Nº20, Dez./97, p.1/7

AVALIAÇÃO DAS CARACTERÍSTICAS AGRONÔMICAS DE SETE ADUBOS VERDES DE INVERNO NO MUNICÍPIO DE PATY DO ALFERES (RJ)¹.

Rogerio Faulha de Gouveia² Dejair Lopes de Almeida³

INTRODUÇÃO

Paty do Alferes localiza-se a 43° 25' W e a 22° 20' S e 575 m de altitude média, na região agroclimatológica serrana do Rio de Janeiro. O clima é caracterizado no sistema de Köppen como tropical úmido de altitude. As classes de solos predominantes no município são: Latossolo, Podzólico, e Cambissolo. O relêvo predominante é o fortemente ondulado, não favorecendo à agricultura; porém esse setor é a base da economia do município. Aproximadamente 90 % da atividade agrícola é intensivamente realizada nas encostas, com declividade variando de 5 a 45 %. O uso intensivo e o preparo inadequado do solo com uso de maquinário e implementos pesados de morro-a-baixo, têm contribuído para aceleração do processo erosivo, diminuição do conteúdo de matéria orgânica, conduzindo ao maior uso de insumos, e promovendo assim o custo de produção.

No Estado do Rio de Janeiro, os dados sobre a adaptabilidade de adubos verdes de inverno são escassos, especialmente para região serrana, onde apresenta condições de clima favoráveis ao seu desenvolvimento, surgindo assim a necessidade de se conhecer as plantas adaptadas àquelas condições.

ADUBAÇÃO VERDE

Os efeitos positivos da adubação verde são conhecidos desde a antiguidade, e tem sido recomendada por proporcionar benefícios significativos à agricultura, que as práticas convencionais químicas e mecânicas não conseguem desempenhar. O uso freqüente dessa modalidade de adubação orgânica, proporciona de uma maneira integrada a melhoria das condições físicas, químicas e biológicas do solo, tais como: aumento da capacidade de troca de cátions (CTC), diminuição da acidez e do alumínio tóxico, manutenção da umidade,

¹ Parte da tese de mestrado apresentada pelo primeiro autor à UFRRJ

² Eng^o Agr^o, M.Sc., Extensionista Rural, EMATER-Rio, Av. Paschoal Carlos Magno, 650, Cep. 26 950.000 - Paty do Alferes, RJ.

³ Eng^o Agr^o, PhD., Pesqisador, EMBRAPA/Centro Nacional de Pesquisa de Agrobiologia (CNPAB), Antiga Rodovia Rio-São Paulo, Km 47, Cep.23 851.970 - Seropédica, RJ.

melhoria da estrutura, maior infiltração de água, recuperação e ciclagem de nutrientes, aporte de nitrogênio, principalmente quando utilizam-se leguminosas, incorporando esse nutriente ao sistema solo-planta, via fixação biológica do N2. Outra contribição para a fertilidade do solo, é mantê-lo sob cobertura vegetal (viva ou morta) na maior parte do ano. A cobertura do solo com adubos verdes apresenta as seguintes vantagens (Carvalho & Calegari, 1988, citado por Calegari, 1990): impede o desencadeamento do processo erosivo por não permitir o impacto direto da gota de chuva; atua como isolante térmico, atenuando as temperaturas extremas; apresenta efeito supressor e/ ou alelopático em várias invasoras; favorece a manutenção da umidade no solo, diminuindo as perdas por evaporação; diminui as perdas de solo e nutrientes em função do controle da erosão; cria condições favoráveis ao incremento da vida microbiana do solo e contribui para um aumento populacional da fauna do solo (minhocas, acarinos, insetos, etc...). Além desses efeitos positivos no solo, a prática da adubação verde pode contribuir no controle de nematóides fitopatogênicos e também serem utilizadas na suplementação proteica às criações.

Muitas espécies de várias famílias botânicas podem ser utilizadas como adubos verdes de inverno, as quais são encontradas na Circular: Plantas para adubação verde de inverno por Derpsch & Calegari (1992).

COBERTURA DO SOLO, PRODUÇÃO DE FITOMASSA E ACÚMULO DE MACRONUTRIENTES

Visando avaliar o desempenho de adubos verdes de inverno foi realizado um ensaio no período de 15/7 a 24/10/94 no Campo Experimental de Pesquisa Agropecuária do Estado do Rio de Janeiro, em Avelar - Paty do Alferes (RJ), e instalado num Podzólico Vermelho-Amarelo, franco argilo-arenoso, cujo a análise do solo da camada de 0-20 cm, apresentou o seguinte resultado pelo método EMBRAPA (1979): pH em água: 5,8; Ca⁺⁺: 20 mmol c.kg⁻¹; Mg⁺⁺: 10 mmol c.kg⁻¹, Al⁺⁺⁺: 0,0 mmol c.kg⁻¹; P: 27 mg.kg⁻¹; K: 165 mg.kg⁻¹; C: 7,5 g.kg⁻¹; M.O.: 12,9 g.kg⁻¹; N: 0,95 g.kg⁻¹

Os tratamentos utizados foram os seguintes: ervilhaca-comum (*Vicia sativa* L.); ervilha-forrageira (*Pisum sativum* var. *arvense* (L.) Poir.); ervilhaca-peluda (*Vicia villosa* Roth.); feijão-de-porco (*Canavalia ensiformis* DC.); tremoço-branco (*Lupinus albus* L.); nabo-forrageiro (*Raphanus sativus* L. var. *oleiferus* Metzg.); aveia-preta (*Avena strigosa* Schreb); e vegetação espontânea. Os espaçamentos na entrelinha da maioria dos adubos verdes foi de 20 cm, exceto para o feijão-de-porco que foi de 50 cm, e o número de plantas.m-1 deixadas após o desbaste foram os seguintes: 7, no tremoço-branco; 20, na ervilha-forrageira; 25, nas ervilhacas; 48, na aveia-preta; 18, no nabo-forrageiro; e 10, no feijão-de-porco. As sementes das leguminosas foram inoculadas com estirpes de rizóbio selecionadas para as espécies e produzidos no CNPAB-EMBRAPA. O ensaio foi irrigado sob aspersão quando necessário, e as formigas controladas com brometo de metila. Durante o cultivo foi realizada uma capina na maioria dos adubos verdes aos 34 DAP, sendo que aos 75 DAP foi necessário mais uma capina nas parcelas com feijão-de-porco.

A vegetação espontânea era constituída das seguintes espécies: capim-coloninho ou Guiné (*Panicum maximum* Jack); amendoim-bravo (*Euphorbia heterophyla* L.); Caruru-sem-espinho (*Amaranthus viridis* L.); picão-preto (*Bidens pilosa* L.); vassoura-de-São Pedro (*Lepidium virginicum* L.); tiririca (*Cyperus rotundus* L.); serralha (*Emilia sonchifolia* DC); trapoeraba (*Commelina benghalensis* L.); picão-branco (*Galinsoga parviflora* Cav.); e

erva-de-São João (*Agerantum conyzoides* L.), sendo predominante o capim coloninho ou Guiné, seguido pela vassoura-de-São Pedro e tiririca.

Os resultados obtidos na taxa de cobertura do solo, avaliado pelo método da largura do dossel vegetativo (Arruda, 1984), mostraram que aos 49 DAP (Tabela 1) a aveia-preta, o tremoço-branco e o nabo-forrageiro proporcionaram as maiores coberturas do solo. No entanto esse parâmetro medido aos 79 DAP foi semelhante para todas espécies. Considerando os valores apresentados e o tempo, demostra que o tremoço-branco e aveia-preta mantiveram o solo coberto por maior período, sendo de grande importância na proteção do solo.

Tabela 1. Taxa de cobertura do solo proporcionada pelas plantas de adubo verde. Média de

quatro repetições.

Adubo verde	Taxa de cobertura do solo (%)						
	aos 49 DAP	aos 79 DAP					
Tremoço-branco	53,27 ab	85,45					
Feijão-de-porco	31,93 bc	81,66					
Nabo-forrageiro	43,76 abc	79,80					
Ervilhaca-peluda	26,63 c	79,35					
Aveia-preta	64,35 a	78,84					
Ervilhaca-comum	33,15 bc	73,65					
Ervilha-forrageira	37,03 bc	64,26					
F	(t) 7,3039**	(t) 0,6848 ns					
CV(%)	(t) 3,44	(t) 4,63					

DAP = dias após o plantio;

ns = não significativo no teste F com p>0.05, e ** = significativo no teste F com p<0.01.

(t) = Valores referentes a análise de variância dos dados transformados em $\sqrt{(x/100)+1}$. Médias não acompanhadas por letras ou seguidas pela mesma letra nas colunas não diferem entre si no teste de Tukey (5%).

A plena floração da maioria dos adubos verdes ocorreu aos 91 DAP, quando foram avaliados pelo método do quadrado com 0.81 m² (Almeida et al., 1993), mostrando que o tremoço-branco e a aveia-preta apresentaram os melhores resultados de produção de matéria fresca na planta inteira (Tabela 2). No entanto as produções de matéria seca do tremoço-branco, aveia-preta, feijão-de-porco, ervilha-forrageira, vegetação espontânea, ervilhaca-comum, não apresentaram diferenças estatísticas (p>0,05). Considerando que o cultivo de adubos verdes no inverno deve ter o menor custo possível, a capina foi realizada uma única vez, exceto no feijão-de-porco, onde foi necessário duas capinas, devido ao desenvolvimento lento e ao maior espaçamento utilizado nessa espécie. Em consequência houve a ocorrência de ervas companheiras, as quais foram avaliadas na ocasião da amostragem dos adubos verdes. Nesse parâmetro a menor quantidade registrada na vegetação companheira do feijão-de-porco, foi devido a realização da segunda capina realizada, a qual não serviu para comparar com aquelas encontradas nos demais tratamentos. Observou-se ainda que houve menor ocorrência de ervas companheiras da aveia-preta, o que assemelha-se ao encontrado por (Calegari,1990). Considerando a contribuição desses componentes (adubo verde e vegetação companheira) na produção total de fitomassa (Tabela 2), observa-se que as maiores produções foram apresentadas nos tratamentos com tremoço-branco, aveia-preta, ervilha-forrageira, ervilhaca-comum, e feijão-de-porco. É importante salientar que mesmo com bom desempenho do tremoço-branco, tanto na cobertura do solo, como na produção de fitomassa, houve uma contribuição da vegetação companheira de 23,6 % na matéria seca acumulada na fitomassa total (adubo verde + vegetação companheira).

Tabela 2. Produção de matéria fresca e seca dos adubos verdes e da vegetação companheira (planta inteira) aos 91 DAP, cultivado num Podzólico vermelho-amarelo, franco argilo-arenoso, fertilidade alta, no município de Paty do Alferes (RJ). Média de quatro repetições.

	Adubo	verde	Veg. com	panheira	Total							
Tratamento	M. fresca	M. seca	M. fresca	M. seca	M. fresca	M. seca						
	(kg.ha ⁻¹)											
Tremoço-branco	21450 a	3190 a	5201 a	983,2 ab	26651 a	4173 a						
Aveia-preta	16360 ab	2878 ab	2390 bc	509,7 bc	18750 b	3387 ab						
Ervilha-forrageira	8812 c	1947 ab	6573 a	1096,0 a	14385 bc	3042 ab						
Ervilhaca-comum	11740 bc	1808 ab	5741 a	1001,0 a	17481 b	2809 ab						
Feijão-de-porco	11460 bc	2545 ab	<u>815</u> c	<u>180,7</u> c	12275 bc	2726 ab						
Ervilhaca-peluda	7157 c	1378 b	5398 a	928,0 ab	12555 bc	2306 b						
Nabo-forrageiro	8713 c	1372 b	4293 ab	892,9 ab	13006 bc	2265 b						
Veg. espontânea	8498 c	1890 ab	na	na	8498 c	1890 b						
F	9,0625 **	3,4492	12,3412**	9,9323**	10,7088**	3,9922**						
**												
CV(%)	28,24	34,19	26,77	26,24	21,89	25,58						

valores sublinhados estão subestimados devido a segunda capina realizada nesse tratamento

na = não aplicável.

** \equiv significative no teste F com p<0.01.

Médias seguidas pelas mesmas letras nas colunas não diferem entre si no teste de Tukey (5%).

Quanto aos macronutrientes acumulados tanto no adubo verde, como na fitomassa total (Tabela 3), observa-se que os maiores resultados para nitrogênio ocorreram nas leguminosas: tremoço-branco, feijão-de-porco, nas ervilhacas e ervilha-forrageira. Isso evidencia que o aporte de nitrogênio está diretamente relacionado com a eficiência da leguminosa, tanto na fixação do N2, como no rendimento de fitomassa (Mitchell & Teel, 1977). Observa-se que mesmo com bom desempenho na cobertura do solo proporcionada pelo tremoço-branco, neste verificou-se que 17,4 % do nitrogênio acumulado na matéria seca total, foi devido à contribuição da vegetasção companheira. Não foram registrados diferenças estatísticas (p>0,05) no acúmulo de fósforo, potássio e magnésio, no total de fitomassa. O maior acúmulo de Cálcio foi registrado no feijão-de-porco, representando 97 % desse nutriente no total acumulado (adubo verde + vegetação companheira), embora a fitomassa total tenha sido subestimada, devido à segunda capina realizada nesse tratamento.

Quanto ao aspecto fitossanitário, houve ocorrência de podridão de raiz (*Rhizoctonia* sp.) no tremoço-branco e na ervilha forrageira, sem muita severidade, sendo que nesta

última ocorreu ataque severo de pulgão-verde (*Myzus persicae*) na fase de floração. Foi registrada também ocorrência de nematóides de galha (*Meloidogyne* spp.) nas ervolhacas comum e peluda, sem muita severidade. O nabo forrageiro demonstrou ser uma planta de aptidão apícola, apresentando longo período de floração e com ótima frequência de abelhas melíferas.

CONCLUSÕES:

- 1. A aveia-preta e o tremoço-branco, como adubo verde, proporcionaram maior período com boa cobertura do solo e também apresentaram maior produção de matéria seca.
- 2. A produção de matéria seca da ervilhaca-peluda e do nabo-forrageiro foram menores que a da vegetação espontânea.
- 3. Com objetivo de adição de N-orgânico ao solo, recomendam-se as espécies com maior acúmulo de nitrogênio: tremoço-branco, feijão-de-porco, ervilhaca-comum e ervilha-forrageira, respectivamente nessa ordem.

Tabela 3. Acúmulo de macronutrientes no adubo verde, na vegetação companheira e no total de matéria seca (adubo verde + vegetação companheira) na época do corte e manejo do adubo verde (91 dias). Média de quatro repetições.

	Adubo verde						Vegetação companheira					Total			
Tratamento	(kg.ha ⁻¹)														
	N	P	K	Ca	Mg	N	P	K	Ca	Mg	N	P	K	Ca	Mg
Tremoço-branco	81,38 a	7,73	69,44	23,47 ab	13,01	17,19 a	6,58 ab	24,60 a	10,54 a	4,94 ab	98,56 a	14,30	94,04	34,01ab	17,94
Aveia-preta	28,59 bc	12,76	67,60	15,33 b	7,77	5,56 b	3,05 bc	12,60 b	5,95 ab	2,99 b	34,15 bcd	15,81	80,20	21,28 b	10,75
Ervilhaca-comum	60,68 ab	7,76	58,35	18,76 b	7,76	13,59 a	8,40 a	31,81 a	6,37 ab	5,82 ab	74,27 ab	15,95	90,16	25,13 b	13,58
Feijão-de-porco	74,41 a	7,73	60,85	51,30 a	12,37	<u>2,63</u> b	<u>0,98</u> c	<u>5,49</u> b	<u>1,64</u> b	<u>0,85</u> c	<u>77,04</u> ab	8,72	66,34	<u>52,94</u> a	13,22
Nabo-forrageiro	16,43 c	7,56	40,34	22,85 b	7,17	14,18 a	6,50 ab	31,31 a	9,61 a	5,33 ab	30,62 cd	13,96	71,66	32,45ab	12,50
Veg. espontânea	24,80 bc	12,30	56,97	25,95ab	10,51	na	na	na	na	Na	24,80 d	12,18	56,98	25,95 b	10,50
Ervilha-forrageira	49,50abc	7,30	40,99	18,54 b	7,11	16,88 a	10,34 a	36,69 a	12,91 a	6,56 a	66,38 abc	18,13	77,68	31,45ab	13,67
Ervilhaca-peluda	45,09abc	5,44	39,61	18,13 b	7,08	14,40 a	8,57 a	29,54 a	10,34 a	6,64 a	59,49abc	14,02	69,15	28,47 b	13,71
											d				
(F)	7,423**	2,168n	1,625 ns	s 4,473 **	2,584 *	30,611*	13.335*		8,028**		8,264**	2,045n	1,415ns	34,287**	2,028
		S				*	*	20,155**		17,541**	k	S			ns
(CV%)	19,58	19,53	18,19	20,08	16,54	10,49	17,88	12,52	20,32	13,51	16,64	14,67	13,83	13,89	12,00

Valores sublinhados estão subestimados devido à segunda capina realizada.

na = não aplicável.

** e * = Significativo no teste F com p<0,01 e 0,05>p>0,01, respectivamente.

Valores de F e CV% são referentes às análises de variância dos dados transformados em \sqrt{x} , para ajustar à curva normal.

Médias não acompanhadas por letra ou seguidas pelas mesmas letras nas colunas não diferem entre si no teste de Tukey (5%).

COMUNICADO TÉCNICO

AGRADECIMENTOS

Agradecemos ao chefe da Estação Experimental de Itaguaí - PESAGRO-Rio pela cessão da estrutura física e de pessoal do campo experimental de Avelar em Paty do Alferes (RJ), para execução do experimento; e aos pesquisadores: José Guilherme Marinho Guerra e Marcelo Grandi Teixeira da EMBRAPA/CNPAB, Ademir Calegari do IAPAR, e à professora Maria do Carmo Lafayete Monteiro do IB-UFRRJ pelas sugestões e apoio logístico.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALMEIDA, M.S. de; NASCIMENTO JUNIOR, D. do; REGAZZI, A.J.; SILVA, M.P. da, PEREIRA, J.E. Utilização de diferentes metodologias na avaliação de pastagem nativa do pantanal. **Revista Sociedade Brasileira de Zootecnia**, Viçosa, v.22, n.2, p.270-279, 1993.
- ARRUDA, F.B. Determinação da cobertura do solo durante o ciclo das culturas. **Revista Brasileira de Ciência do solo**, Campinas, v.8, p.145-150, 1984.
- CALEGARI, A. **Plantas para adubação verde de inverno no sudoeste do Paraná.** Londrina, PR: Fundação Instituto Agronômico do Paraná, 1990. 37p. (IAPAR. Boletim Técnico,35).
- DERPSCH, R.; CALEGARI, A. **Plantas para adubação verde de inverno.** Londrina, PR: Fundação Instituto Agronômico do Paraná, 1992. 80p. (IAPAR. Circular, 73).
- EMBRAPA. Serviço Nacional de Levantamento e Conservação de solos (Rio de Janeiro, RJ). **Manual de métodos de análise de solos**. Rio de Janeiro: SNLCS, 1979. n.p.
- MITCHELL, W.H.; TEEL, M.R. Winter anual cover crops for no-tillage corn production. **Agronomy Journal**, Madison, v.9, p.569-573, 1977.