (ii) with h2* = 1.46 m (height of tank above ground level)
and given the rolling topography (2-5%) of Hyderabad (India) area along
with the steep drops found below property boundaries in this area it will
be Jery convenient to intercept runoff at an elevation of 1.46 m from the
rese~voir 10cation within reasonably sma11 distance from the small
reservoir.

4.2. SENSITIVITY ANALYSIS:

Of the input to the design model, seepage and discount rate are
most uncertain. Evaporation is fairly stable a given location as are costs,
product prices, and other variab1es. Consequently a sensitivity analysis
was conducted on those two inputs. Figures 5 and 6 indicate the results.
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Both these figures demonstrate that investiment in seepage contro1 wi11
increase net benefits substania11y particu1ar1y if the seepage rate and
discount rates are high.

5. CONCLUSIONS

This work shows that in most cases, the unconstrained design mode1
is sufficient. The optima1 design of these tanks sbowprontse .of ?jg!1.if~icant
increases in efficiency measured either by storage to excavation ratio or by
net benefits.

The final optimization code was run on a LSI 11/23 mini computer
indicating that it can be uti1ized in any area with minima1 computationa1
capabi1ity. Of course engineering judgement shou1d modify the computer
solution when appropriate.

6. APPLICABILITY FOR NORTH-EAST BRAZIL:

\ T~e ~Od~l c~n directlY.beNused
h

fEor P1Bann~n1galnndcdaesSeigtnheingsmSam,a111
res rVOlr lrrlgatlon system ln ort - ast raZl .
reservoir is p1anned for Catt1e e.g. in very arid areas or for both Catt'e
and irrigation e.g. in arid areas the 1ivestock component shou1d be added to
the objective function. These modifications are in progress at CPATSA.
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