

## Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Agroindústria Tropical

Ministério da Agricultura e do Abastecimento Rua Dra. Sara Mesquita, 2270, B. Pici. CEP 60511-110 Fortaleza - CE Telefone (085) 299-1800 Fax (085) 299-1803

## Comunicado Técnico

Nº 22, nov./98, p.1-3

## Curva do equilíbrio higroscópico da castanha de caju

A. T. Cavalcanti Jr.

Tradicionalmente, a colheita da castanha de caju é realizada por meio de coletas das castanhas maduras caídas ao solo, as quais, ao se desprenderem da árvore, ainda contêm alto teor de água (20% a 22% de umidade). Em geral, o excesso de umidade em sementes aumenta a respiração, degrada os lipídios e as proteínas, e consome as reservas nutricionais. Para a castanha de caju, somam-se a esses danos a deterioração ocasionada pela ação de enzimas endógenas e o crescimento de fungos e bactérias que comprometem a qualidade fisiológica e o processamento industrial. Portanto, o controle do teor de água da castanha em algumas etapas que vão da colheita ao beneficiamento da amêndoa da castanha é de fundamental importância, principalmente na comercialização da castanha como semente ou no processamento industrial, pois, nessa etapa, o controle tem apresentado maiores problemas de ordem prática, já que, além de avaliar a qualidade físico-química, serve como referencial para o redutor percentual do peso da castanha aplicado pelo comprador, ou seja, a quantificação da umidade nessa etapa altera os valores econômicos da relação compra e venda.

Oficialmente não existe, para comercialização, um padrão de umidade das castanhas como os existentes para a maioria das grandes culturas, mas, possuindo a castanha estrutura higroscópica, espera-se que uma umidade próxima do ponto de equilíbrio higroscópio seja a mais indicada para as transações comerciais, pois nem o agricultor nem o usineiro, dentro desse agronegócio, dispõem de armazéns climatizados que possam manter a umidade muito fora desses limites. Entretanto, os agricultores reclamam que seus produtos sofrem um fator de correção de peso muito alto, em função da umidade, enquanto os compradores suspeitam que o excesso de umidade no produto seja manobra para burlar o peso final.

<sup>&</sup>lt;sup>1</sup> Eng.-Agr., Dr., Embrapa - Centro Nacional de Pesquisa de Agroindústria Tropical (CNPAT), Rua Dra. Sara Mesquita, 2270, Planalto Pici, Caixa Postal 3761, CEP 60511-110 Fortaleza, CE.

A castanha apresenta característica de estruturas higroscópicas e seu grau de umidade varia de mês a mês, portanto, os pontos de equilíbrio higroscópico estão correlacionados com a umidade relativa do ar (URA) ( Tabela 1 ). Os coeficientes de correlação mostram que mais de 70 % da umidade das castanhas pode ser explicada pela variação dessa URA, conseqüentemente, tendem a absorver água quando a URA aumenta e a perder quando URA diminui, significando que o teor de água das castanhas depende, dentre outros fatores, da umidade e da temperatura do ambiente de armazenamento.

TABELA 1. Coeficientes de correlações entre umidade relativa do ar (URA) e grau de umidade das castanhas, avaliados a partir do mês em que se deu o equilíbrio higroscópico (março/96 até fevereiro de 1997). Pacajus, CE, 1997.

|              | C.S. sombra. | C.S. sol | C.A úmido | C.A arejado | Média geral |
|--------------|--------------|----------|-----------|-------------|-------------|
| Umidade/96   | 0,75         | 0,75     | 0,70      | 0,78        | 0,75        |
| U. histórica | 0,92         | 0,97     | 0,95      | 0,97        | 0,97        |

C.S. = castanhas secas

C.A . = castanhas em armazém

Para as castanhas colhidas e armazenadas no início do ano, verificam-se três períodos distintos de grau de umidade: um de ajustamento ao equilíbrio higroscópico em função da URA e dois em resposta às variações dessa URA. O primeiro ocorre de janeiro a fevereiro, quando as castanhas entraram em equilíbrio higroscópico. As mais secas ganham água do ambiente ao passo que as mais úmidas perdem. O segundo período ocorre entre março e julho, em particular, até agosto para as castanhas armazenadas em ambiente úmido, pois nessas condições a dissipação da umidade é retardada e a perda de água das castanhas é mais lenta. Nesse período, em que a URA histórica é alta, o grau de umidade das castanhas atinge valores mais elevados, com média de 12,66 % de umidade. Nos meses restantes, de setembro até fevereiro do ano seguinte, as castanhas voltam a perder água para o ambiente e a média fica em 10,35 % de umidade. Com uma colheita retardada nesse terceiro período, deixando as castanhas no campo por mais tempo, após a maturação fisiológica e desprendimento da árvore, expostas às altas temperaturas e aos fortes ventos predominantes no verão da região, podem-se colher castanhas com teor de água bem mais baixo, pois o equilíbrio se ajustará a esse novo ambiente denominado de armazenamento no campo. Entretanto, os riscos de se colher um produto de baixa qualidade sanitária e fisiológica aumentam, com a possibilidade de ocorrência de chuvas e orvalho. E, mesmo se colhidas com boa qualidade, a manutenção nesses baixos níveis de umidade ficará na dependência de armazéns climatizados, pois, em geral, o grau médio de umidade das castanhas durante o ano fica em 11,60 %, um pouco abaixo dos 12% sugeridos em literatura como ponto de equilíbrio hídrico.

Como a URA modifica-se mês a mês e pode variar significativamente de um ano para outro, o grau de umidade das castanhas armazenadas também oscila procurando novo equilíbrio. Para não se ter de calcular uma curva de equilíbrio a cada ano, uma informação mais estável poderá ser dada em função da média histórica da URA que também teve forte correlação com os pontos de equilíbrio higroscópico das castanhas; para tanto basta expressar esses valores pela equação de regressão *P.E.H.* = -17,63 +0,37URAH, em que o *P.E.H.* seria os novos pontos da curva de equilíbrio (Tabela 2 e Fig. 1). Em função desses novos valores e do comportamento da média histórica da URA têm-se duas médias distintas para se comparar o grau de umidade das castanhas, uma de fevereiro a julho com valor de 12,71 % e outra de agosto até janeiro com média de 10,49 %, com média geral de 11,60%.

TABELA 2. Valores do grau de umidade das castanhas de caju no ponto de equilíbrio higroscópico, em função das médias históricas da URA. Pacajus, CE, 1997.

| Meses      | URA histórica | Ponto de EH(%)* |
|------------|---------------|-----------------|
| Jan.       | 77            | 10,86           |
| Fev.       | 80            | 11,97           |
| Mar.       | 83            | 13,08           |
| Abr.       | 84            | 13,45           |
| Mai.       | 83            | 13,08           |
| Jun.       | 81            | 12,34           |
| Jul.       | 77            | 12,34           |
| Ago.       | 77            | 10,86           |
| Set.       | 76            | 10,86           |
| Out.       | 76            | 10,49           |
| Nov.       | 75            | 10,12           |
| Dez.       | 74            | 9,75            |
| Média gera | 11,60         |                 |

<sup>\*</sup>PEH = -17,63 + 0,37URAH

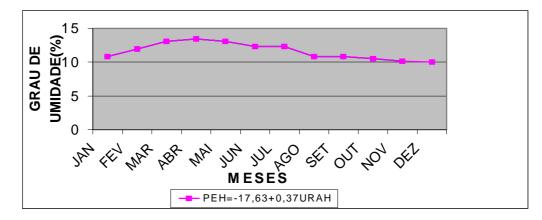



FIG. 1. Curva do equilíbrio higroscópico da castanha de caju em função das médias históricas da URA.