
# Boletim de Pesquisa 32 e Desenvolvimento

Dezembro, 2010

Caracterização Molecular dos Isolados 344 e 1644 de Bacillus thuringiensis (Berliner), Eficazes no Controle da Lagarta-do-Cartucho Spodoptera frugiperda (J. E. Smith)



Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Milho e Sorgo Ministério da Agricultura, Pecuária e Abastecimento

# Boletim de Pesquisa e Desenvolvimento 32

Caracterização Molecular dos Isolados 344 e 1644 de *Bacillus thuringiensis* (Berliner), Eficazes no Controle da Lagartado-Cartucho *Spodoptera* frugiperda (J. E. Smith)

Fernando Hercos Valicente Ubiraci Gomes de Paula Lana

Embrapa Milho e Sorgo Sete Lagoas, MG 2010 Exemplares desta publicação podem ser adquiridos na:

### Embrapa Milho e Sorgo

Rod. MG 424 Km 45 Caixa Postal 151

CEP 35701-970 Sete Lagoas, MG

Fone: (31) 3027-1100 Fax: (31) 3027-1188

Home page: www.cnpms.embrapa.br E-mail: sac@cnpms.embrapa.br

### Comitê de Publicações da Unidade

Presidente: Antônio Carlos de Oliveira

Secretário-Executivo: Elena Charlotte Landau

Membros: Flávio Dessaune Tardin, Eliane Aparecida Gomes, Paulo Afonso Viana, João Herbert Moreira Viana, Guilherme Ferreira

Viana e Rosângela Lacerda de Castro

Supervisão editorial: Adriana Noce

Revisão de texto: Antonio Claudio da Silva Barros Normalização bibliográfica: Rosângela Lacerda de Castro Tratamento de ilustrações: Alexandre Esteves Neves Editoração eletrônica: Alexandre Esteves Neves

Foto da capa: Márcio Geraldo Martinelli

### 1ª edição

1ª impressão (2010): on line

### Todos os direitos reservados

A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei no 9.610).

# Dados Internacionais de Catalogação na Publicação (CIP) Embrapa Milho e Sorgo

#### Valicente, Fernando Hercos

Caracterização molecular dos isolados 344 e 1644 de Bacillus thuringiensis (Berliner), eficazes no controle da lagarta-do-cartucho Spodoptera frugiperda (J.E. Smith) / Fernado Hercos Valicente, Ubiraci Gomes de Paula Lana. -- Sete Lagoas : Embrapa Milho e Sorgo, 2010.

20 p.: il. – (Boletim de Pesquisa e Desenvolvimento / Embrapa Milho e Sorgo, ISSN 1679-0154; 32).

1. Controle biológico. 2. Praga de planta. 3. Marcador molecular. I. Lana, Ubiraci Gomes de Paula. II. Título. III. Série.

CDD 632.96 (21, ed.)

# Sumário

| Introdução             | 4  |
|------------------------|----|
| Material e Métodos     | 6  |
| Resultados e Discussão | 10 |
| Conclusões             | 12 |
| Referências            | 13 |

Caracterização Molecular dos Isolados 344 e 1644 de *Bacillus thuringiensis* (Berliner), Eficazes no Controle da Lagarta-do-Cartucho *Spodoptera frugiperda* (J. E. Smith)

Fernando Hercos Valicente<sup>1</sup> Ubiraci Gomes de Paula Lana<sup>2</sup>

## Introdução

A lagarta-do-cartucho, Spodoptera frugiperda, é considerada uma das pragas mais importantes na cultura do milho no Brasil e pode reduzir a produção de grãos em até 34% (CARVALHO, 1970). O ciclo de vida desse inseto-praga é de 30 dias em condições de laboratório e o número de ovos pode variar de 100 a 200 ovos por postura/fêmea num total de 1.500 a 2.000 ovos/fêmea. Portanto, os danos potenciais que esse inseto pode causar no campo são grandes. O controle químico no Brasil é amplamente utilizado como forma de dominar esse inseto. A bactéria Bacillus thuringiensis (Bt) pode tornar-se um agente viável no controle da lagarta-do-cartucho em campo. B. thuringiensis é uma bactéria gram-positiva que ocorre naturalmente no solo, na água, em insetos mortos e resíduos de grãos (LAMBERT; PEFEROEN, 1992). Durante a fase estacionária e/ou de esporulação, esta bactéria produz um esporângio que contém um endósporo, com uma ou mais inclusões cristalinas proteicas chamadas de δ-endotoxinas. Estas proteínas são tóxicas para um grande número de insetos e torna o Bt uma valiosa ferramenta a ser

<sup>&</sup>lt;sup>1</sup>Agrônomo, Doutor em Entomologia - Genética Molecular, Pesquisador da Embrapa Milho e Sorgo, Sete Lagoas, Minas Gerais, valicente@cnpms.embrapa.br

<sup>&</sup>lt;sup>2</sup>Químico, Mestre em Genética, Analista da Embrapa Milho e Sorgo, Sete Lagoas, Minas Gerais, ubiraci@cnpms.embrapa.br

utilizada no controle biológico de pragas e um dos componentes do Manejo Integrado de Pragas (MIP). Mais de 200 genes de  $\delta$ -endotoxinas já foram identificadas e a grande maioria é ativa contra algumas ordens de insetos. A atividade das  $\delta$ -endotoxinas é restrita ao intestino do inseto. Quando as larvas alimentam-se com uma grande quantidade de toxina, sofrem paralisia e morte (GLARE; O'CALLAGHAN, 2000). As proteínas que formam os cristais somam entre 20 e 30% do total de proteínas da bactéria durante a fase de esporulação (BOUCIAS; PENDLAND, 1998). A massa molecular destes cristais varia dependendo do método de dissolução, e após solubilização em pH básico, tornam-se protoxinas que são compostas por proteínas cry ou proteínas de cristal inseticida (ICPs), com massas moleculares variando de 25 a 140 kDa (CÉRON et al., 1995; BERHNARD et al., 1997). Os cristais geralmente possuem forma bipiramidal e são ativos contra lepidópteros. Os cristais também podem ter formas triangulares, cuboides, ovoides, lisas e amorfas. Kronstad et al. (1983) relatam que genes cry ocorrem em plasmídeos e, em algumas subespécies, nos cromossomos bacterianos. O interesse em plasmídeos de Bt foi iniciado no final dos anos 1970, quando uma correlação foi estabelecida entre a formação de cristais e a presença de plasmídeos (GONZÁLEZ JR.; CARLTON, 1980). Hoje a pesquisa está mais voltada para a localização de genes na transferência de plasmídeos entre diferentes cepas de Bt (GONZÁLEZ JR. et al., 1982). No entanto, pouca atenção foi dada à importância dos padrões de plasmídeos como uma ferramenta para a caracterização de cepas.

Boucias e Pendland (1998) estimam que existem mais 60 mil isolados em coleções de todo o mundo. A Embrapa Milho e Sorgo, localizada em Sete Lagoas, MG, possui um banco de Bt com mais de 4.700 cepas isoladas de diversas amostras de diferentes regiões do Brasil. Em termos de especificidade, o Bt apresenta diferenças em relação à toxicidade das espécies de insetos, mas não é constante dentro da mesma ordem (por exemplo, Lepidoptera). Diferenças drásticas em sensibilidade foram encontradas entre as espécies dentro de uma mesma ordem, ou seja, *Spodoptera* spp. são difíceis de controlar com bioinseticidas à base de Bt (estirpe HD1), no entanto *Heliothis virescens* e *Putella xylostella* não são (BAUM et al., 1999). Beegle e Yamamoto (1992)

também confirmaram os resultados que o Bt é pouco eficiente no controle de *S. frugiperda*. Aronson et al. (1991) relataram que a solubilidade do cristal é o principal fator da eficiência do Bt e sugerem que este fator pode explicar a baixa suscetibilidade de *S. frugiperda* ao Bt. Até agora, *Bt kurstaki* tem sido o mais utilizado em produtos comerciais, e alguns deles são da estirpe HD-1 pertencentes à coleção Dulmage (NAKAMURA; DULMAGE, 1988).

A sorotipagem é uma das mais utilizadas na classificação de subespécies de Bt. Apesar de ser uma estratégia confiável e simples, é realizada apenas em alguns laboratórios ao redor do mundo, em particular, o Instituto Pasteur, na França.

Dentre as estratégias moleculares, as sequências intergênicas repetitivas (ERIC), também conhecidas como unidades de repetição intergênicas (IRUs), estão presentes em várias cópias no genoma de *Escherichia coli, Salmonella typhimurium* e outras enterobactérias (HULTON et al., 1991). ERIC-PCR consiste na obtenção de um padrão de bandas pela amplificação do DNA genômico localizado entre elementos ERIC ou entre elementos ERIC e outras sequências de DNA repetitivo, gerando padrões eletroforéticos distintos entre as diferentes cepas. ERIC-PCR envolve o uso de primers de 22 nucleotídeos com alta homologia a sequências repetitivas intergênicas que estão presentes em procariotos (VERSALOVIC et al., 1991).

Para a realização deste trabalho, foram utilizadas cepas de *B. thuringiensis* que foram isolados por Valicente e Barreto (2003). Esses autores verificaram que os isolados 344 e 1644 foram os mais promissores em testes preliminares de mortalidade da lagarta-do-cartucho. Este trabalho teve como objetivo caracterizar estas cepas, utilizando diferentes técnicas e verificar seu potencial para ser usado contra lagartas no campo.

# Material e Métodos

Bioensaio com *B. thuringiensis* e LC50: lagartas de dois dias de idade de S. frugiperda foram usadas para determinar a eficiência de cada

isolado de Bt no controle destas lagartas. As condições de laboratório foram 25 OC, umidade de 70% e fotofase de 14 horas. Os insetos foram criados com dieta artificial e mantidos individualmente em copos plásticos descartáveis de 50 mL, cada um contendo 5,0 g de dieta artificial previamente imersa em suspensão Bt, contendo esporos e cristais. Esta suspensão foi obtida pela raspagem de colônias de Bt das placas de Petri com concentração variando de 103 a 109 esporos/mL. Quatro repetições com 25 larvas/repetição foram utilizadas e a mortalidade foi avaliada diariamente. O software MSTAT foi usado para calcular o valor CL50.

PCR para detecção de genes cry1: A PCR foi realizada utilizando DNA isolado de colônia Bt cultivado durante 18 h em meio sólido. Para o isolamento do DNA, uma pequena quantidade das colônias das cepas 344 e 1644 foi separadamente misturada com 100  $\mu$ L de água destilada autoclavada. Posteriormente, as amostras foram congeladas a -80 oC por 15 minutos e imediatamente incubadas em água fervente por cinco minutos. Iniciadores foram selecionados a partir das regiões altamente conservadas dos genes crv1. Além de primers específicos. foram utilizados primers desenhados por Céron et al. (1994, 1995). A Tabela 1 mostra a sequência de cada iniciador e o tamanho do produto de cada reação da PCR. Para as reações da PCR dos genes cry1 foram utilizados 5 µL da amostra de DNA com 1,5 U de Tag DNA polimerase (Invitrogen), 250  $\mu$ M de dNTPs, 400 nM de cada primer e 3 mM de MgCl2 em um volume final de 25  $\mu$ L. Os ciclos de amplificação foram os seguintes: uma etapa de desnaturação por 3 min a 95 oC, seguida por 29 ciclos, sendo que cada ciclo foi composto por uma etapa de desnaturação a 95 oC por 1 min, uma temperatura de anelamento que variou de acordo com o primer usado (normalmente entre 50 e 57 oC) por 1 min, extensão por 1 min a 72 oC, seguidos de uma etapa de extensão final a 72 oC por 5 minutos. Para evitar falsos negativos, cada reação de PCR foi realizada pelo menos três vezes. Os produtos da PCR foram analisados utilizando eletroforese em gel de agarose a 3% com tampão TAE 1X (40 mM Tris-acetato, 1 mM EDTA pH 8,0), a 110 V por 1 hora e corados com solução de brometo de etídio a 1 µg/mL por 30 minutos. Os resultados foram visualizados sob luz ultravioleta usando Gel Logic 200 (Kodak, Rochester, EUA).

Extração de DNA genômico: 30 mL de caldo nutritivo das culturas dos isolados 344 e 1644 foram centrifugados a 3000 x g por 5 min a 4 °C, sendo os pellets lavados com 10 mL de tampão J (1 M Tris-HCl, 0,1 M EDTA, 0,15 M NaCl [pH 8,0]). Os pellets foram ressuspendidos em 4 mL de tampão J com lisozima, que foi adicionada numa concentração final de 4 mg/mL, seguidos de incubação a 37 °C por 30 min. Então, 10 µL de RNase A (10 mg/ml) foram adicionados e as suspensões incubadas por 15 min a 37 °C. Em seguida, 200 μL de SDS a 20% foram adicionados e incubados por 20 minutos a 65 °C, seguidos pela adição de 30 µL de proteinase K (10 mg/mL) e incubação por 12 h a 65 °C. Um total de 1,15 mL de NaCl 5 M foi adicionado, sendo as amostras gentilmente misturadas no gelo por 15 min e centrifugadas a 3900 x g por 20 minutos a 4 °C. O sobrenadante foi retirado, misturado com igual volume de isopropanol e centrifugado a 17000 x q por 20 minutos a 4 °C. O pellet foi lavado com etanol 70%, seco ao ar e dissolvido em 100 µL de tampão TE (Tris-HCl 10 mM e EDTA 1 mM pH 8,0). O DNA foi quantificado por espectrofotometria (Nanodrop, Wilmington, EUA) e as amostras foram armazenadas a -20 °C até posterior utilização.

**Eric-PCR e análise eletroforética:** Os primers ERIC foram desenvolvidos por Versalovic et al. (1991): ERIC 1R (5'-ATGTAAGCTCCTGGGGATT-CAC-3') e ERIC 2 (5'-AAGTAAGTGACTGGGGTGAGCG-3'). As análises por PCR foram realizadas num volume total de 20  $\mu$ L contendo 30 ng de DNA, 0,5  $\mu$ M de cada primer, 150  $\mu$ M dNTPs, 1 U de Taq DNA polimerase (Invitrogen) e 2,5 mM MgCl2. Amplificações por PCR foram realizadas nas seguintes condições: 1 min a 94 °C, 1 min a 50 °C e 2 min a 72 °C, durante 41 ciclos. Os produtos da amplificação foram separados por eletroforese em gel de agarose 1,2% em tampão TAE 1X a 50 V durante uma hora. O gel foi corado em solução de brometo de etídio e documentado com Gel Logic 200 (Kodak, Rochester, EUA).

**Extração de DNA plasmidial:** As cepas 344 e 1644 de *B. thuringiensis* foram cultivadas em 200 mL de meio Luria-Bertani (LB), com agitação de 200 rpm a 28°C até OD600nm entre 1,5 e 2,0. As culturas de células foram centrifugadas a 8000 x g por 10 minutos a 4°C e o precipi-

tado ressuspendido em 10 mL de solução A (20 mM Tris-HCl pH 8,0, 5 mM EDTA pH 8,0, 20% sacarose), contendo 15 mg/mL de lisozima. As amostras foram incubadas a 37 oC por 90 minutos e 20 mL de solução B foram adicionados (0,2 M NaOH e 0,1% SDS). As suspensões foram misturadas e mantidas em temperatura ambiente por 5 minutos. Posteriormente, 10 mL de solução C (3 M acetato de potássio pH 5,5) foram adicionados às amostras, que foram homogeneizadas, mantidas em gelo por 15 minutos e centrifugadas a 8000 x g por 10 minutos a 4 oC. Sobrenadante foi retirado, filtrado através de duas camadas de gaze estéril, sendo adicionados 25 mL de isopropanol. Esta solução foi incubada a –20 °C durante uma hora. As amostras foram centrifugadas novamente a 8000 x g por 20 minutos e o sobrenadante descartado. O pellet foi seco à temperatura ambiente e ressuspendido em 10 mL de TE (10 mM Tris, 1 mM EDTA, pH 8,0).

Purificação do DNA plasmidial por ultracentrifugação com cloreto de césio: Durante a purificação do DNA plasmidial, 11 g de cloreto de césio foram adicionados em cada amostra, que foi homogeneizada até completa dissolução. Então, 800 µL de brometo de etídio (10 mg/ mL) foram adicionados e as amostras transferidas para tubos novos e centrifugados a 150000 x g por 24 horas a 20 oC. Sob uma luz ultravioleta, a banda contendo o DNA plasmidial foi retirada e transferida para um microtubo de 1,5 mL. A remoção de brometo de etídio foi feita pela adição de um volume de 1-butanol saturado com água. As amostras foram agitadas por 5 minutos e centrifugadas a 10000 x q por 3 minutos a temperatura ambiente. A fase orgânica foi descartada e à fase inferior foi adicionado igual volume de 1-butanol saturado com água. Este procedimento foi repetido quatro vezes até que a fase orgânica permanecesse completamente clara. Esta fase foi transferida para um microtubo novo e três volumes de água foram adicionados. Os plasmídeos foram precipitados com dois volumes de etanol absoluto e incubados durante 30 minutos a 4 oC. Após centrifugação a 16000 x g por 20 minutos, o sobrenadante foi descartado e o precipitado lavado com 200  $\mu$ L de etanol 70%. As amostras foram centrifugadas a 16000 x g por 10 minutos e o sobrenadante descartado. O pellet foi seco à temperatura ambiente, ressuspendido

em 50  $\mu$ L de TE e quantificado em espectrofotômetro (Nanodrop, Wilmington, EUA).

Análise eletroforética do DNA: amostras foram analisados em gel de agarose a 0,5% com tampão TAE 1X contendo 1,5  $\mu$ g de DNA plasmidial e submetidos a 10 V por 16 horas. O gel foi corado com brometo de etídio e o excesso lavado com água deionizada por uma hora. O DNA plasmidial foi observado sob luz UV e registrado no Gel Logic 200 (Kodak, Rochester, EUA).

Eletroforese de proteína: análise de proteína foi realizada em gel de poliacrilamida (SDS-PAGE 10%). As cepas bacterianas 344 e 1644 foram cultivadas em 50 mL de meio LB por quatro dias a 30oC sob agitação contínua. As culturas de células foram centrifugadas a 16000 x g por 10 minutos e ressuspendidas em 10 mL de triton a 0,01%. Este procedimento foi repetido três vezes. Na última lavagem foram adicionados 5 mL de solução contendo triton a 0,01%, 50 mM Tris-HCl pH 8,0 e NaCl 10 mM. A mistura foi centrifugada a 16000 x g por 5 minutos, o pellet ressuspendido em 5,0 mL de tampão bicarbonato 50 mM pH 10,5 contendo  $\bf I$ -mercaptoetanol a 10 mM. As amostras foram então incubadas por 3 horas a 37 °C sob agitação constante e centrifugadas a 16000 x g por 10 minutos. O sobrenadante foi retirado e incubado com tripsina (200  $\mu$ g/mL) a 37 °C por duas horas. A reação foi inativada com 1 mM PMSF (fluoreto de fenilmetilsulfonil) e as amostras submetidas à eletroforese por uma hora a 10 mA em gel de poliacrilamida 10%.

### Resultados e Discussão

Bioensaio com *B. thuringiensis* e CL50: a concentração letal 50 foi determinada utilizando diferentes concentrações entre 103-109 esporos/mL em lagartas de dois dias de idade. A CL50 foi de 8,21 x 106 esporos/mL para 344, sendo que para a cepa 1644 a CL50 foi de 2,07 x 106 esporos/mL.

Identificação de genes *cry1*: a PCR foi utilizada para detectar genes *cry1* das cepas 344 e 1644, que se mostraram eficientes no controle

da lagarta-do-cartucho. O tamanho dos produtos de PCR dos genes cry1 variou de 130 pb a 418 pb. A cepa 344 apresentou os genes cry1Ab, cry1B, cry1E e cry1Fb. O tamanho do produto para cry1B foi de 367 pb, 147 pb para cry1E, e para o cry1Fb foi de 177 pb. Também foram utilizados os primers cry1Ab51320F e cry1Ab51740R para verificar a presença do gene cry1Ab, gerando um produto de PCR de 418 bp. A cepa 1644 apresentou os genes cry1B, cry1C com 130 pb, cry1D com 290 pb e o gene cry1Fb. O perfil de PCR para os genes cry1C e cry1E de ambas as cepas é mostrado na Figura 2.

A cepa 344, embora também muito eficiente em matar lagarta-do-cartucho, não possui o gene *cry1C*. Nossos dados estão de acordo com aqueles relatados por Loguercio et al. (2001) que mostraram que a presença dos genes *cry1C* não está necessariamente relacionada com a alta toxicidade para as larvas de *S. frugiperda*, e sugerem que outras proteínas presentes em cepas de Bt podem ser mais importantes para a toxicidade. Tais achados são corroborados por Valicente e Fonseca (2004). Além disso, outros fatores, como diferenças na expressão da toxina ou de efeitos sinérgicos entre algumas proteínas Cry, podem explicar a toxicidade das estirpes Bt (MONNERAT et al., 2006). Por outro lado, a cepa 1644 não apresenta o gene *cry1E*.

ERIC-PCR: a amplificação com os primers ERIC para as cepas 1644 e 344 revelou várias bandas, variando entre 200 e 3000 pb (Figura 3). A cepa 344 apresentou um fragmento de aproximadamente 200 pb, que não estava presente na cepa 1644 permitindo a sua diferenciação. A linhagem 1644 apresentou pelo menos duas bandas específicas, com tamanhos entre 750 e 2000 pb, permitindo a sua diferenciação em relação a cepa 344. Com o uso dos primers ERIC-PCR, a cepa 344 foi discriminada da cepa 1644, indicando que essas cepas são geneticamente diferentes. Esta técnica tem sido utilizada na identificação de estirpes e para predição de ação em relação ao organismo-alvo, sem a necessidade de realizar todos os bioensaios que consomem tempo e trabalho no laboratório (CAROZZI et al., 1991). O uso de sequências de DNA repetitivas, como ERIC, para a caracterização bacteriana tem se tornado frequente, permitindo comparações entre os diferentes

genomas bacterianos (VERSALOVIC et al., 1991; LOUWS et al., 1994; SELENSKA-POBELL et al., 1995). Nosso estudo suporta os dados apresentados por Shangkuan et al. (2001) e Lima et al. (2002) que revelaram que os elementos ERIC estão presentes no genoma de Bt. Nossos resultados também corroboram com a conclusão de De Bruijn (1992) que a ERIC-PCR poderá se tornar uma poderosa ferramenta para diferenciar cepas de microrganismos.

Perfil plasmidial de isolados de B. thuringiensis: a cepa 344 apresentou cerca de 11 plasmídeos, enquanto a cepa 1664, pelo menos oito. A relevância de plasmídeos em B. thuringiensis é percebida pela presenca regular de um conjunto de plasmídeos, que podem variar em número de 1 a 17 (GONZÁLES JR.; CARLTON, 1980; APTOSOGLOU et al., 1997). O perfil plasmidial indicou diferentes tamanhos, variando de 3 kb a valores superiores a 12 kb (Figura 4). Estas variações no número e massa molecular do DNA plasmidial representam a divergência genética entre as estirpes da espécie. Os plasmídeos Bt têm sido estudados tanto para localizar genes cry como para transferi-los entre diferentes cepas e espécies. Os padrões dos perfis plasmidiais têm sido frequentemente utilizados para caracterizar cepas (IBAR-RA; FEDERICI, 1987; IBARRA et al., 2003). Reyes-Ramírez e Ibarra (2008) avaliaram os padrões de plasmídeos de várias estirpes de Bt e observaram que, com uma exceção, todas as amostras apresentaram um único padrão plasmidial. As informações obtidas nesta comparação mostrou a importância desta ferramenta na caracterização de cepas Bt.

Eletroforese de proteínas: o perfil SDS-PAGE mostrou que as cepas 344 e 1644 contêm diferentes perfis proteicos, com massas moleculares variando de 30 a 205 kDa. A cepa 344 mostrou uma toxina ativa após digestão com tripsina de cerca de 60 kDa, e a cepa 1644 apresentou um fragmento relacionado à toxina de cerca de 55 KDa (Figura 5).

A caracterização morfológica das inclusões cristalinas das cepas de Bt selecionadas apresentaram cristais bipiramidal e cuboide típicos e comuns à maioria das cepas ativas contra lepidópteros (VALICENTE; SOUZA, 2004). Esses dados estão de acordo com a composição das proteínas observadas nas análises de SDS-PAGE. No entanto, uma grande diversidade de perfis plasmidiais foi observada, sugerindo uma variabilidade importante entre essas cepas Bt, que está de acordo com o presença dos diferentes genes *cry* encontrados nestas amostras.

### Conclusões

A análise comparativa de genes *cry*, amplificação com primers ERIC, perfil plasmidial e perfil proteico permitiram uma diferenciação clara das cepas avaliadas. Estes dados também podem ajudar no estabelecimento de classificação de subespécies de Bt. Devido a estas possíveis diferenciações, estas análises podem ser uma ferramenta útil na caracterização de cepas Bt, e extremamente valioso em reivindicações de propriedade intelectual.

### Referências

APTOSOGLOU, S. G.; SIVROPOULOU, A.; KOLIAIS, S. I. Plasmid patterns of *Bacillus thuringiensis* strains and isolates. Microbios, Cambridge, v. 91, p. 203-214, 1997.

ARONSON, A. E.; HAN, E. S.; McGAUGHEY, W.; JOHNSON, D. The solubility of inclusion proteins form Bacillus thuringiensis is dependent upon protein composition and is a factor in toxicity to insects. **Applied and Environment Microbiology**, Washington, v. 57, p. 981-986, 1991.

BAUM, J. A.; JOHNSON, T. B.; CARLTON, B. C. *Bacillus thuringiensis*: natural and recombinant bioinsecticide products. In: HALL, F. R.; MENN, J. J. (Ed.). **Biopesticides**: use and delivery. Totowa: Humana Press, 1999. p. 189-209.

BEEGLE, C. C.; YAMAMOTO, T. Invitation paper (C.P. Alexander Fund): history of *Bacillus thuringiensis* berliner research and development. **Canadian Entomologist**, Ottawa, v. 124, p. 587-616, 1992.

BERHNARD, K.; JARRET, P.; MEADOWS, M.; ELLIS, D. J.; ROBERTS, G. M.; PAULI, S.; RODGERS, P.; BURGES, H. D. Natural isolates of *Bacillus thuringiensis*: wordwine distribution, characterization, and activity against insects pests. **Journal of Invertebrate Pathology**, New York, v. 70, p. 59-68, 1997.

BOUCIAS, D. G.; PEDLAND, J. C. **Principles of insect pathology**. Boston: Kluwer Academic Publishers, 1998. 537 p.

CAROZZI, N. B.; KRAMER, V. C.; WARREN, G. W.; EVOLA, S.; KO-ZIEL, M. G. Prediction of insecticidal of Bacillus thuringiensis strains by polymerase chain reaction product profiles. **Applied and Environmental Microbiology**, Washington, v. 57, p. 3057-3061, 1991.

CARVALHO, R. P. L. Danos, flutuação da população, controle e comportamento de *Spodoptera frugiperda* (J.E. Smith) e susceptibilidade de diferentes genotipos de milho em condições de campo. 1970. 170 f. Tese (Doutorado em Entomologia) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

CÉRON, J.; COVARRUBIAS, L.; QUINTERO, R.; ORTIZ, A.; ORTIZ, M.; ARANDA, E.; LINA, L.; BRAVO, A. PCR analysis of the *cryl* insectidal crystal family genes from *Bacillus thuringiensis*. **Applied and Environmental Microbiology**, Washington, v. 60, n. 1, p. 353-356, 1994.

CÉRON, J.; ORTIZ, A.; QUINTERO, R.; GUERECA, L.; BRAVO, A. Specific PCR primers directed to identify *cryl* and *crylll* genes within a *Bacillus thuringiensis* strain collection. **Applied and Environmental Microbiology**, Washington, v. 61, p. 3826-3831, 1995.

DE BRUIJN F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of *Rhizobium meliloti* isolates and other soil bacteria. **Applied and Environment Microbiology**, Washington, v. 58, p. 2180-2187, 1992.

GLARE, T. R.; O'CALLAGHAN, M. *Bacillus thuringiensis*: biology, ecology and safety. New York: John Wiley & Sons, 2000. 350 p.

GONZÁLEZ JR., J. M.; CARLTON, B. C. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of *Bacillus thuringiensis*. **Plasmid**, San Diego, v. 3, n. 1, p. 92-98, 1980.

GONZÁLEZ JR., J. M.; BROWN, B. J.; CARLTON, B. C. Transfer of *Bacillus thuringiensis* plasmids coding for d-endotoxin among strains of *Bacillus thuringiensis* and *Bacillus cereus*. **Proceedings of the National Academy of Sciences**, Washington, v. 79, p. 6951-6955, 1982.

HULTON, C. S.; HIGGINS, C. F.; SHARP, P. M. ERIC sequences: a novel family of repetitive elements in the genomes of *Escherichia coli*, *Salmonela typhimurium* and other enterobacteria. **Molecular Microbiology**, Oxford, v. 5, p. 825-834, 1991.

IBARRA, J. E.; FEDERICI, B. A. Comparison of the toxicity parasporal body protein composition, and plasmid complements of nine isolates of *Bacillus thuringiensis* subsp. israelensis. Journal of Economic Entomology, Lanham, v. 80, p. 1132-1136, 1987.

IBARRA, J. E.; DEL RINCÓN, M. C.; ORDÚZ, S.; NORIEGA, D.; BENINTENDE, G.; MONNERAT, R.; REGIS, L.; OLIVEIRA, C. M. F.; LANZ, H.; RODRIGUEZ, H.; SÁNCHEZ, J.; PENA, G.; BRAVO, A. Diversity of *Bacillus thuringiensis* strains from Latin America with insecticidal activity against different mosquito species. **Applied of Environmental Microbiology**, Washington, v. 69, p. 5269-5274, 2003.

JAMES, C. Global status of commercialized transgenic crops: 2000. Ithaca: ISAAA, 2007. 24 p. (ISAAA Briefs, 27).

KRONSTAD, J. W.; SCHNEPF, H. F.; WHITELEY, H. R. Diversity of locations for Bacillus thuringiensis crystal protein genes. **Journal of Bacteriology**, Washington, v. 154, p. 419-428, 1983.

LAMBERT, B.; PEFEROEN, M. Insecticidal promise of *Bacillus thuringiensis*. **Bioscience**, Washington, v. 42, p. 112-122, 1992.

LIMA, A. S. G.; GUIDELLI, A. M.; ABREU, I. L.; LEMOS M. V. F. Identification of new isolates of *Bacillus thuringiensis* using rep-PCR products and endotoxin electron microscopy. **Genetics and Molecular Biology**, Ribeirão Preto, v. 25, p. 225-229, 2002.

LOUWS, F. J.; FULBRIGHT, D. W.; STEPHENS, C. T.; DE BRUIJN, F. J. Specific genomic fingerprint of phytopathogenic *Xanthomonas* and *Pseudomonas* pathovars and strains generated with repetitive sequence and PCR. **Applied Environmental Microbiology**, Washington, v. 60, p. 2286-2295, 1994.

LOGUERCIO, L. L.; SANTOS, C. G.; BARRETO, M. R.; GUIMARAES, C. T.; PAIVA, E. Association of PCR and feeding bioassays as a large-scale method to screen tropical *Bacillus thuringiensis* isolates for a cry constitution with higher insecticidal effect against *Spodoptera frugiperda* (Lepidoptera: Noctuidae) larvae. **Letters in Applied Microbiology**, Oxford, v. 32, p. 362-367, 2001.

MONNERAT, R.; MARTINS, E.; QUEIROZ, P.; ORDÚZ, S.; JARAMILLO, G.; BENINTENDE, G.; COZZI, J.; REAL, M. D.; MARTINEZ-RAMIREZ, A.; RAUSELL, C.; CERÓN, J.; IBARRA, J. E.; DEL RINCON-CASTRO, M. C.; ESPINOZA, A. M.; MEZA-BASSO, L.; CABRERA, L.; SÁNCHEZ, J.; SOBERON, M.; BRAVO, A. Genetic variability of *Spodoptera frugiperda* Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to *Bacillus thuringiensis* Cry toxins. **Applied Environment Microbiology**, Washington, v. 72, p. 7029-7035, 2006.

NAKAMURA, L. K.; DULMAGE, M. T. Bacillus thuringiensis cultures available from the U. S. Department of Agriculture. Springfield: USDA: Agricultural Research Service, 1988. 38 p. (USDA. Tecnical Bulletin, 1738).

PHUCHAROEN, K.; CHUGJATUPORNCHAI, W.; PANYIM, S. Differentiation of *Bacillus thuringiensis* subspecies using repetitive extragenic palindromic PCR (REP-PCR) genomic fingerprinting. **Asia Pacific Journal of Molecular Biology and Biotechnology**, v. 7, p. 79-83, 1999.

REYES-RAMÍREZ, A.; IBARRA, J. E. Plasmid patterns of *Bacillus thuringiensis* **type strains. Applied and Environmental Microbiology**, Washington, v. 74, p. 125-129, 2008.

SELENSKA-POBELL, S.; GIGOVA, L.; PETROVA, N. Strain-specific fingerprints of *Rhizobium galegae* generated by PCR with arbitrary and repetitive primers. **Journal of Applied Bacteriology**, London, v. 79, p. 425-431, 1995.

SHANGKUAN, Y. H.; CHANG, Y. H.; YANG, J. F.; LIN, H. C.; SHAIO, M. F. Molecular characterization of *Bacillus anthracis* using multiplex PCR, ERIC-PCR and RAPD. **Letters and Applied Microbiology**, Oxford, v. 23, p. 139-145, 2001.

VALICENTE, F. H.; BARRETO, M. R. *Bacillus thuringiensis* survey in Brazil: geographical distribution and insecticidal activity against *Spodoptera frugiperda* (J.E.Smith) (Lepidoptera: Noctuidae). **Neotropical Entomology**, Londrina, v. 32, p. 639-644, 2003.

VALICENTE, F. H.; FONSECA, M. M. Susceptibilidade da lagarta do cartucho do milho, *Spodoptera frugiperda* a diferentes isolados de *Bacillus thuringiensis*. **Revista Brasileira de Milho e Sorgo**, Sete Lagoas, v. 3, p. 21-29, 2004.

VALICENTE, F. H.; SOUZA, I. R. P. Cultivo e preparo de Bacillus thuringiensis para microscopia eletronica de varredura. In: CONGRESSO NACIONAL DE MILHO E SORGO, 25.; SIMPÓSIO BRASILEIRO SOBRE A LAGARTA-DO-CARTUCHO, SPODOPTERA FRUGIPERDA, 1., 2004, Cuiabá. Da agricultura familiar ao agronegócio: tecnologia, competitividade e sustentabilidade: [resumos expandidos]. Sete Lagoas: ABMS: Embrapa Milho e Sorgo; Cuiába: Empaer-MT, 2004. 1 CD ROM.

VERSALOVIC, J.; KOEUTH, T.; LUPSKI, J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. **Nucleic Acids Research**, London, v. 19, p. 6823-6831, 1991.

Tabela 1. Primers usados para genes cry1 na caracterização de Bacillus thuringiensis.

| Nome | Sequência(5´- 3´)     | Gene     | Produto<br>(pb) | Referência            |
|------|-----------------------|----------|-----------------|-----------------------|
| CJ01 | TTATACTTGGTTCAGGCCC   | cryIA(a) | 246             | Céron et al.,<br>1994 |
| CJ02 | TTGGAGCTCTCAAGGTGTAA  | cryIA(d) |                 |                       |
| CJ03 | CAGCCGATTTACCTTCTA    | cryIA(d) | 171             | Céron et al.,<br>1994 |
| CJ02 | TTGGAGCTCTCAAGGTGTAA  | cryIA(d) |                 | 1001                  |
| CJ04 | AACAACTATCTGTTCTTGAC  | cryIA(b) | 216             | Céron et al.,<br>1994 |
| CJ05 | CTCTTATTATACTTACACTAC | cryIA(c) |                 |                       |
| CJ06 | GTTAGATTAAATAGTAGTGG  | cryIA(c) | 180             | Céron et al.,<br>1994 |
| CJ07 | TGTAGCTGGTACTGTATTG   | cryIA(c) |                 |                       |
| CJ08 | CTTCATCACGATGGAGTAA   | cryIB    | 367             | Céron et al.,<br>1994 |
| CJ09 | CATAATTTGGTCGTTCTGTT  | cryIB    |                 |                       |
| CJ10 | AAAGATCTGGAACACCTTT   | cryIC    | 130             | Céron et al.,<br>1994 |
| CJ11 | CAAACTCTAAATCCTTTCAC  | cryIC    |                 |                       |
| CJ12 | CTGCAGCAAGCTATCCAA    | cryID    | 290             | Céron et al.,<br>1994 |
| CJ13 | ATTTGAATTGTCAAGGCCTG  | cryID    |                 |                       |
| CJ14 | GGAACCAAGACGAACTATTGC | crylEa   | 147             | Céron et              |
| CJ15 | GGTTGAATGAACCCTACTCCC | crylEb   |                 | al.,1995              |

#### continuação

| Nome            | Sequência(5´- 3´)                          | Gene             | Produto<br>(pb) | Referência                            |
|-----------------|--------------------------------------------|------------------|-----------------|---------------------------------------|
| CJ16            | TGAGGATTCTCCAGTTTCTGC                      | crylFa           | 177             | Céron et<br>al.,1995                  |
| CJ17            | CGGTTACCAGCCGTATTTCG                       | crylFb           |                 | u, . 0 0 0                            |
| Cry1-<br>Cry1A- | AATTTGCCATCCGCTGTA<br>TTGTGGTAGAAGCGTAGCGA | cry1Ab<br>cry1Ab | 418             | Valicente<br>(dados não<br>publicados |

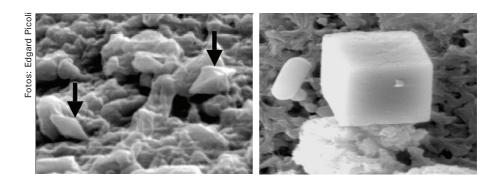



Figura 1. Proteína cristal de *Bacillus thuringiensis*. A) cepa 344 cristal na forma bipiramidal – Análise em Microscópio Eletrônico de Varredura com aumento de 20.000X. B) cepa 1644 cristal na forma cubóide – Aumento de 10.000X (VALICENTE; SOUZA, 2004).

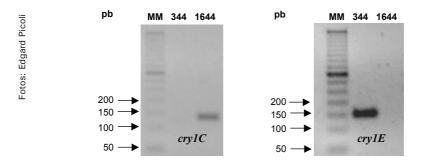



Figura 2. Análise de PCR de genes *crylC* e *crylE* das cepas 344 e 1644. MM – Marcador de massa molecular 50 pb (Invitrogen).



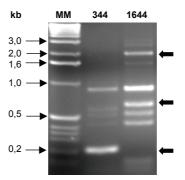



Figura 3. Análise comparativa das cepas 344 e 1644 com PCR usando primers ERIC1-R e ERIC2. MM – Marcador de massa molecular 1 Kb (Invitrogen). As setas indicam bandas exclusivas.



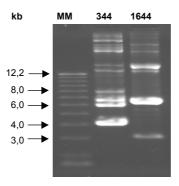



Figura 4. Perfil plasmidial de cepas 344 e 1644 de *Bacillus thuringiensis*. MM – Marcador de massa molecular 1 Kb (Invitrogen).



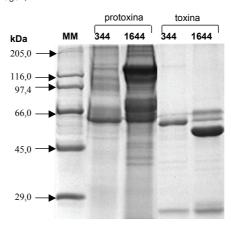



Figura 5. Análise de proteínas das cepas 344 e 1644. MM - Marcador de massa molecular SDS 6H (Sigma).



