

DINÂMICA DO CARBONO DA BIOMASSA MICROBIANA EM CINCO PROFUNDIDADES DE UM LATOSSOLO NO CERRADO SOB DIFERENTES SISTEMAS DE MANEJO

Eloisa A. Belleza Ferreira¹; <u>Dimas V. S. Resck</u>²; Antônio Carlos Gomes²; Maria Lucrécia G. Ramos¹.

¹FAV - Universidade de Brasília, Cx. Postal 04508, CEP 70910-900, Brasília, DF;

²Embrapa Cerrados, Km 18 BR 020, Cx. Postal 08223, CEP 73301-970, Planaltina, DF, Brasil,

dvsresck@cpac.embrapa.br

INTRODUÇÃO

O potencial de produção dos Latossolos está condicionado ao uso frequente de corretivos e fertilizantes, que necessitam do revolvimento do solo para sua plena distribuição, e assim, parte da matéria orgânica pode ser perdida. Quando o revolvimento não é

mais necessário, existem sistemas de manejo que acumulam carbono orgânico (C_{solo}) em todo o perfil (pastagem) e alguns, como o plantio direto, principalmente nos primeiros centímetros do solo. A biomassa microbiana (C_{mic}), em sistema plantio direto, apresenta

um padrão de estratificação semelhante àquele do carbono orgânico, e, sendo um bom indicador das mudanças induzidas pelos diferentes sistemas de manejo do solo, constitui-se objeto deste estudo.

MATERIAL E MÉTODOS

Local da pesquisa:

Embrapa Cerrados, Planaltina-DF, em um Latossolo Vermelho-Escuro argiloso.

Tratamentos:

- •Uma área com vegetação típica de Cerrado (CE)
- Seis parcelas de 1000 m², de um experimento de longa duração, instalado no ano de 1979/1980:
 - ADPP- preparo com arado de discos pré-plantio;
 - ADPC- preparo com arado de disco pós-colheita;
 - AVPP- preparo com arado de aivecas pré-plantio;
 - AVPC- preparo com arado de aivecas pós-colheita;
 - PDAD- plantio direto em área preparada com arado de discos no primeiro ano de cultivo (1979);
 - PDAV- plantio direto em área preparada com arado de aivecas no primeiro ano de cultivo (1979).

Sistema de Amostragem

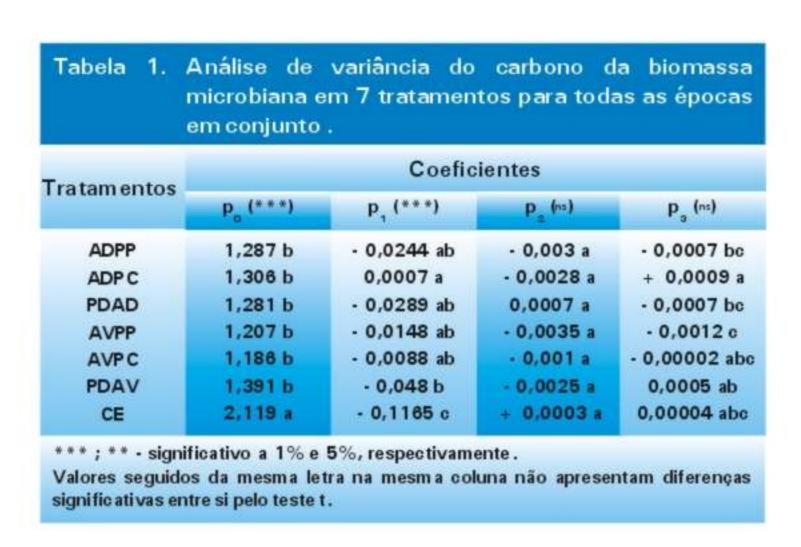
Três pontos de amostragem equidistantes numa diagonal da parcela constituindo-se nas repetições de cada tratamento.

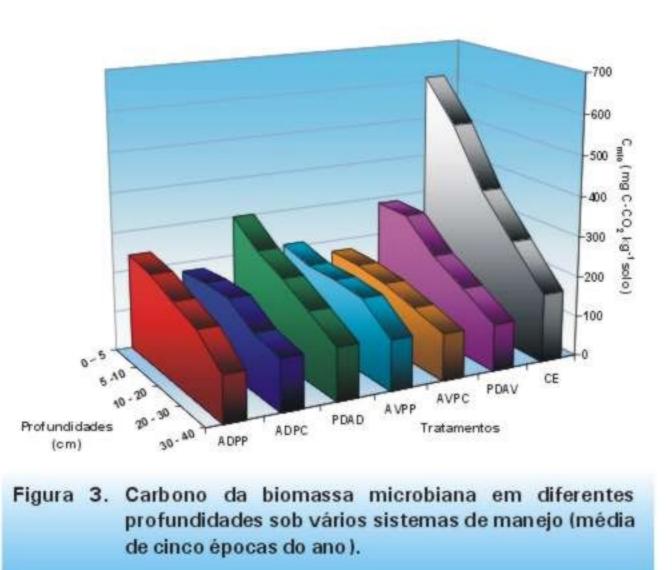
Épocas de Amostragem

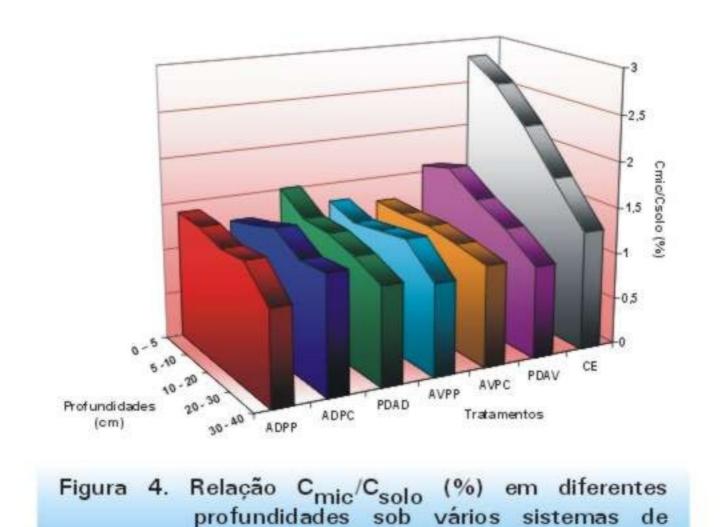
- Na época da colheita da soja (abril/2000);
- No início do período seco após a aração pós-colheita da soja (maio/2000);
- No final do período seco (agosto/2000);
- No início do período chuvoso no plantio do milho (novembro/2000);
- Na floração da cultura do milho (fevereiro/2001)
- Profundidade de Amostragem
- Cinco profundidades:
 - 0 a 5; 5 a 10; 10 a 20; 20 a 30 e 30 a 40 cm.

Determinação do Carbono da Biomassa Microbiana

O carbono da biomassa microbiana (C_{mic}) foi estimado pelo método da fumigação-incubação (Jenkinson & Powlson, 1976) e o teor de carbono do solo (C_{solo}) foi avaliado pelo método da oxidação por via úmida (Walkley & Black, 1934)

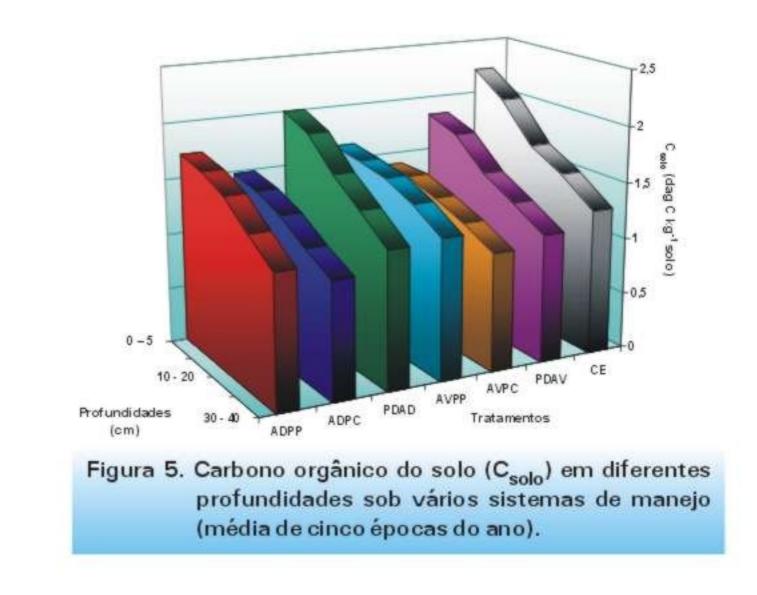



ANÁLISE ESTATÍSTICA


Foi utilizado um programa estatístico denominado "Profile" (p < 0.05), cuja análise de variância determina a tendência e os valores dos parâmetros de um polinômio ortogonal: $Y = p_0 + p_1 x_1 + p_2 x_2 + p_3 x_3$, onde y representa as propriedades microbiológicas e o x são os valores das profundidades consideradas nesse estudo.

RESULTADOS

determinação da biomassa microbiana.



manejo (média de cinco épocas do ano).

biomassa microbiana e carbono orgânico do sol (C _{mic} /C _{solo}) em 7 tratamentos para todas as época em conjunto .					
Tratamentos	Coeficientes				
	p _o (* * *)	p, (***)	p ₂ (105)	р ₃ (м)	
ADPP	1,287 b	- 0,0244 ab	- 0,003 a	- 0,0007 bc	
ADPC	1,306 b	0,0007 a	- 0,0028 a	+ 0,0009 a	
PDAD	1,281 b	- 0,0289 ab	0,0007 a	- 0,0007 bc	
AVPP	1,207 b	- 0,0148 ab	- 0,0035 a	- 0,0012 c	
AVPC	1,186 b	- 0,0088 ab	- 0,001 a	- 0,00002 ab	
PDAV	1,391 b	- 0,048 b	- 0,0025 a	0,0005 ab	
CE	2,119 a	- 0,1185 c	+ 0,0003 a	0,00004 abo	

em função do carbono orgânico do solo.				
Tratamentos	Equações de regressão			
PDAD	C _{mic} = -104,83*** + 195,11 C _{solo} *** (r ² = 0,54**			
PDAV	$C_{mic} = -101,98*** + 210,74 C_{solo}*** (r^2 = 0,53**)$			
CE	C _{mic} = -235,56*** + 355,50 C _{solo} *** (r ² = 0,61**			

CONCLUSÕES

- Em relação ao comportamento médio do perfil (p0), o valor encontrado para o C_{mic} no tratamento CE (383,19 mg C-CO₂ kg⁻¹ solo) foi significativamente maior do que os outros tratamentos.
- Nos sistemas cultivados, houve diferenças significativas apenas entre os tratamentos PDAD (213,7 mg C-CO₂ kg⁻¹ solo) e o AVPC (151,59 mg C-CO₂ kg⁻¹ solo), que apresentou menor C_{mic}.
- No CE foi encontrada a maior taxa de redução linear do C_{mic} com a profundidade (p₁ = 33,24 mg C-CO₂ kg¹ solo cm¹), sendo 4 vezes maior do que a média dos tratamentos sob cultivo (8,2 mg C-CO₂ kg¹ solo ± 4,13 mg C-CO₂ kg solo).
- Resultados semelhantes de redução foram observados em ambos os tratamentos sob PD (PDAD = 12,18 e PDAV = 13,82), quando comparados ao ADPC (4,42), AVPP (5,38) e AVPC (4,37).
- A relação entre o C_{mic} e o C_{solo}, expressa em porcentagem, foi significativamente maior no CE (Cmic/Csolo = 2,12%), ficando nos outros tratamentos entre 1,19% (AVPC) e 1,39% (PDAV).
- A relação entre o C_{solo} e o C_{mic} foi maior nos tratamentos sob plantio direto e CE, pelo substrato estar mais disponível para a decomposição microbiana no reservatório lábil do que nos outros tratamentos.

