Comunicado 5 Técnico São C Dezer

São Carlos, SP Dezembro, 2005

Extração de nutrientes recuperação aparente do nitrogênio capimem marandu¹

Ana Cândida Primavesi² Odo Primavesi² Luciano de Almeida Corrêa² Heitor Cantarella³ Aliomar Gabriel da Silva²

Dentre todos os nutrientes. nitrogênio (N) é quantitativamente o mais importante para o crescimento das plantas (Engels & Marschner, 1995) e de pastagens estabelecidas com gramíneas (Monteiro et al., 2004), e o segundo fator mais limitante primeiro é а água) para desenvolvimento das forrageiras (Jarvis et al., 1995).

Aplicações elevadas de N podem resultar em elevação do teor protéico, mas também em redução nos teores de matéria seca (Whitehead, 1995), fósforo (P) e potássio (K), e em outras interações entre nutrientes minerais no solo e na planta. O efeito dos fertilizantes nitrogenados no pH

do solo é particularmente importante na absorção de ferro (Fe), manganês (Mn) e cobalto (Co) e, portanto, o fertilizante influencia composição а mineral forrageira (Whitehead, 1995).

Para bom manejo da adubação, principalmente em sistemas intensivos de produção, torna-se importante conhecer a necessidade de nutrientes das forrageiras consequentemente е capacidade de os extrair do solo (Luz et al., 2001).

Os resultados de pesquisa relação a perdas de N são muito variados, principalmente porque o N proveniente da uréia é muito suscetível a perdas por

³ Pesquisador do Instituto Agronômico de Campinas, Centro de Solos e Recursos Agroambientais, Caixa Postal 28, CEP: 13001-970, Campinas, SP. Endereço eletrônico: cantarella@iac.sp.gov.br

¹ Trabalho financiado pelo Convênio Embrapa-Petrobrás.

² Pesquisadores da Embrapa Pecuária Sudeste, Rod. Washington Luiz, km 234, Caixa Postal 339, CEP: 13560-970, São Carlos, SP. Endereço eletrônico: anacan@cppse.embrapa.br; odo@cppse.embrapa; luciano@cppse.embrapa.br; aliomar.silva@embrapa.br.

volatilização e, consequentemente, mais manejo sensível às condições de aplicação. Em pastagens manejadas intensivamente, em que se aplicam doses elevadas de N, conhecer a recuperação do N do fertilizante pelas plantas torna-se importante para maximizar a eficiência do seu uso e para minimizar o impacto ambiental. A recuperação aparente do N do fertilizante, isto é, a diferença do N absorvido por plantas de parcelas adubadas em relação às plantas de parcela não adubadas, apresenta a conveniência de ser de fácil estimativa e de baixo custo, pois requer apenas a medida do teor de N total da planta e da massa seca da forragem (Martha Jr., 2003).

Em vista disso, foi conduzido na Embrapa Pecuária Sudeste experimento que teve como um dos objetivos avaliar o efeito de doses e de fontes de N na extração dos nutrientes e na recuperação do N aplicado em capim-marandu (*Brachiaria brizantha* cv. Marandu).

A fase de campo do experimento foi realizada de 20 de novembro de 2000 a maio de 2001, em pastagem de capimmarandu, em Latossolo Vermelho Distrófico típico, com 400 g/kg de argila, sob clima tropical altitude. delineamento de O experimental foi o de blocos casualizados, com sete tratamentos organizados em esquema fatorial $(2 \times 3) + 1$ (duas fontes de N: uréia e nitrato de amônio, e três doses de N: 50, 100, 200 kg/ha/corte), com uma testemunha sem adubo nitrogenado, e repetições 1991). 0 quatro (Gates, nitrogênio foi aplicado em quatro períodos (após o corte de uniformização e após os demais cortes, até o terceiro e penúltimo corte) durante a época das águas. Na instalação do experimento, foram aplicados 50 kg/ha de P₂O₅, na forma de superfosfato simples, e 30 kg/ha de micronutrientes (FTE BR-12). O potássio, na forma de KCl, foi ocasião das adubações aplicado por nitrogenadas, nas quantidades totais de 240 kg/ha de K₂O, nos tratamentos testemunha e com 200 kg/ha/ano de N, e de 420 kg/ha de K₂O, nos tratamentos com 400 e 800 kg/ha/ ano de N.

As parcelas tinham área de 16 m² (4 x 4 m), sendo utilizada área útil de 6 m², para avaliação da produção de forragem. Os cortes foram feitos em intervalos de 43 dias, a 10 cm da superfície do solo. Após a pesagem da matéria fresca, foi separada amostra com 500 g, que foi secada em estufa com circulação forçada de ar, à temperatura de 60°C, até a obtenção de peso constante, para a determinação do teor de água e o cálculo do peso da matéria seca. Foi determinado o teor de minerais na matéria seca da forragem e foi calculada a extração de cada elemento. A recuperação aparente do N (Nrec), em percentagem, foi calculada pela fórmula: N(rec) = 100 x[(N(extr) na parcela fertilizada - N(extr) na parcela testemunha) / dose de N aplicada]. A extração de N (Nextr) foi calculada pela fórmula N(extr) = 0,001 MS x TN, em que N(extr) = N extraído em kg/ha, MS =matéria seca em kg/ha e TN = teor de N em g/kg. A quantidade de N na forragem das parcelas não adubadas foi utilizada para estimar o suprimento de N proveniente do solo e da atmosfera.

As características químicas do solo, na camada de 0 a 20 cm, no início do experimento, foram: pH em $CaCl_2 = 5.5$; M.O. = 55 g/dm^3 ; P (pelo método da resina) = 19 mg/dm^3 ; K = $7.0 \text{ mmol}_c/\text{dm}^3$; Ca = $54 \text{ mmol}_c/\text{dm}^3$; Mg = $21 \text{ mmol}_c/\text{dm}^3$; CTC = $116 \text{ mmol}_c/\text{dm}^3$; e V = 70%; e as características físicas: areia = 559 g/kg; argila = 400 g/kg; e silte = 40 g/kg.

As chuvas ocorridas nos quatro períodos consecutivos de produção de forragem foram respectivamente de 199,0; 149,1; 134,3 e 43,8 mm.

Foi realizada análise de variância, com desdobramento e avaliação dos efeitos lineares e quadráticos, usando-se o teste F para comparar as médias das fontes de N, bem como foram ajustadas equações de regressão linear simples e quadrática para as curvas de extração de nutrientes em função das doses de N aplicadas.

Quando se comparou a extração de nutrientes na dose 400 kg/ha/ano de N, em relação à testemunha, verificou-se aumento respectivamente, para uréia e nitrato de amônio, de 6,7 e 8,5 vezes de N, 4,8 e 6 de P, 4,3 a 5,7 de S, 7,5 e 9,3 de K, 4,7 e 4,9 de Ca, 4,3 e 5,4 de Mg, 5,0 e 6,8 de Cu, 5,3 e 6,9 de Zn, 4,4 e 5,0 de Mn e 4,9 e 3,8 de Fe (Tabela 1). A extração dos nutrientes foi grande e cresceu com o aumento da produção de forragem. Houve extração bem maior de K em relação ao N, mesmo no tratamento sem N mas que recebeu K, indicando que o capim-marandu extrai muito K do solo. Primavesi et al. (2004) verificaram, capim-coastcross, em extração aproximada de K e de N. No presente trabalho, nos tratamentos com

400 e 800 kg/ha/ano de N, a maior extração de K refletiu a maior quantidade aplicada e, uma vez que com nitrato de amônio houve redução do incremento de produção de forragem com as doses de N (Primavesi et al., 2003), a maior extração de K nesses tratamentos, cuja forragem apresentou teor acima do adequado, pode ser sinalização do início do consumo de luxo. Com os dois adubos e em todos os tratamentos, as extrações dos macronutrientes maiores para K, seguidas de N, Ca, Mg, P e S; a extração dos micronutrientes ocorreu na seguinte ordem decrescente: Fe, Mn, Zn e Cu.

A recuperação aparente do N dos adubos variou (P < 0,05) com as fontes e com as doses de N (Tabela 2). Com aumento das doses de N ocorreu decréscimo na recuperação, a qual foi maior maior com o nitrato de amônio. A média de recuperação de todas as doses de N da uréia foi de 84% daguela obtida com o nitrato de amônio. O N da uréia recuperado pela parte aérea foi superior ao obtido por Oliveira et al. (2003). Esse fato foi devido provavelmente: a) à altura de corte de 10 cm, que no ensaio de Oliveira et al. (2003) foi de 20 cm; b) à dose de N usada de 400 kg/ha, em contraste com 300 kg/ha utilizados por esses autores; c) e também ao uso pelos autores citados de 15N, que elimina o efeito da matéria orgânica (as raízes das plantas que receberam N exploram mais o N da matéria orgânica do que as do tratamento sem N). Andrade et al. (1996), usando 1.150 kg/ha de N como nitrato de amônio, relataram recuperação de 52%, superior à deste trabalho, em que houve redução na recuperação quando as doses de N foram superiores a 400 kg/ha. Verificou-se baixa recuperação aparente do N no terceiro e no quarto período de crescimento (Tabela 2), a qual pode ser atribuída à baixa produção de forragem ocorrida, no terceiro período, provavelmente porque as plantas já estavam florescidas, e no quarto período, em razão da falta de chuvas.

Com base nos resultados obtidos, conclui-se que produções maiores de forragem de capim-marandu extraem grandes quantidades de nutrientes do solo, principalmente de K e de N, e que a recuperação aparente do N pela parte aérea do capim-marandu é relativamente alta (43% com uréia na dose de 200 kg/ha de N e 51% com nitrato de amônio na dose de 400 kg/ha de N), e influenciada por fontes e por doses de N. Para se obter a melhor recuperação do N aplicado, devem ser usadas adubações e 400 nitrogenadas de 200 kg/ha/ano, respectivamente, com uréia e com nitrato de amônio, em solos de textura argilosa e níveis de fertilidade média em P e alta em K, Ca e Mg, sendo suficientes aplicações de 240 kg/ ha de K₂O, parcelados após o corte de uniformização e após os demais cortes, pois o capim-marandu se mostrou eficiente extração de K do solo.

Referências bibliográficas

ANDRADE, J.B.; BENINTENDE, R. B.; FERRARI JÚNIOR, E.; PAULINO, V. T.; HENRIQUE, V.; WERNER, J. C.; MATTOS, H. B. Nitrogênio e Potássio na produção e composição de *Brachiaria brizantha* cv. Marandu. In: REUNIÃO BRASILEIRA DE ZOOTECNIA, 33., 1996, Fortaleza. **Anais...** Fortaleza: Universidade Federal do Ceará, 1996. v. 2. p. 283-285.

ENGELS, C.; MARSCHNER, H. Plant uptake and utilization of nitrogen. In: BACON, P.E. (Ed.) **Nitrogen fertilization in the environment.** New York: Marcel Dekker, 1995. p. 41-81.

GATES, C. E. A user's guide to misanalyzing planned experiments. **HortScience**, v.26, n.10, p.1262-1265, 1991.

JARVIS, S. C.; SCHOLEFIELD, D.; PAIN, B. Nitrogen cycling in grazing systems. In: BACON, P.E. (Ed.) **Nitrogen fertilization in the environment.** New York: Marcel Dekker, 1995. p. 381-420.

LUZ, P. H. C.; HERLING, V.R.; PETERNELLI, M.; BRAGA, G. J. Calagem e adubação no manejo intensivo do pastejo. In: SIMPÓSIO DE FORRAGICULTURA E PASTAGENS: temas em evidências, 2., 2001, Lavras. temas em evidências: **Anais...** Lavras: UFLA, 2001. p. 27-110.

MARTHA JR., G. B. Produção de forragem e transformações do nitrogênio do fertilizante em pastagem irrigada de capim Tanzânia. 2003. 149 f. Tese (Doutorado em Agronomia- Área de concentração: Ciência animal e Pastagem) - Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba.

MONTEIRO, F. A.; COLOZZA, M. T.; WERNER, J. C. Enxofre e micronutrientes em pastagens. In: SIMPÓSIO SOBRE MANEJO DE PASTAGENS, 21., 2004, Piracicaba.

Anais... Piracicaba: FEALQ, 2004. p. 279-301.

OLIVEIRA, P. P. A.; TRIVELIN, P. C. O.; OLIVEIRA, W. S. Eficiência da fertilização nitrogenada com uréia (15N) em *Brachiaria brizantha* cv. Marandu associada ao parcelamento de superfosfato simples e cloreto de potássio. **Revista Brasileira de Ciência do Solo**, v.27, p.613-620, 2003.

PRIMAVESI O.; CORRÊA A. L.; PRIMAVESI A. C.; CANTARELLA, H.; SILVA A. G. Adubação com uréia em pastagem de *Brachiaria brizantha* sob manejo rotacionado: Eficiência e perdas. São Carlos: Embrapa Pecuária Sudeste, 2003. 6 p.(Comunicado Técnico, 41).

PRIMAVESI A. C.; PRIMAVESI O.; CORRÊA A. L.; CANTARELLA H.; SILVA, A. G., FREITAS, A. R.; VIVALDI, L. J. Adubação Nitrogenada em Capim-Coastcross: Efeitos na Extração de Nutrientes e Recuperação Aparente do Nitrogênio. **Revista Brasileira de Zootecnia**, v.33, n.1, p.68-78, 2004.

WHITEHEAD, D.C. Volatilization of ammonia. In: WHITEHEAD, D.C. (Ed.). **Grassland nitrogen**. Wallingford: CAB International, 1995. p.152-179.

Tabela 1. Produção de matéria seca (MS) e extração mineral pelo capim-marandu, em função de fontes e de doses de nitrogênio⁽¹⁾.

Doses de N	MS total					Nuti	rientes	5			
		N	Р	S	K	Ca	Mg	Cu	Zn	Mn	Fe
kg/ha/ano			kg/	ha				g/ha			
		Uréia									
0	1.889	27	6	3	41	9	8	13	56	132	421
200	6.650	112	23	8	196	30	25	41	212	365	1.100
400	9.539	181	29	13	306	42	34	65	295	584	1.615
800	12.328	282	36	17	429	48	44	84	424	863	2.032
Média	7.601	150	23	10	243	33	28	51	247	486	1.292
Doses	Q**	L**	Q**	L**	L**	Q**	Q*	L**	L**	L**	L**
R^2	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99
		Nitrato de amônio									
0	1.889	27	6	3	41	9	8	13	56	132	421
200	6.471	114	19	9	187	26	25	45	212	394	1.095
400	11.481	229	36	17	380	44	43	88	386	666	2.075
800	13.070	327	42	19	429	48	49	103	475	849	2.394
Média	8.228	174	26	12	259	32	31	62	282	510	1.496
Doses	Q**	L**	Q*	Q**	Q**	Q**	Q**	Q**	Q*	L**	L**
R^2	0,99	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,99	0,99	0,97
Adubos	**	**	*	**	ns	ns	**	**	**	ns	**
Ad. x doses	**	**	**	**	**	**	**	**	**	**	**

⁽¹⁾ Média de quatro cortes. ns = não significativo.* ou ** = significância do teste F no nível de 5% e 1%. Para doses, são apresentados a curva de melhor ajuste (L = linear simples ou Q = quadrática) e o valor de R².

Tabela 2. Extração e recuperação aparente de nitrogênio pela parte aérea do capim-marandu, em quatro períodos de cortes consecutivos.

Doses de N	Extração de N						Recuperação de N					
	1º	2 <u>°</u>	3 <u>°</u>	4 º	média	1º	2º	3º	4 <u>°</u>	média		
Kg/ha/ano	kg/ha				%							
							Uréia					
0	6	7	10	4	7	-	-	-	-	-		
200	30	42	27	14	28	48	69	34	19	43		
400	53	71	31	26	45	47	64	22	22	39		
800	108	94	51	29	71	51	43	21	13	32		
Média	49	53	30	18	38	49	59	16	18	37		
Doses	-	-	-	-	L**	-	-	-	-	L*		
R^2	-	-	-	-	0,99	-	-	-	-	0,98		
	Nitrato de amônio											
0	6	7	10	4	7	-	-	-	-	-		
200	29	46	30	10	29	46	77	40	12	44		
400	62	91	49	27	57	56	83	40	23	51		
800	133	123	46	25	82	64	58	18	11	38		
Média	57	67	34	17	44	55	73	33	15	44		
Doses	-	-	-	-	L**	-	-	-	-	Q**		
\mathbb{R}^2	-	-	-	-	0,99	-	-	-	-	0,99		
Teste F												
Fontes de N					**					*		
Interação					*					ns		

^{*} ou ** = significância do teste F no nível de 5% e 1%. Para média das doses, são apresentados a curva de melhor ajuste (L = linear simples ou Q = quadrática) e o valor de R2.

Comunicado Exemplares desta edição podem ser adquiridos na:

Técnico, 57 Embrapa Pecuária Sudeste

Endereço: Rod. Washington Luiz, km 234

Ministério da Agricultura, Fone: (16) 3361-5611 Pecuária e Abastecimento Fax: (16) 3361-5754

Endereço eletrônico: sac@cppse.embrapa.br

1ª edição

1ª impressão (2005): 250 exemplares

publicações Secretário-Executivo: Edison Beno Pott

Comitê de Presidente: Alfredo Ribeiro de Freitas.

Membros: André Luiz Monteiro Novo, Odo Primavesi, Maria Cristina Campanelli Brito, Sônia Borges de Alencar.

Expediente Revisão de texto: Edison Beno Pott

Editoração eletrônica: Maria Cristina Campanelli Brito.