65

Circular Técnica

São Carlos Dezembro, 2010

Autores

Sérgio Novita Esteves

Pesquisador da Embrapa Pecuária Sudeste, São Carlos, SP, sergio@cppse.embrapa.br

Alberto C. de Campos Bernardi

Pesquisador da Embrapa Pecuária Sudeste, São Carlos, SP, Bolsista do CNPq alberto@cppse.embrapa.br

Marcela de Melo Vinholis

Pesquisadora da Embrapa Pecuária Sudeste, São Carlos, SP marcela.vinholis@cppse.embrapa.br

Odo Primavesi

Pesquisador aposentado da Embrapa Pecuária Sudeste, São Carlos, SP

Estimativas da emissão de metano por bovinos criados em sistema de integração lavoura-pecuária em São Carlos, SP

Introdução

A agricultura e a pecuária contribuem para as emissões antrópicas de metano (CH_4) , dióxido de carbono (CO_2) e óxido nitroso (N_2O) à atmosfera. O aumento da concentração desses gases provoca o aquecimento da superfície terrestre e destruição da camada de ozônio na estratosfera (PRIMAVESI et al., 2004). O CH_4 é um importante gás de efeito estufa, apresentando um potencial de aquecimento 25 vezes maior que o do gás carbônico e vida útil aproximada de 12 anos na atmosfera (IPCC, 2006). Atribui-se a este gás uma participação de 15% no potencial de aquecimento global (COTTON & PIELKE, 1995).

Atividades microbiológicas em ambientes anaeróbios (áreas inundadas, cultivo de arroz irrigado por inundação, fermentação entérica e processamento anaeróbio de dejetos) constituem a principal fonte de metano, além da queima de biomassa e da indústria de carvão e gás natural (LIMA & DEMARCHI, 2007).

A emissão de CH₄, resultante da fermentação entérica por ruminantes, é responsável por 22% da emissão de gases de efeito estufa, e constitui a terceira maior fonte em escala global (USEPA, 2000). No Brasil, a pecuária tem sido responsabilizada pela emissão de 96% de metano proveniente de todas as atividades agrícolas, sendo a maior parte dela originária de áreas de pastagens extensivas (LIMA, 2002).

Como a maioria destas pastagens está em processo de degradação, o aumento da produtividade é uma das opções para tornar a pecuária mais rentável (BERNARDI et al., 2009), o que poderia também mitigar as emissões de metano (VILELA et al., 2005). Devido aos grandes investimentos necessários para a formação e para a reforma de pastagens, tem-se buscado diversas técnicas para reduzi-los. De acordo

com Kluthcouski & Aidar (2003), no sistema de integração lavoura-pecuária (SILP) a utilização do consórcio de culturas anuais com forrageiras pode ser preconizada na formação e na reforma de pastagens, na produção de forragem para alimentação animal na entressafra.

O objetivo deste trabalho foi estimar a emissão de metano (CH₄) por bovinos criados a pasto no sistema de integração lavourapecuária e terminados em confinamento em condições tropicais brasileiras.

Material e Métodos

O estudo foi conduzido na Embrapa Pecuária Sudeste, em São Carlos, SP por 3 safras consecutivas (2005/06, 2006/07 e 2007/08, respectivamente ano 1, ano 2 e ano 3), em área de pasto de 21 hectares, em degradação, com predominância de capim-braquiária. A pastagem apresentava baixa produção de biomassa, ocorrência de plantas invasoras e início de processo erosivo no solo. Em cada um dos três anos consecutivos, foram realizadas, em aproximadamente 7 ha (33% da área), operações para substituição do capim-braquiária, utilizando-se preparo convencional do solo e cultivo de milho (*Zea mays* L.) var. BRS 2020 (híbrido duplo) ou sorgo (*Sorghum bicolor* L. Moench) var. BRS 610 (híbrido) de acordo com o descrito por Bernardi et al. (2009); na época da adubação de cobertura do milho (60 dias após a germinação), foi realizada a semeadura do capim-marandu (*Urochloa brizantha* (Hochst ex A. Rich.) Stapf cv Marandu sin.: *Brachiaria brizantha*) e, no plantio do sorgo, o plantio da forrageira de capim Piatã (*Urochloa brizantha* (Hochst ex A. Rich.) Stapf cv Piatã sin.: *Brachiaria brizantha*) ocorreu concomitantemente, na entrelinha do sorgo. Desta forma, ao final de 3 anos, toda a área de pastagem havia sido reformada (Tabela 1).

Tabela 1. Esquema de rotação de culturas e forrageiras em um sistema de integração lavoura-pecuária utilizado na Embrapa Pecuária Sudeste em área de 21 ha.

Ano 0	Pasto degradado	Pasto degradado	Pasto degradado
Ano 1	Milho silagem + forrageira	Pasto degradado	Pasto degradado
Ano 2	Pasto renovado	Sorgo silagem + forrageira	Pasto degradado
Ano 3	Pasto	Pasto renovado	Sorgo silagem + forrageira

Animais da raça Nelore e cruzado Nelore x Angus, Nelore x Canchim (2006), Canchim (2007) e cruzados threecross (Nelore x Canchim e Angus) e Canchim (2008), foram utilizados durante o período experimental, tanto a pasto quanto em confinamento, havendo em todas as etapas avaliações para ganho de peso dos animais. Os animais utilizavam as pastagens de maneira rotacionada conforme a disponibilidade de forragem.

A silagem produzida na área foi utilizada para a suplementação dos animais que permaneceram à pasto durante o período da seca e para a terminação em confinamento dos animais bois magros, até atingirem peso de abate. No ano de 2007 e 2008, durante o período da seca, os animais receberam sal proteinado. Os animais foram confinados a pasto, recebendo a dieta total em cochos a céu aberto e utilizando-se relação volumoso concentrado de 50:50 na matéria seca. O manejo alimentar, os dados dos animais, as dietas dos confinamentos dos anos 1, 2 e 3 e do manejo das culturas estão descritos em Bernardi et al., (2009). Os bovinos desmamados do ano de 2007 foram confinados em 2008 e os ganhos de peso vivo foram medidos até o dia 31 de dezembro de 2007 e 2008.

As estimativas da emissão de metano (g CH₄/d.kg PV) foram feitas a partir das equações propostas por Primavesi et al. (no prelo), com base em dados de Demarchi et al. (2003a,b), Nascimento (2007) e Primavesi et al. (2004), considerando os resultados obtidos em medições a campo com gado de corte em sistemas de produção da região Sudeste, utilizando a técnica do gás traçador SF6 para medição de campo do metano ruminal em bovinos:

a) Bovinos de corte a pasto:

```
y = 0.00000000192x^3 - 0.00000424x^2 + 0.002577x - 0.09;
```

b) Bovinos de corte com dieta de concentrado:

```
y = 0.000000002x^3 - 0.000004x^2 + 0.0023x - 0.0792;
```

onde,

Y = emissão de metano (g CH₄/d.kg PV);

X = peso médio do animal no período (kg PV).

Resultados e Discussão

Os resultados do ganho de peso vivo dos animais, por categoria animal, manejo alimentar e período do ano, encontram-se descritos na Tabela 2. Observa-se que no manejo alimentar de pasto de verão, inverno e novo (pasto renovado, formado após a retirada da cultura anual), com a substituição gradativa da área degradada de capim-braquiária por espécies mais produtivas, houve aumento na produção, com ganhos de peso vivo a pasto de 1.477, 4.542 e 4.330 kg (Tabela 2); o sistema de integração lavoura-pecuária adotado proporcionou aumento na produção de carne, com ganhos de peso vivo total de 3.723, 7.854 e 6.221 kg e de produtividade de 177, 374 e 296 kg de peso vivo por hectare, respectivamente para os anos de 2006, 2007 e 2008 (Tabela 4).

As estimativas de emissão de metano ruminal dos bovinos por período, por quilo de peso vivo ganho e por animal por dia estão descritos na Tabela 3. Os resultados demonstram que quanto maior o ganho de peso vivo diário, menor é a emissão de metano por quilo de peso vivo ganho. No ano de 2008, os garrotes mantidos a pasto durante o período de verão e de inverno, tiveram os menores ganhos diários de peso vivo, de cerca de 0,26 kg/animal/dia, e consequentemente apresentaram as maiores emissões de metano, de cerca de 0,64 kg de metano/kg de peso vivo ganho.

Tabela 2. Manejo alimentar e dados dos animais a pasto e em confinamento em um sistema de integração lavourapecuária, nos anos 2006, 2007 e 2008.

Categoria animal	Manejo alimentar	Manejo vivo por animal Periodo peso		Ganho de peso vivo (kg/animal/dia)	Número de animais	Ganho total de peso vivo no período (kg)
			Ano de 20	06		
Desmamado	pasto verão	72,9	140	0,521	17	1.239
Garrote	pasto inverno	-9,3	56	-0,166	18	0
Garrote	pasto novo	13,2	34	0,388	18	238
Garrote	Confinamento	124,8	92	1,357	18	2.247
			Ano de 20	07		
Garrote	pasto verão	74,6	140	0,533	30	2.237
Garrote	pasto inverno	-3,1	74	-0,042	30	0
Garrote	Confinamento	110,4	92	1,200	30	3.313
Desmamado	pasto inverno	-8,2	47	-0,175	19	0
Desmamado	pasto novo	12,0	30	0,401	19	229
Desmamado	pasto inv. e novo	109,3	121	0,903	19	2.076
			Ano de 20	08		
Garrote	pasto verão	35,4	138	0,257	19	673
Garrote	pasto inverno	3,8	15	0,250	32	120
Garrote	pasto inverno	49,0	71	0,690	28	1.371
Garrote	Confinamento	67,5	64	1,055	28	1.891
Desmamado	pasto verão	48,0	138	0,178	21	1.008
Desmamado	pasto inverno	7,7	57	0,135	20	154
Desmamado	pasto novo	24,0	30	0,800	19	456
Desmamado	pasto inv. e novo	28,8	117	0,246	19	547

Tabela 3. Estimativas da emissão de metano ruminal por bovinos criados a pasto em um sistema de integração lavourapecuária e terminados em confinamento, por período.

Catagoria animal	Manaia alimantar	kg de CH ₄ por kg de CH ₄ por kg		kg de CH ₄ total	CH ₄			
Categoria animal	Manejo alimentar	animal/período	peso vivo ganho	no período	g/animal/dia			
Ano de 2006								
Desmamado	pasto verão	9,3	0,128	158,4	67			
Garrote	pasto inverno	7,3	-	132,0	131			
Garrote	pasto novo	4,6	0,348	82,7	135			
Garrote	Confinamento	12,4	0,099	222,8	134			
Ano de 2007								
Garrote	pasto verão	15,2	0,203	455,2	108			
Garrote	pasto inverno	9,2	-	276,6	125			
Garrote	Confinamento	11,9	0,108	356,7	129			
Desmamado	pasto inverno	2,9	-	54,6	61			
Desmamado	pasto novo	1,9	0,157	35,8	63			
Desmamado	pasto inv. e novo	11,5	0,105	218,8	95			
		Ano d	e 2008					
Garrote	pasto verão	22,6	0,639	429,8	164			
Garrote	pasto inverno	2,4	0,636	76,3	159			
Garrote	pasto inverno	11,1	0,227	311,2	157			
Garrote	Confinamento	10,3	0,152	287,5	160			
Desmamado	pasto verão	15,1	0,314	313,0	162			
Desmamado	pasto inverno	3,8	0,491	75,5	66			
Desmamado	pasto novo	2,2	0,093	42,6	75			
Desmamado	pasto inv. e novo	10,1	0,350	191,6	86			

Apesar do aumento na produção de metano anual de 28,4, 66,6 e 82,3 kg/hectare, a produção média de metano em gramas por animal por dia foi de 104 gramas nos anos de 2006 e 2007 e de 123 gramas de metano por animal por dia no ano de 2008 (Tabela 4). Este aumento é em parte devido ao menor desempenho dos animais em confinamento, assim como também pelo menor desempenho dos garrotes a pasto no período de verão e de inverno de 2008. Da mesma forma, a produção de metano anual, por quilo de peso vivo ganho, aumentou de 0,160 para 0,178 e 0,278 quilos, respectivamente para os anos de 2006, 2007 e 2008. Proporcionalmente, este aumento do ano de 2006 para o ano de 2008 de 73,6%, foi maior que o aumento em gramas por animal por dia de 18,3%. Verifica-se assim que o aumento na produção de carne resultou em aumento na emissão de metano total, mas, por quilograma de carne produzida o aumento foi muito menor, indicando, portanto que a intensificação de sistemas de produção de carne pode diminuir a produção de metano por quilo de carne produzida. Os animais que obtiveram maior média de ganho de peso vivo diário produziram menor quantidade de metano. A Figura 1 ilustra esta relação linear inversa entre missão de metano (kg CH₄) por ganho de peso vivo (kg por dia).

Estes dados demonstram que a utilização de animais capazes de apresentar melhores ganhos diários de peso vivo, tanto a pasto como em confinamento, aliado a um sistema de produção mais produtivo (semi-intensivo, intensivo ou SILP), pode ser eficiente tanto econômica quanto ambientalmente sem alterar significativamente a taxa de emissão de metano, comparativamente ao sistema extensivo.

Pedreira et al. (2004), estudando a emissão do gás metano em bovinos machos mestiços consumindo dieta exclusiva de silagem de sorgo e com 30% e 60% de concentrado, obtiveram valores de 125, 149 e 140 g/animal/dia, respectivamente. Neste experimento, a média ponderada das emissões de metano dos animais criados exclusivamente a pasto (Tabela 3), foram de 92, 99 e 119 g/animal/dia, enquanto que nos animais em confinamento, recebendo silagem de milho ou de sorgo, na proporção de 50% da dieta na matéria seca, a emissão de metano foi de 135, 129 e 160 g/animal por dia, respectivamente nos anos 2006, 2007 e 2008.

Tabela 4. Ganhos de peso vivo (total e por hectare) e produção de metano (total, diária e média por kg de ganho), nos anos de 2006, 2007 e 2008.

Período	Ganho de pv	Produtividade	kg CH ₄	kg CH ₄ /	kg CH ₄ /	Prod. CH ₄	kg CH ₄ /ano
	total (kg)	kg de pv/ha	total	hectare	kg p.v. ganho	g/animal/dia	estimada
2006	3.723	177	595,6	28,4	0,160	0,104	38,0
2007	7.854	374	1397,7	66,6	0,178	0,104	38,0
2008	6.221	296	1730,7	82,3	0,278	0,123	48,5

Os valores médios da emissão de gás metano (Tabela 4), nos anos de 2006 e 2007 foram menores (104 g/animal/dia) que os relatados por Johnson & Johnson (1995) em estimativas para gado de corte (164 a 194 g/animal/dia) e gado de leite (298 a 345 g/animal/dia). No ano de 2008, o valor de 123 g/animal/dia foi próximo ao limite máximo observado por Johnson & Johnson (1995). Primavesi et al. (2004), avaliando a produção de metano no rúmen de gado leiteiro em pastagens de *Pannicum maximum*, observaram valores da emissão do gás de 198 a 222 g/dia em novilhas, 403 g/dia em vacas em lactação e 278 g/dia em vacas nãolactantes.

Estima-se que no Brasil as emissões de metano de animais em sistema de pastagem, produzam 54 kg de metano/ animal/ano (CRUTZEN et al., 1986). Neste sistema de ILP a emissão de metano por animal por ano foi estimada pela média ponderada das emissões de metano, em g/animal/dia, dos animais criados exclusivamente a pasto, e foram de 34, 36 e 43 kg/animal/ano, respectivamente para os anos de 2006, 2007 e 2008, com valor médio dos 3 anos de 39 kg de CH₄/animal/ano. Esse fato mostra que boa oferta de pasto, suficiente para permitir aos animais o rápido e pleno atendimento das suas necessidades nutricionais, constitui uma forma de redução de perdas de energia na forma de metano. Os resultados mostraram também que a emissão de metano por kg de ganho de peso vivo foi maior para os animais a pasto (0,276) do que os confinados (0,120), com redução de 56,5% devido ao maior ganho de peso diário obtido. Os animais que obtiveram maior média de ganho de peso vivo diário produziram menor quantidade de metano (kg CH₄/kg pv ganho).

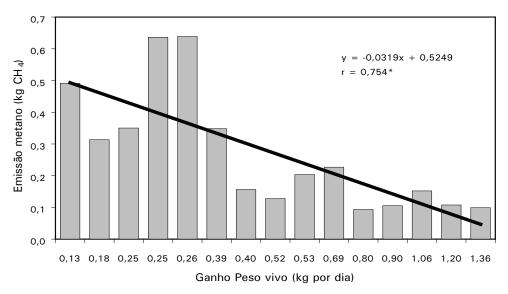


Figura 1. Emissão de metano (kg CH₄) por ganho de peso vivo (kg/dia).

Os resultados indicam que o manejo alimentar adequado pode reduzir a emissão de metano entérico, porém outras estratégias para alimentação de bovinos de corte devem ser investigadas, considerando-se condições pedoclimáticas específicas, e estrutura socioeconômica e infraestrutura característica de cada região. Uma opção seria a melhoria da digestão fermentativa no rúmen, que pode ser obtida por dietas contendo uréia e proteínas, além do fornecimento equilibrado de nutrientes vitais. No Brasil, como a maior parte do rebanho provém de áreas de pastagem extensiva, as emissões de metano são altas, porém poderiam ser reduzidas com a suplementação alimentar de gado a pasto.

Outras práticas que também poderiam contribuir com a mitigação das emissões de metano na atividade pecuária estão relacionadas ao aumento da produtividade animal, por meio da suplementação alimentar, controle de zoonoses e doenças, melhoramento genético, melhoramento das taxas de reprodução e de intervalos entre partos.

Conclusões

Os resultados indicaram que:

- O sistema de integração lavoura-pecuária forneceu alimento em quantidade e qualidade adequadas e aumentou a produtividade animal.
- A intensificação da produção de carne pode diminuir a produção de metano por quilo de carne produzida.
- Animais com melhor desempenho, tanto a pasto como em confinamento, aliado a um sistema de produção mais intensivo, mantiveram a emissão de metano (g/animal/dia) a níveis semelhantes ao sistema extensivo com pasto de capimbraquiária degradado.

Agradecimentos

À Bunge Fertilizantes pelo apoio no desenvolvimento deste projeto.

Literatura citada

BERNARDI, A. C. de C.; VINHOLIS, M. de M. B.; BARBOSA, P. F.; ESTEVES, S. N. Renovação de pastagem e terminação de bovinos jovens em sistema de integração lavoura-pecuária em São Carlos, SP: resultados de 3 anos de avaliações. São Carlos, SP: Embrapa Pecuária Sudeste, 2009. (Boletim de Pesquisa & Desenvolvimento / Embrapa Pecuária Sudeste; 24). 23p.

COTTON, W. R.; PIELKE, R. A. Human impacts on weather and climate, Cambridge: Cambridge University Press, 1995. 288p.

CRUTZEN, P. J.; ASELMANN, I.; SEILER, W. Methane production by domestic animals, wild ruminants and other herbivorous fauna and humans, **Tellus**, Boston, v. 38B, p. 271-274, 1986.

DEMARCHI, J. J. A. A.; MANELLA, M. Q.; LOURENÇO, A. J.; ALLEONI, G. F.; FRIGHETTO, R. S.; PRIMAVESI, O.; LIMA, M. A. Daily methane emission at different seasons of the year by Nellore cattle in Brazil grazing *Brachiaria brizantha* cv. Marandu. Preliminary results. In: WORLD CONFERENCE ON ANIMAL PRODUCTION, 9., 26-31/10/2003, Porto Alegre – RS, Brazil. **Proceedings**. Porto Alegre: Sociedade Brasileira de Zootecnia/ World Association of Animal Production, 2003a. CD-Rom: Session – Ruminant Nutrition, 3p.

DEMARCHI, J. J. A. A.; MANELLA, M. Q.; LOURENÇO, A. J.; ALLEONI, G. F.; FRIGHETO, R. T. S.; PRIMAVESI, O.; LIMA, M. A. Preliminary results on methane emissions by Nelore cattle in Brazil grazing *Brachiaria brizantha* cv. Marandu. In: INTERNATIONAL METHANE AND NITROUS OXIDE MITIGATION CONFERENCE, 3rd., 2003b, Beijing. **Proceedings...** 2003b. p. 80-84.

IPCC – Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 10: Emissions from livestock and Manure Management. 2006. p. 10.1-10.84.

JOHNSON, K.A.; JOHNSON, D.E. Methane emissions from cattle. **Journal of Animal Science**, v. 73, p.2 483-2492, 1995.

KLUTHCOUSKI, J.; AIDAR, H. Uso da integração lavoura-pecuária na recuperação de pastagens degradadas. In: KLUTHCOUSKI, J.; STONE, L. F.; AIDAR, H. (Eds.). Integração lavoura-pecuária. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2003. p. 183-225.

LIMA, M.A. Agropecuária brasileira e as mudanças climáticas globais: caracterização do problema, oportunidades e desafios. Cadernos de Ciência & Tecnologia, v.19, p. 451-472, 2002.

LIMA, M.A.; DEMARCHI, J. J. A. A. Emissão de metano pela pecuária ruminante: quantificação e estratégias de mitigação. Feed & Food, ano II, nº. 07, março/abril, p. 66-68, 2007.

NASCIMENTO, C.F.M. Emissão de metano por bovinos Nelore ingerindo Brachiaria brizantha em diferentes estádios de maturação. 2007. 65f. Tese (Dissertação de mestrado, Nutrição e Produção Animal) - FMVZ, USP, Pirassununga, 2007.

PEDREIRA, M. dos S.; BERCHIELLI, T. T.; OLIVEIRA, S. G. de; PRIMAVESI, O.; LIMA, M. A.; FRIGHETTO, R. Produção de metano e concentração de ácidos gráxos voláteis ruminal em bovinos alimentados com diferentes relações de volumoso: concentrado. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 41., 2004, Campo Grande, MS. Anais... Campo Grande: SBZ, 2004. 5 f. 1 CD-ROM.

PRIMAVESI, O.; DEMARCHI, J.J.A.A.; LIMA, M.A.; PEDREIRA, M.S.; FRIGHETTO, R.T.S.; BERCHIELLI, T.T.; BERNDT, A.; MANELLA, M.Q. Produção de gases de efeito estufa em sistemas agropecuários: bases para inventário de emissões de metano por ruminantes. Brasília: Embrapa/SCT (no prelo).

PRIMAVESI, O.; FRIGHETTO, R. T. S.; PEDREIRA, M. dos S.; LIMA, M. A. de; BERCHIELLI, T. T.; BARBOSA, P. F. Metano entérico de bovinos leiteiros em condições tropicais brasileiras. Pesquisa Agropecuária Brasileira, v. 39, p. 277-283, 2004.

USEPA. Evaluation ruminant livestock efficiency projects and programs: peer review draft. Washington: United States Environmental Protection Agency, 2000. 48p.

VILELA, L.; MARTHA JR., G.B.; BARIONI, L.G.; BARCELLOS, A.O.; ANDRADE, R.P. Pasture degradation and long-term sustainability of beef cattle systems in the Brazilian Cerrado. "Discussion draft presented at the Symposium Cerrado Land-Use and Conservation: Assessing Trade-Offs Between Human and Ecological Needs. XIX Annual Meeting of the Society for Conservation Biology Conservation Biology Capacity Building & Practice in a Globalized World, Brasília, Brazil. 15-19 July 2005.

Circular Exemplares desta edição podem ser adquiridos na: Técnica, 65 Embrapa Pecuária Sudeste

Endereco: Rod. Washington Luis, km 234, São Carlos, SP

Fone: (16) 3411-5600 Fax: (16) 3361-5754

Endereço Eletrônico: sac@cppse.embrapa.br

Ministério da Agricultura, Pecuária

1ª edição on-line (2010)

publicações

Comitê de Presidente: Ana Rita de Araujo Nogueira. Secretário-Executivo: Maria Luiza F. Nicodemo. Membros: Ane Lisye F.G. Silvestre, Maria Cristina Campanelli Brito, Milena Ambrósio Telles, Sônia Borges de Alencar.

Expediente Revisão de texto: Milena Ambrosio Telles. Editoração eletrônica: Maria Cristina C. Brito.

Apoio:

