Resposta de pastagens degradadas de *Brachiaria brizantha* cv. Marandu a diferentes níveis e frequências de fertilização do solo

Claudio Ramalho Townsend¹ Newton de Lucena Costa² Ricardo Gomes de Araújo Pereira¹ Angelo Mansur Mendes³

Introdução

As pastagens cultivadas constituem o principal tipo de uso da terra na Amazônia brasileira (REBELLO; HOMMA, 2005), as quais estão sujeitas a modificações antrópicas, por meio do seu manejo. Como regra geral, essas pastagens são estabelecidas em área de floresta, após a derrubada e queima da exuberante fitomassa e seguem em maior ou menor grau, os padrões produtivos descritos por Serrão e Homma (1993), como segue. Após o estabelecimento da pastagem, via de regra, esta apresenta bons níveis de produtividade, em decorrência do incremento na fertilidade do solo pela incorporação das cinzas, situação que perdura durante os três a cinco primeiros anos de uso. Paulatinamente há decréscimo na produtividade e incremento de plantas invasoras, em decorrência da incapacidade da gramínea forrageira sustentar bons rendimentos em níveis baixos de fertilidade, sendo o fósforo (P) o elemento mais limitante, muito embora, em pasto com avançado estágio de degradação, o nitrogênio (N) e o potássio (K) também passam a ser limitantes, em decorrência dos baixos teores de matéria orgânica no solo (TOWNSEND et al., 2001), e ineficiente ciclagem desses nutrientes no sistema pastoril. Aliam-se a esses fatores alta

incidência de pragas e doenças, bem como o manejo inadequado do sistema solo-planta-animal, imposto pelo homem. Esse processo culmina com a inviabilidade bioeconômica da pastagem, redundando em sua degradação.

Levantamentos conduzidos pelo Instituto Nacional de Pesquisas Espaciais - INPE (PROJETO..., 2009) mostram que a área desflorestada na Amazônia Legal brasileira já ultrapassa 700.000 km², cerca de 71 milhões de hectares, dos quais Valentim e Andrade (2009), estimam que aproximadamente 61,6 milhões são ocupados por pastagens. Estimativas dão conta que aproximadamente 40 % da área dessas pastagens se encontram em diferentes estágios de degradação, que segundo Serrão e Homma (1993), representam mais de 10 milhões de hectares com níveis de infestação de plantas invasoras acima de 70 %, caracterizando um elevado grau de degradação, os quais necessitam de intervenção para serem reconvertidos no processo de produção sustentável.

Este cenário tem despertado a preocupação de diferentes segmentos da sociedade, que cada vez mais exerce pressão sobre o setor produtivo que atua no Bioma Amazônia, com o intuito de que este

¹ Zootecnista, D.S.em Zootecnia, pesquisador da Embrapa Rondônia, Porto Velho, RO, claudio@cpafro.embrapa.br

² Engenheiro Agrônomo, M.Sc. em Fitotecnia, pesquisador da Embrapa Roraima, Boa Vista, RR, newton@cpafarr.embrapa.br

³ Engenheiro Agrônomo, M.Sc. em Ciência do solo, pesquisador da Embrapa Rondônia, Porto Velho, RO, angelo@cpafro.embrapa.br

adote sistemas de produção que sejam sustentáveis. No âmbito das políticas de governo o Plano Amazônia Sustentável (BRASIL, 2008), pode ser considerado uma das principais iniciativas públicas voltadas para a região Norte de forma participativa, a qual apresenta entre seus objetivos e estratégias a sustentabilidade e conservação dos recursos naturais. Neste programa as pastagens cultivadas merecem atenção especial, pois representam um dos principais sistemas de uso das terras deste Bioma, bem como, a atividade pecuária é de suma importância de modo a garantir segurança alimentar (carne e leite) e ser fonte de renda e ocupação para milhares de pequenos produtores (REBELLO; HOMMA, 2005).

Vários pesquisadores, a exemplo de Kitamura (1994), Rebello e Homma (2005) e Valentim e Andrade (2009), apontam que a recuperação e intensificação do uso de pastagens cultivadas devem ser preconizadas a fim de reduzir a expansão em áreas de florestas, propiciando benefícios de ordem ecológica (preservação da biodiversidade), econômica (custo de formação de pastagem maior que o de recuperação) e social (necessidade de mão de obra), com vistas à sustentabilidade dos sistemas pastoris no Bioma Amazônia. As estratégias utilizadas para a reabilitação da capacidade produtiva das pastagens buscam interromper o processo de degradação, combatendo-se as causas a ele associadas. A abrangência das medidas adotadas irá depender do grau de distúrbio do sistema soloplanta-animal, de modo que as causas possam ser controladas independentemente ou associadas (SOUZA NETO; PEDREIRA, 2004).

As tecnologias geradas ou adaptadas para a região Amazônica, voltadas à recuperação/ renovação direta de pastagens degradadas demonstram a viabilidade agronômica e zootécnica, no entanto, as principais limitações de adoção recaem no alto custo de implantação e retorno em médio/longo prazo advindo da atividade pecuária.

A questão da fertilidade do solo tem sido atribuída na recuperação de pastagem, trabalhos conduzidos por Dias-Filho e Serrão (1982); Gonçalves e Oliveira (1982); Veiga e Serrão (1990) e Drudi e Braga (1990), demonstram que o P tem sido o principal nutriente limitante à longevidade dos pastos. Por outro lado, solos que se apresentam compactados possuem baixos teores de matéria orgânica (MO), nestas condições, se houver um suprimento adequado de N e K, a limitação de P passa a ser secundária, em razão do acúmulo e reciclagem desse nutriente, como sugerem Spain e Gualdrón (1991).

O objetivo desse trabalho foi avaliar os efeitos de níveis e frequências de fertilização do solo no acúmulo de forragem em pastagens degradadas de *Brachiaria brizantha* cv. Marandu, nas condições edafoclimáticas de Porto Velho-RO.

Material e métodos

O ensaio foi conduzido durante quatro anos no campo experimental da Embrapa Rondônia, localizado no Município de Porto Velho-RO (390m de latitude, 11°17′ de latitude sul e 61°55′ de longitude oeste). O clima foi classificado como tropical úmido do tipo Am, com temperatura média anual de 24,5 °C; precipitação anual entre 2.000 a 2.300 mm; estação seca bem definida (junho a setembro) e umidade relativa do ar média de 89 %.

A área experimental se constituiu de uma pastagem de *Brachiaria brizantha* cv. Marandu, estabelecida há mais de dez anos, caracterizada como degradada dado ao baixo vigor da gramínea, baixa disponibilidade de forragem e predominância de plantas invasoras (30 % a 50 % da cobertura do solo). O solo foi classificado como Latossolo amarelo distrófico, textura argilosa, com as seguintes características químicas a profundidade de 0 a 20 cm: pH em H₂O - 4,97; P - 4,33 mg/dm³; K - 0,12 cmol_c/dm³; Ca - 1,03 cmol_c/dm³; Mg - 0,91 cmol_c/dm³; Al + H - 14,06 cmol_c/dm³; Al - 1,40 cmol_c/dm³; MO - 59 g/kg e V - 12 %.

O delineamento experimental foi em blocos casualizados com três repetições em arranjo fatorial 2 m x 2 m x 2 m x 2 m para os níveis de calagem (saturação por bases-V 20 e 40 %), adubações nitrogenada (50 kg/ha e 100 kg/ha de N-uréia), fosfatada (50 kg/ha e 100 kg/ha de P₂O₅-superfosfato triplo) e potássica (30 kg/ha e 60 kg/ha de K₂O-cloreto de potássio); e 3 m x 2 m x 2 m x 2 m para as frequências de fertilização (anual, bienal e trienal). As parcelas experimentais mediam 35 m² (7 m x 5 m), observando-se a bordadura de 1 m, perfazendo uma área útil de 24 m². As variáveis avaliadas foram submetidas à análise de variância e as médias comparadas pelo teste de Tukey.

O calcário dolomítico-PRNT 70 % e os fertilizantes foram distribuídos em cobertura após o roço da área experimental e incorporados ao solo por gradagem leve, no início do período chuvoso (outubro/novembro). A adubação nitrogenada foi parcelada em duas aplicações: ½ no início do período chuvoso e ½ cerca de 60 dias após, sendo repetidos os níveis de N, P e K conforme a frequência de adubação.

As amostras da parte aérea da forragem (folhas e colmos) foram colhidas por meio de corte manual com auxílio de foice, a uma altura de 20 cm acima da superfície do solo, a intervalos de aproximadamente 45 e 56 dias de crescimento da gramínea, respectivamente para o período chuvoso e seco. Essas amostras foram pesadas e levadas a estufa com circulação de ar a 65 °C, até atingirem peso constante, quando se determinou o peso da matéria seca (MS). Na mesma ocasião, foi medida a altura de planta e estimou-se a cobertura de solo pela gramínea e plantas invasoras, conforme metodologia descrita por Lascano (1995).

Resultados e discussão

A calagem e a fertilização do solo sob a pastagem degradada de *B. brizantha* cv. Marandu foram marcantes em sua recuperação (Tabela 1). Durante o ano, os pastos corrigidos e adubados acumularam em média 1.970 kg de MS/ha/ano, com a gramínea cobrindo 91 % da superfície do solo e atingindo altura de 66 cm, a participação de plantas invasoras foi de 326 kg de MS/ha/ano, enquanto que nos pastos isentos de correção e adubação esses parâmetros foram de: 1.096 kg/ha/ano de forragem, 56 % de cobertura de solo, 56 cm de altura de planta e 1.532 kg/ha/ano de MS de plantas infestantes.

Tabela 1: Efeito da correção e adubação do solo sobre o acúmulo de forragem em pastagens degradadas de *B. brizantha* cv. Marandu, Porto Velho-RO.

Período de máxi				ima precipitação)	Período de mínima precipitação			
Níveis de correção e adubação do solo		Acúmulo de MS (kg/ha)		Cobertura de solo	Altura planta	Acúmulo de MS (kg/ha)		Cobertura de solo	Altura planta
		Gramínea	Invasoras	(%)	(cm)	Gramínea	Invasoras	(%)	(cm)
Calag.(%V)	20	2.541	351	89	69	1.377	359	90	63
	40	2.561	286	91	69	1.401	317	90	63
N (kg/ha)	50	2.413b	389a	89 b	66 B	1.266B	413a	89 b	59B
	100	2.690a	248b	93 a	72 A	1.513A	264b	93 a	66A
P ₂ O ₅ (kg/ha)	50	2.542	324	90	69	1.394	408 a	89 b	61
	100	2.561	313	91	69	1.385	268 b	93 a	65
K₂O (kg/ha)	30	2.452b	366a	89	67	1.395	429 A	88B	61
	60	2.651a	263b	91	71	1.384	248 B	93A	65
Média		2.551	314	90	69	1.389	338	90	63
Controle		1.347	1.501	55	54	844	1.562	56	57
(1)		(53)	(478)	(60)	(78)	(60)	(462)	(62)	(90)
Desvio padrão		±303	± 156	±6	± 7	± 272	± 199	±7	±7
CV(%)		12	49	7	10	19	59	8	12

(1) Números entre parentes: resultado relativo com relação a média dos tratamentos com correção e adubação. Médias seguidas de mesma letra (minúscula Tukey a 5% e maiúscula Tukey a 1%) na coluna, não diferem entre si. Fonte: Elaborada pelos autores.

O N obteve maior resposta constatando-se incrementos médios de 262 kg/ha no acúmulo de forragem, 7 cm no porte das plantas, com a cobertura de solo passando de 89 % para 93 %, quando a adubação nitrogenada aumentou de 50 kg para 100 kg de N/ha/ano, a participação de plantas invasoras decaiu em 145 kg de MS/ha. O incremento nas doses de K₂O apresentou tendência semelhante, notadamente durante a estação chuvosa.

No período de mínima precipitação a cobertura de solo pela gramínea respondeu diretamente aos níveis de P₂O₅ e a participação de plantas invasoras respondeu inversamente.

Durante a estação chuvosa, sob fertilização bienal a gramínea obteve maiores acúmulos do que com a trienal, e ambas foram semelhantes à adubação anual (Tabela 2), principalmente quando foram aplicados os maiores níveis de N e K₂O. Na estação

seca, a fertilização bienal propiciou maiores rendimentos que a anual, as quais não diferiram da trienal, notadamente sob aplicação de 100 kg/ha de N. O que evidencia que neste período, o déficit hídrico foi o principal fator limitante ao crescimento da gramínea.

A participação de plantas invasoras na forragem produzida durante o período chuvoso incrementou à medida que os intervalos entre as adubações aumentaram, havendo relação inversa com as doses de N e K. Já no transcorrer da estação seca os níveis de N, P e K guardaram relação inversa com a participação destas. As espécies invasoras mais frequentes foram: Borreria verticillata, Mimosa invisiva, Hemolepis aturiensis, Stachytarpheta gayannensis, Eupatorium maximilianii, Solanum sisymbriifolium, Phyllantus tenellus, Vismia guianensis, Psidium guajava, Eragrostis pilosa, Sida spp.e Cyperaceae spp.

Tabela 2. Acúmulo de forragem em pastagens degradadas de <i>B.</i>	<i>brizantha</i> cv. Marandu, em função das
frequências de fertilização do solo. Porto Velho-RO.	

	Período de máxima precipitação				Período de mínima precipitação			
Frequência de adubação do solo	Acúmulo de MS (kg/ha)		Cobertura de solo	Altura planta	Acúmulo de MS (kg/ha)		Cobertura	Altura planta
auubação do solo	Gramínea	Invasoras	(%)	(cm)	Gramínea	Invasoras	de solo (%)	(cm)
Anual	2.529 AB	249 B	94 A	72 A	1.223 B	326	91 ab	71 A
Bienal	2.765 A	270 B	93 A	70 AB	1.516 A	343	93 a	65 B
Trienal	2.380 B	436 A	88 B	66 B	1.432 AB	345	90 b	53 C
Média	2.558	319	92	69	1.390	338	92	63
Controle	1.347	1.501	55	54	844	1.562	56	57
(1)	(53)	(478)	(60)	(78)	(60)	(462)	(62)	(90)
Desvio padrão	±495	± 212	±8	± 7	±364	±199	±9	± 10
CV(%)	19	66	9	13	26	59	10	16

(1) Números entre parentes: resultado relativo com relação a média dos tratamentos com correção e adubação. Médias seguidas de mesma letra na coluna, não diferem entre si (minúscula Tukey a 5% e maiúscula a 1%). Fonte: Elaborada pelos autores.

Quanto à cobertura de solo propiciada pela gramínea, no período de máxima precipitação a adubação anual e bienal, propiciaram melhores resultados que a trienal, notadamente quando conciliadas aos maiores níveis de fertilização; enquanto que nos menores níveis, a bienal superou a trienal, as quais não diferiram da anual.

Sob fertilização anual a gramínea apresentou plantas de maior porte do que quando adubada a cada dois ou três anos, este parâmetro guardou relação direta com os níveis de adubação.

Vários autores têm demonstrado a importância da fertilização na recuperação de pastagens degradadas na Amazônia, enfatizando o P - 35 a 50 kg de P2O5/ha (DIAS-FILHO; SERRÃO, 1982; GONÇALVES; OLIVEIRA, 1982; VEIGA; SERRÃO, 1990; DRUDI; BRAGA, 1990), no entanto, para os outros nutrientes, como N e K, devem ser levados em consideração, pois a interrelação entre estes nutrientes e o P na produtividade dos pastos é bastante marcante, como constataram Soares Filho et al. (1992 a,b), Couto et al. (1999) e Soares et al. (2000). Costa et al. (1996) detectaram efeito significativo entre os níveis de N e P (0, 50 e 100 kg/ha) na recuperação de pastagens de B. brizantha cv. Marandu, a combinação de 50 e 100 kg/ha de N e P2O5, garantiram a recuperação dos pastos.

Euclides et al. (1997) testaram dois níveis de fertilização (400 kg/ha e 800 kg/ha da fórmula 0 - 16 - 18) e calagem (1,5 t/ha e 3,0 t/ha), no desempenho animal em pastagens degradadas de *B. brizantha* cv. Marandu, o ganho médio durante os três anos de avaliação foi de 553 kg/ha/ano e 385 kg/ha/ano para o maior e menor nível, os pastos degradados produziram menos de 300 kg/ha/ano. Com o decorrer do tempo houve decréscimos nos ganhos de peso, evidenciando a importância da adubação de manutenção, bem como a incorporação de N ao sistema solo-planta-animal, a fim de manter a produtividade.

Townsend et al. (2000; 2001), observaram uma menor resposta quando não se utilizou fertilização com N comparada ao P, assim como o K como elemento limitante no acúmulo de MS em pastagens degradadas de *B. brizantha* cv. Marandu, o que pode ser explicado pela compactação e baixos teores de MO no solo. Nestas condições, se houver um suprimento adequado de N e K, a limitação de P passa a ser secundária, em razão do acúmulo e reciclagem deste nutriente, como sugerem Spain e Gualdrón (1991), bem como, os resultados obtidos por Oliveira et al. (2001) e Oliveira (2007).

Conclusões

A correção e fertilização do solo, notadamente o N e K, resultaram em incrementos no acúmulo forragem, na cobertura de solo e altura de planta da gramínea, e reduziram a participação de plantas invasoras em pastagem degradada de *B. brizantha* cv. Marandu. Visando a sua recuperação recomenda-se calagem a fim de elevar a saturação por bases-V a 40%, e os níveis de fertilização (kg/ha) de 100 N, 50 P₂O₅ e 60 K₂O, com reposição de nutrientes pelo menos a cada dois anos (bienal).

Referências

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Agronegócio brasileiro: uma oportunidade de investimentos. Disponível em: < www.agricultura.gov.br/sspa>. Acesso em: 11 nov. 2008.

COSTA, N. de L.; TOWNSEND, C.R.; MAGALHAES, J.A. Efeito de niveis de nitrogenio e fosforo na recuperacao de pastagens de Brachiaria brizantha cv. Marandu. Porto Velho: Embrapa-CPAF Rondonia, 1996. 4p. (Embrapa-CPAF Rondonia. Comunicado Tecnico, 119).

COUTO, W.S.; TEIXEIRA NETO, J.F.; SIMAO NETO, M.; LOURENCO JUNIOR, J. de B. Estabelecimento de Brachiaria brizantha cv. Marandu sob duas fontes e doses de fosforo na regiao de Paragominas, Estado do Para, Brasil. **Pasturas Tropicales**, Cali, Colômbia, v. 21, n. 1, p. 60-63, 1999.

DIAS FILHO, M.B.; SERRÃO, E.A.S. Recuperação, melhoramento e manejo de pastagens na região de Paragominas, Pará: resultados de pesquisa e algumas informações práticas. Belém, PA: Embrapa-CPATU, 1982. 24 p. il. (Embrapa-CPATU. Documentos, 5).

DRUDI, A.; BRAGA, A.F. Níveis de Fósforo, Ensofre e Micronutrientes na Recuperação de Pastagens Degradadas em Solos Arenosos na Região Norte do Tocantins. **Pesquisa Agropecuária Brasileira**, Brasília, V. 25, n.9, p. 1317-1322, set.1990.

EUCLIDES, V.P.B.; MACEDO, M.C.M.; OLIVEIRA, M.P.de. Desempenho animal em pastagens de gramineas recuperadas com diferentes niveis de fertilizacao. In: REUNIAO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 34., 1997, Juiz de Fora. **Anais.**.. Juiz de Fora: SBZ, 1997. v.2. p.201-203.

GONÇALVES, C.A.; OLIVEIRA, J.R. da C. Formação, recuperação e manejo de pastagens em Rondônia: informações práticas. Porto Velho: Embrapa-UEPAE Porto Velho, 1982. 22p. (Embrapa-UEPAE Porto Velho. Circular Tecnica, 1).

PROJETO Prodes: estimativas anuais da taxa de desmatamento de 1988 a 2008. Disponível em:

httm>. Acesso em: 25 nov. 2009.

KITAMURA, P.C. **A Amazônia e o desenvolvimento sustentável**. Brasília: Embrapa-SPI, 1994. 182p.

LASCANO, C. Capacitación en tecnologia de producción de pastos. Cali, Colômbia: [CIAT], 1995, v. 4. 120 p.

OLIVEIRA, P. P. A. Recuperação e reforma de pastagens. In: SIMPÓSIO SOBRE MANEJO DE PASTAGENS, 24., 2007, Piracicaba. **Anais.**.. Piracicaba: FEALQ, 2007, p. 39-73.

OLIVEIRA, O.C. de; OLIVEIRA, I.P de; FEREIRA, E.; ALVES, B.J.R.; MIRANDA, C.H.B.; VILELA, L.; URQUIAGA, S.; BODDEY, R.M. Response of degraded pastures in the Brazilian Cerrado to chemical fertilization. **Pasturas Tropicales**, Cali, Colômbia, v.23, n.1, p15-18, 2001.

REBELLO, F. K.; HOMMA, A. K.O. Uso da terra na Amazônia: uma proposta para reduzir desmatamentos e queimadas. **Amazônia**: Ciência & Desenvolvimento, Belém, PA, v. 1, n. 1, p. 197-234, jul./dez. 2005.

SERRÃO, E.A.S.; HOMMA, A.K.O. Basis for sustainability analysis of amazonian agriculture. Sustainable agriculture and the environment in the Humid Tropics. In: NATIONAL RESEARCH COUNCIL. Sustainable agriculture and the environment in the humid tropics. Washington: National Academy, 1993. p.265-351.

SOARES FILHO, C.V.; MONTEIRO, F.A.; CORSI, M. Recuperação de pastagens degradadas de B. decumbens: 1-Efeito de diferentes tratamentos da fertilização e manejo. Pasturas Tropicales, Cali, Colômbia, v.14, n.2, p.2-6, 1992a.

SOARES FILHO, C.V.; MONTEIRO, F.A.; CORSI, M. Recuperação de pastagens degradadas de Brachiaria decumbens: 2- Variação sazonal de parâmetros bioquímicos e físicos. **Pasturas Tropicales**, Cali, Colômbia, v.14, n.2, p.2-6, 1992b.

SOARES, W.W.; LOBATO, E.; SOUSA, D.M.G.de; REIN, T.A. Avaliação do fosfato natural de Gafsa para recuperação de pastagens degradada em Latossolo vermelh-escuro. **Pesquisa Agropecuária Brasileira**, Brasília. v. 35, n.4, p. 819-825, 2000.

SOUZA NETO, J.M. de; PEDREIRA, C.G.S. Caracterização do grau de degradação de pastagens. In: SIMPÓSIO SOBRE MANEJO DA PASTAGEM, 21., 2004, Piracicaba - SP, **Anais...** Piracicaba, FEALQ, 2004, p. 7-31, 480 p.

SPAIN, J.M.; GUALDRÓN, R. Degradación y rehabilitación de pasturas. In: LASCANO, C.E.; SPAIN, J.M. (Ed.). **Establecimiento y renovacion de pasturas**: conceptos, experiencias y enfoque de la investigacion. Cali, Colombia: CIAT, 1991. p. 269-283.

TOWNSEND, C.R.; COSTA, N. de L.; MENDES, A.M.; PEREIRA, R. de G.A.; MAGALHÃES, J.A. Limitações nutricionais de solo sob pastagem degradada de *Brachiaria brizantha* cv. Marandu em Porto Velho-RO. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 37., 2000, Viçosa, MG. **Resumos...** Viçosa, MG: SBZ, 2000.

TOWNSEND, C.R.; COSTA, N. de L.; MENDES, A.M.; PEREIRA, R. de G.A.; MAGALHÃES, J.A. Nutrientes limitantes em solo de pastagens degradadas de *Brachiaria brizantha* cv. Marandu em Porto Velho-RO. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 38., 2001, Piracicaba, SP. **Anais...** Piracicaba: SBZ, 2001.

VALENTIM, J.F; ANDRADE, C.M.S. de. Tendências e perspectivas da pecuária bovina na Amazônia brasileira. **Amazônia**: Ciência & Desenvolvimento, Belém, v.4, n.8, p. 7-27 2009

VEIGA, J.B.; SERRÃO, E.A.S. Sistemas silvipastoris e produção animal nos trópicos úmidos: a experiência da Amazônia brasileira. In: SOCIEDADE BRASILEIRA DE ZOOTECNIA. Pastagens. Piracicaba: FEALQ, 1990. p.37-68.

Comunicado Técnico, 363

MINISTÉRIO DA AGRICULTURA,

Exemplares desta edição podem ser adquiridos na: Embrapa Rondônia

BR 364 km 5,5, Caixa Postal 127, CEP 76815-800, Porto velho, RO. Fone: (69)3901-2510, 3225-9387

Telefax: (69)3222-0409 www.cpafro.embrapa.br

1ª edição

1ª impressão (2010): 100 exemplares

Comitê de Presidente: Cléberson de Freitas Fernandes Publicações Secretárias: Sílvia Maria Gonçalves Ferradaes e Marly de Souza Medeiros

Membros: Marilia Locatelli Rodrigo Barros Rocha José Nilton Medeiros Costa Ana Karina Dias Salman Maurício Reginaldo Alves dos Santos

Fábio da Silva Barbieri

Expediente Normalização: Daniela Maciel

Revisão de texto: Wilma Inês de França Araújo Editoração eletrônica: Marly de Souza Medeiros