IRRIGAÇÃO DO MILHO PARA SILAGEM MANEJADA COM TENSIÔMETROS SOB PIVÔ-CENTRAL

JUSCELINO A. DE AZEVEDO & CARLOS MAGNO C. DA ROCHA

Engº Agrº, Pesquisadores da Embrapa Cerrados, Caixa Postal 08223 CEP 73301-970 - Planaltina, DF.
Fone: (61) 388.9862, Fax: (61) 388.9879, e-mail: juscelin@cpac.embrapa.br

INTRODUÇÃO

Em decorrência do período seco de aproximadamente 5 a 6 meses, a cultura do milho é muito mais suscetível do que outras culturas a serem atendidas com agrotécnicas que usam a silagem para alimentar o gado nessa época como forma de evitar a perda de peso que, normalmente, ocorre em virtude da má qualidade das pastagens nesse período. No processo de ensilagem, o milho constitui excelente material para a produção de silagem nutritiva. Quando usado com esse propósito, é normalmente cortado no ponto de "grão farináceo duro", visando silagem de melhor qualidade. Assim, pecuaristas que dispõem de irrigação podem produzir o milho fora das épocas tradicionais de cultivo, otimizando o funcionamento do silo ao longo do ano. Um manejo adequado de irrigação na produção de milho deve aplicar água em uma frequência que evite deficiência hídrica e em quantidades adequadas para recuperar o armazenamento de água no solo a uma profundidade dependente das condições locais (RHOADS & BENNETT, 1990). Tensiómetros são indicadores para programar irrigações, pois são acurados, fáceis de instalar e relativamente baratos (CAMPBELL & MULLA, 1990; AZEVEDO & SILVA, 1999). Assim, delineou-se o presente trabalho com o objetivo de estabelecer uma dotação de rega, em termos de quantidade e frequência de aplicação de água para o milho, como cultura forrageira, irrigado por pivô-central, usando tensiómetros como instrumentos de controle.

RESULTADOS E DISCUSSÃO

Os resultados mostram que a disponibilidade de água desse solo foi de 39 mm. Em três testes de avaliação do equipamento, registrou-se um Coeficiente de Uniformidade de Distribuição (CUD) de água de 83% e uma capacidade média de aplicação de 7,5 mm/dia. A 50% de velocidade coleta-se, sob esse pivô, uma lâmina média de 5,4 mm, gasto-se 14,2 horas para a gira completa do pivô (Tabela 1). Pela Tabela 3, verifica-se que a cultura do milho recebeu 317 mm de água desde a instalação dos tensiómetros (6 DAE) até o corte do milho (118 DAE), sendo que 45% foi aplicada entre 48 e 97 DAE. Apenas 18 mm de chuvas ocorreram dos 14 aos 29 DAE sem afetar o manejo. A lâmina média, por irrigação, foi de 1,46 mm até 48 DAE, 10,0 mm dos 48 aos 97 DAE e 12,6 mm no restante do ciclo. Das 26 irrigações necessárias, foram 7 aplicadas no período de estabelecimento até o final do período vegetativo (6-48 DAE); 14 entre o fim do feixe vegetativo até o final da fase reprodutiva (48-97 DAE) e 5 foram realizadas a partir do enchimento de grãos até o momento de corte para silagem (97-118 DAE). Registrou-se um intervalo médio de 6 dias entre irrigações no período inicial até os 48 DAE, e de 3,8 dias e 3,3 dias nas fases posteriores do ciclo. As tensões médias de água no solo a 10 cm de profundidade, no momento das irrigações, foram de aproximadamente 39 cm até os 48 DAE e 33 cm até o corte para silagem (Figura 1) não se observando diferenças apreciáveis nas variações de tenso de água entre profundidades do solo ao longo do ciclo da cultura. Em condições de Cerrado, GUERRA et al. 1997 demonstraram, para milho e irrigação suplementar, que maiores rendimentos foram obtidos, irrigando a profundidade próxima de 40 cm. As produções de matéria verde e matéria seca alcançaram, respectivamente, 45,9 e 12,9 t/ha. Pequena parte da lavoura deixada para produção de grãos recebeu água adicional de 4 irrigações (36 mm) e de mais 3 precipitações (20 mm). A média de produtividade de grãos de milho foi de 5210 kg/ha. A eficiência de uso de água pela cultura foi de 4,1 kg de matéria seca e 1,4 kg de grãos por m³ de água aplicada.

TABELA 3. Parâmetros de manejo de irrigação obtidos em diversas fases de desenvolvimento de uma lavoura irrigada de milho para silagem, variação de matéria seca e grãos

<table>
<thead>
<tr>
<th>PARÂMETROS DE MANEJO</th>
<th>DIAS APÓS A EMERGÊNCIA (DAYS)</th>
<th>TOTAL</th>
<th>MÉDIA NO CICLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lâmina aplicada (mm)</td>
<td>108</td>
<td>143</td>
<td>66</td>
</tr>
<tr>
<td>Lâmina por irrigação (mm)</td>
<td>14,6</td>
<td>10,0</td>
<td>12,6</td>
</tr>
<tr>
<td>Número de irrigações</td>
<td>7</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Intervalo de irrigação (dias)</td>
<td>6,0</td>
<td>3,8</td>
<td>3,3</td>
</tr>
<tr>
<td>Tensão média à 10 cm (kPa)</td>
<td>39,2</td>
<td>32,8</td>
<td>33,2</td>
</tr>
<tr>
<td>Tempo de irrigação (horas)</td>
<td>231,3</td>
<td>379,4</td>
<td>147,2</td>
</tr>
</tbody>
</table>

CONCLUSÃO

O manejo de irrigação orientado por tensiómetros, irrigando o milho para silagem a tensões próximas de 35 kPa determinou uma dotação de rega com lâminas de 15 mm a cada 6 dias até os 48 DAE e de 12 mm a cada 3,5 dias no restante do ciclo até o corte aos 118 DAE. A eficiência produtiva em relação à água aplicada foi de 4,1 kg de matéria seca e 1,4 kg de grãos por m³.

REFERÊNCIAS BIBLIOGRÁFICAS