
12-17

FISIOLOGIA E TECNOLOGIA PÓS-COLHEITA DO PEDÚNCULO DO CAJU

Josivan Barbosa Meneses Ricardo Elesbão Alves

FISIOLOGIA E TECNOLOGIA PÓS-COLHEITA DO PEDÚNCULO DO CAJU

Josivan Barbosa Menezes Ricardo Elesbão Alves

Fortaleza, CE 1995

Copyright © EMBRAPA-CNPAT - 1995

EMBRAPA-CNPAT. Documentos, 17

Exemplares desta publicação podem ser adquiridos na:

EMBRAPA-CNPAT

Rua dos Tabajaras, 11 - Praia de Iracema

Caixa Postal 3761

60060-510 Fortaleza, CE

Telefone (085) 231.7655 Fax (085) 231.7762 Telex (85) 1797

Tiragem: 1.000 exemplares

Comitê de Publicações

Presidente: Clódion Torres Bandeira

Secretária: Germana Tabosa Braga Pontes

Membros: Valderi Vieira da Silva

Álfio Celestino Rivera Carbajal

Ervino Bleicher

Levi de Moura Barros

Maria Pinheiro Fernandes Corrêa Antônio Renes Lins de Aquino

Coordenação Editorial: Valderi Vieira da Silva

Revisão: Mary Coeli Grangeiro Ferrer

Normalização Bibliográfica: Rita de Cássia Costa Cid

Capa/Editoração Eletrônica: Nicodemos Moreira dos Santos Júnior

Diagramação: Arilo Nobre de Oliveira

MENEZES, J.B.; ALVES, R.E. Fisiologia e tecnologia pós colheita do pedúnculo do caju. Fortaleza: EMBRAPA-CNPAT, 1995. 20p. (EMBRAPA-CNPAT, Documentos, 17).

1. Caju; 2. Pedúnculo; 3. Pós-colheita; 4. Bioquímica de frutos; 5. Maturação; 6. Conservação; I. Alves, R.E. colab.; II. EMBRAPA. Centro Nacional de Pesquisa de Agroindústria Tropical (Fortaleza, CE); III. Título; IV. Série.

CDD: 634.8856

SUMÁRIO

		Pág
1	INTRODUÇÃO	5
2	IMPORTÂNCIA ECONÔMICA	6
3	BOTÂNICA	7
4	CARACTERÍSTICAS GERAIS DO PEDÚNCULO	7
5	CARACTERÍSTICAS BIOQUÍMICAS DO PEDÚNCULO NOS DIVERSOS ESTÁDIOS FISIOLÓGICOS	9
	5.1 Taxa de respiração	9
	5.2 Ácidos orgânicos	10
	5.3 Açúcares	10
	5.4 Vitamina C	12
	5.5 Compostos fenólicos	13
	5.6 Outras características bioquímicas	14
6	COLHEITA E COMERCIALIZAÇÃO	15
7	CONSERVAÇÃO PÓS-COLHEITA	15
8	REFERÊNCIAS BIBLIOGRÁFICAS	17

FISIOLOGIA E TECNOLOGIA PÓS-COLHEITA DO PEDÚNCULO DO CAJU

Josivan Barbosa Menezes¹ Ricardo Elesbão Alves²

1 INTRODUÇÃO

O extenso território brasileiro, caracterizado por variadas condições climáticas e por distintos tipos de solos, apresenta uma produção agrícola extremamente diversificada, que confere ao país o título de principal produtor mundial de vários produtos. A fruticultura, não obstante representar apenas cerca de 5% das áreas cultivadas no país, é uma das atividades capazes de assegurar ao Brasil um percentual significativo do volume de produção global, colocando-se em primeiro lugar no *ranking* dos produtores de frutas (FAO, 1992 e Carraro & Cunha, 1994).

Apesar da importância do setor para o país, não existe paralelismo entre aumento da produção e avanço de tecnologias de póscolheita capazes de minimizar as perdas.

Atenção especial tem sido dada aos produtos que apresentam potencial para exportação como: abacate, abacaxi, banana, laranja, limão e lima, maçã, mamão, manga, uva, melão, entre outros. Mesmo assim, as perdas pós-colheita chegam a 25%-50% do que é produzido. Em relação aos frutos menos conhecidos como: cajá, mangaba, graviola, jabuticaba, sapoti, carambola, jaca, caju etc., acredita-se que as perdas pós-colheita representem, na maioria dos casos, mais de 50% do que é produzido (FAO, 1993).

Eng.-Agr., M.Sc., Professor Assistente, QTC/ESAM, Caixa Postal 137, 59625-900 Mossoró, RN.

² Eng.-Agr., M.Sc., EMBRAPA/Centro Nacional de Pesquisa de Agroindústria Tropical (CNPAT), Caixa Postal 3761, 60060-510 Fortaleza, CE.

A inacessibilidade ao mercado dos frutos considerados exóticos tem sido causada por diversos fatores, entre eles: condições climáticas restritas; técnicas agrícolas pobres ou ineficientes; conhecimento limitado para a colheita, manuseio e transporte, e falta de conhecimento do valor nutritivo.

Um exemplo clássico desta situação no Brasil é o caju (pedúnculo ou maçã), que apesar de apresentar alto conteúdo de vitaminas, sabor e aroma atrativos e a possibilidade de utilização para uma variedade de produtos processados (Landgraf, 1989), as perdas atingem em torno de 90% da produção.

O propósito deste trabalho é fornecer informações acerca do potencial do pedúnculo do caju para o consumo *in natura* e mostrar algumas técnicas de pós-colheita que podem contribuir para tornar possível a sua comercialização.

2 IMPORTÂNCIA ECONÔMICA

O Brasil é o segundo produtor mundial de castanha de caju, alcançando, em 1992, 96.757 toneladas (20% da produção mundial), sendo o Ceará, o Rio Grande do Norte e o Piauí os principais produtores, que respondem por 92% da produção nacional. Considerando que o pedúnculo corresponde a 90% do peso do caju (pedúnculo + castanha), estima-se em torno de 870 mil toneladas por ano a sua produção no país (IBGE, 1992).

A castanha é largamente comercializada em todo o mundo, e é muito popular na Austrália, Europa, Hong Kong, Japão e América do Norte

Grandes segmentos populacionais do Nordeste brasileiro têm no caju importante fonte de recursos, sendo para muitos municípios a principal cultura geradora de divisas. Porém, somente pequena quantidade é aproveitada para o consumo *in natura* e industrialmente, sendo a maior parte desperdiçada no próprio campo.

3 BOTÂNICA

O cajueiro (*Anacardium occidentale* L.) pertence à família Anacardiaceae, a qual inclui árvores e arbustos tropicais e subtropicais. Esta família possui cerca de 60 gêneros e 400 espécies, englobando ainda a mangueira (*Mangifera indica*), os cajás e a cirigüela, pertencentes ao gênero *spondias* (Johson, 1973 e Crane & Campbell, 1990).

O fruto, a castanha, é um aquênio reniforme (3g a 32g), com tegumento liso, coriáceo, cinzento ou verde acinzentado; o mesocarpo é espesso, alveolado, cheio de um líquido viscoso, vermelho, acre, cáustico e inflamável, comumente chamado LCC (líquido da casca da castanha). Desenvolve-se por seis a oito semanas após a polinização, com o pedúnculo (maçã ou pseudofruto) desenvolvendo-se mais intensamente durante as duas últimas semanas. O fruto e o pedúnculo caem juntos e espontaneamente após sete a oito semanas (Wunnachit & Sedgley, 1992).

4 CARACTERÍSTICAS GERAIS DO PEDÚNCULO

O peso médio do pedúnculo situa-se na faixa de 70g a 90g, com comprimento de 6cm a 10cm (Menezes, 1992).

A qualidade do caju (pedúnculo) para consumo *in natura* relacionase aos seguintes aspectos: teor de açúcar da polpa, adstringência e coloração da casca (vermelha ou amarela).

Do ponto de vista tecnológico, a proporção da parte comestível do pedúnculo do caju está bem acima daquela de frutos tropicais tradicionalmente cultivados como abacate, banana, manga, maracujá e abacaxi (Fig. 1).

Outro aspecto tecnológico vantajoso do pedúnculo do caju é o aproveitamento da polpa na forma de suco (Fig. 2).

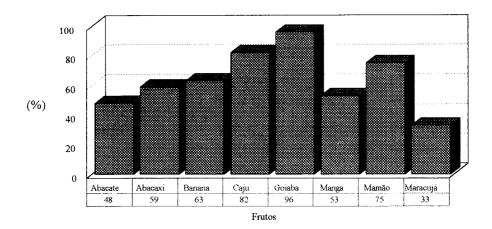


FIG. 1 - Proporção da parte comestível de alguns frutos tropicais (adaptado de Czyhrinciw, 1969).

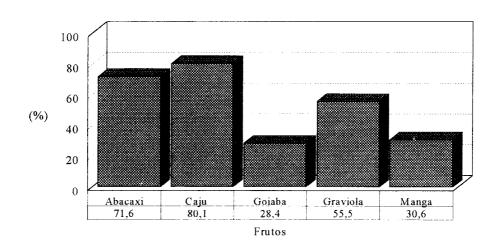


FIG. 2 - Percentagem de suco da parte comestível de alguns frutos tropicais (adaptado de Czyhrinciw, 1969).

5 CARACTERÍSTICAS BIOQUÍMICAS DO PEDÚNCULO NOS DIVERSOS ESTÁDIOS FISIOLÓGICOS

Em se tratando de fisiologia pós-colheita, a vida do fruto dividese em cinco estádios fisiológicos: desenvolvimento, pré-maturação, maturação, amadurecimento e senescência. No desenvolvimento, o fruto sofre diversas alterações em sua composição química que o levam a um equilíbrio desejável de suas características de sabor e aroma (Wills et al., 1989; Chitarra & Chitarra, 1990 e Mermelstein, 1990).

5.1 Taxa de respiração

Os primeiros estudos fisiológicos sobre o pedúnculo do caju (Biale & Barcus, 1967) mostraram que este é um dos produtos de metabolismo mais ativo, com alta taxa de respiração (74ml a 76ml O₂.kg⁻¹.h⁻¹ ou 62ml a 72ml CO₂.kg⁻¹.h⁻¹) à temperatura de 20 °C, fato fisiologicamente desejável para o amadurecimento de frutos tropicais (Tabela 1).

TABELA 1 - Variação da taxa de respiração para frutos da Amazônia.

Tipo	Produto	$ml\ O_2\ kg^{-1}\ h^{-1}$	ml CO ₂ kg ⁻¹ .h ⁻¹
	Banana	12 - 82	17 - 66
	Biribá	24 - 60	22 - 57
Climatérico	Manga	26 - 59	38 - 60
	Mamão	6 - 36	9 - 32
	Graviola	30 - 125	25
	Cacau	35 - 44	31 - 37
Não-climatérico	Caju	74 - 76	62 - 72
	Goiaba	34 - 36	31 - 46

Em lista revisada sobre o comportamento respiratório de frutos (Biale & Young, 1981), o pedúnculo do caju classifica-se como um produto que apresenta modelo de respiração não-climatérico. A baixa taxa de produção de etileno confirma esta classificação: entre 200 e 400 nl.kg⁻¹.h⁻¹ a 20°C.

5.2 Ácidos orgânicos

A exemplo de frutos tais como: maçã, banana, ameixa e pêra, a acidez total titulável do pedúnculo do caju deve ser expressa em percentagem de ácido málico, em função de ser este o mais comumente encontrado. Outro ácido orgânico de importância no pedúnculo do caju é o ácido cítrico.

Price et al. (1975) encontraram os valores médios de acidez titulável (% de ácido málico) de 0,48, 0,30 e 0,58 para pedúnculos de suco doce, ácido e adstringente, respectivamente. Neste trabalho, verificaram também valores médios de pH de 4,3 (suco doce), 3,6 (suco ácido) e 4,2 (suco adstringente). Além do ácido málico, detectaram a presença do ácido cítrico em proporção variável. No suco doce, correspondeu a 20% do total e no suco ácido a apenas 1%. Um terceiro ácido reportado por estes autores é o ácido guínico, presente em quantidades muito baixas.

5.3 Açúcares

No pedúnculo do caju, os principais açúcares encontrados são: maltose, sacarose, glicose, celobiose e rafinose. Na maioria dos trabalhos verifica-se uma percentagem muito baixa de açúcares não-redutores. A glicose, de acordo com Price et al. (1975), constitui o principal açúcar presente no pedúnculo do caju, seguido por frutose (Tabela 2).

TABELA 2 - Conteúdo dos principais açúcares do suco do pedúnculo do caju (g/100 ml).

Açúcar	Suco doce	Suco ácido	Suco adstringente		
Frutose	3,9	2,3	3,4		
Glicose	7,0	7,3	7,2		
Açúcar total	10,9	9,6	10,6		

Os açúcares redutores freqüentemente aumentam durante o crescimento e maturação tanto em frutos climatéricos como em não-climatéricos. Diversos autores têm observado este comportamento no pedúnculo do caju. Recentemente, verificou-se um acréscimo regular no conteúdo de açúcares redutores em pedúnculos refrigerados a 5°C em atmosfera ambiente, armazenados até seis dias, seguido por leve decréscimo a partir de oito dias de armazenamento (Menezes, 1992). Neste mesmo estudo, verificou-se comportamento bastante semelhante em pedúnculos embalados em filme de PVC.

No primeiro trabalho realizado sobre o armazenamento refrigerado do pedúnculo do caju (Singh & Mathur, 1952) verificou-se, também, acréscimo substancial no conteúdo de açúcares redutores (Tabela 3).

TABELA 3 - Teor de açúcares redutores (%) de pedúnculo do caju armazenado a várias temperaturas.

Temperatura (°C)	0	1S*	2S	3S	4S	5S	6S
0	11,0	11,6	12,2	12,2	12,3	14,5	13.2
4,7				12,3			,-
9,2	11,0	11,7	12,4	12,5	_	<u>-</u>	_
30,6	11,0	11,3	-		-	-	_

^{*} S - semanas após armazenamento.

5.4 Vitamina C

A importância da vitamina C na nutrição humana em países em desenvolvimento precisa ser muito enfatizada. A disponibilidade de frutos ricos em vitamina C (Keshinro & Akinyele, 1980) serve para prevenir as manifestações de doenças.

Ácido ascórbico e seu produto de oxidação, ácido dehidroascórbico, são constituintes normais de plantas, mas, na maioria das condições de crescimento, a forma reduzida é predominante (Mapson, 1970).

A investigação do conteúdo de vitamina C no pedúnculo do caju tem sido objeto de estudo por diversos pesquisadores (Tabela 4).

Na Tabela 4 verifica-se que o pedúnculo do caju é uma excelente fonte de vitamina C, chegando a apresentar quatro a cinco vezes o teor de vitamina C dos frutos cítricos (cerca de 50mg/100ml).

O conteúdo de ácido ascórbico no pedúnculo do caju aumenta com a maturação (Chempakam, 1983), como pode-se observar na Tabela 5.

TABELA 4 - Teor de vitamina C do pedúnculo do caju, de acordo com diversas pesquisas.

Autores	Mínimo - Máximo		
Sastry et al. (1962)	191 - 306*		
Lopes (1972)	232,44 - 371,39**		
Moura Fé et al. (1972)	125,6 - 236,2*		
Price et al. (1975)	270 - 294*		
Mudambi & Rajagopal (1977)	175 - 196**		
Falade (1981)	156 - 455*		
FNTI (1981)	160 - 220**		

^{* -} mg/100ml

^{** -} mg/100g

TABELA 5 - Conteúdo de ácido ascórbico no pedúnculo do caju em função do estádio de desenvolvimento.

Dias após a fertilização	Acido ascórbico (mg/100ml)	Peso médio do pedúnculo (g)
25	5,02	0,62
30	18,07	1,12
40	52,49	7,61
45	129,80	17,70
50	187,25	24,90
55	278,45	31,40
60	232,75	55,00

5.5 Compostos fenólicos

Está firmemente estabelecido na literatura fitoquímica que as mudanças no sabor de muitos frutos, ocorridas durante o seu amadurecimento, estão associadas a modificações na concentração de taninos. Sabe-se que a adstringência de frutos imaturos ocorre em consequência da presença de taninos de peso molecular intermediário, mas no amadurecimento a concentração destes compostos reduz-se por processos de complexação e polimerização (Bate-Smith, 1954; Haslan, 1981 e Ozawa et al., 1987).

O estudo de taninos em pedúnculo do caju tem constituído preocupação de diversos autores. Os principais fenólicos presentes são: ácido gálico, ácido protocatecuico, ácido caféico e catequina (Sastry et al., 1962). Por causa da concentração bastante elevada de taninos no pedúnculo do caju, esse grupo de compostos desempenha importante papel na determinação do sabor. Pela Tabela 6 (adaptada de Sastry et al., 1962; Price et al., 1975 e Wardowski & Ahrens, 1990), percebe-se que o teor de fenólicos é função da região de cultivo, do estádio de maturação e da variedade.

TABELA 6 - Teor de taninos do pedúnculo do caju em diferentes regiões de cultivo, estádios de maturação e variedades.

Região	Estádio de	Variedade/	Taninos
	maturação	classe	(%)
Kerala	mc*	vermelho	0,34
Kerala	mc	amarelo	0,35
Karnataka	mc	vermelho	0,55
Karnataka	mc	vermelho	0,45
Fortaleza	mc	suco doce	0,22
Fortaleza	mc	suco ácido	0,28
Fortaleza	mc	suco adstringente	0,58
Ullal	verde	amarelo	0,88
Ullal	mc	amarelo	0,21

^{*} mc - maturação comercial

Durante o armazenamento do pedúnculo do caju em ambiente refrigerado há uma tendência de redução no teor de fenólicos oligoméricos (Menezes, 1992), os quais representam a principal fração deste grupo de compostos desde a colheita até o final do período de armazenamento (14 dias).

5.6 Outras características bioquímicas

Os principais aminoácidos presentes no pedúnculo do caju são: Asp, Ser, Gly, Glu, Ala, Tre, Ile, Leu e Lys (Nagaraja & Nampoothiri, 1986).

O conteúdo de carotenóides é baixo, da ordem de 37,5 - 107,5 mg/100 g. Ocorre concentração de pigmentos na camada fina da epiderme (Cechi & Rodriguez-Amaya, 1981).

6 COLHEITA E COMERCIALIZAÇÃO

A cultura do caju tem caráter sazonal e, embora possa apresentar frutificação com um ano, sua colheita é economicamente viável somente a partir do terceiro ano.

O período requerido para o completo desenvolvimento do fruto varia de 52 até 75 dias após a fecundação.

O desenvolvimento do pedúnculo do caju compreende cinco estádios com base na cor da castanha: rosa, rosa/verde, verde, verde/cinza e cinza.

A gravidade específica é um método físico usado para definir o amadurecimento de alguns frutos. No pedúnculo do caju, tem-se verificado aumento linear nesse parâmetro até 40 dias após a fecundação. A partir dessa época, diminui em função de aumento mais acentuado no volume do pedúnculo do que no seu peso fresco.

Colheita e manuseio cuidadosos são procedimentos necessários para preservar a qualidade dos pedúnculos, devido ao seu alto teor de umidade e fragilidade do epicarpo.

A comercialização do pedúnculo *in natura* só obterá amplitude nos grandes centros de consumo se houver o desenvolvimento de técnicas de pós-colheita adequadas, que permitam estender a vida útil desse produto. Caso contrário, continuará ocorrendo perdas pós-colheita, que apenas no campo chegam a quase 90%.

7 CONSERVAÇÃO PÓS-COLHEITA

O manuseio de frutos tropicais requer cuidados especiais em todas as etapas da cadeia de comercialização (desde o produtor até o consumidor). A rapidez com que amadurecem demanda tecnologia de manuseio especial e justifica o pequeno volume de exportação observado para a maioria desses produtos. Entretanto, são importantes para a economia de nações em desenvolvimento. O caju é um excelente exemplo desta situação.

A conservação pós-colheita do pedúnculo do caju à temperatura ambiente não ultrapassa 48h, em razão da sua extrema susceptibilidade ao ataque de microrganismos fitopatogênicos. Os principais fungos de pós-colheita que atacam o pedúnculo do caju são: *Colletrotrichum*, *Rhizopus*, *Aspergillus e Botrytis* (Menezes, 1992).

Apesar de o pedúnculo do caju apresentar conteúdo elevado de taninos, e, assim, possuir uma barreira química contra a infecção por microrganismos, não apresenta resistência física à penetração (conteúdo elevado de umidade e película de revestimento bastante fina). Outro aspecto negativo que contribui para a degradação pós-colheita rápida é a elevada taxa de perda de peso fresco durante o armazenamento, o que favorece decisivamente o murchamento acentuado.

Os principais tratamentos antifúngicos recomendados para o pedúnculo do caju são:

- 1. Ácido cítrico com 400 a 500 ppm de SO₂ na concentração de 0,25% (Wardowski & Ahrens 1990).
- 2. Ácido sórbico 0,1% (FNTI, 1981).
- 3. Água clorada 100, 20 e 2 ppm de cloro residual consecutivamente e na última imersão Tiofanato metílico 1 g/l ou Benomil 1 g/l ou Tiabendazol 8 g/l (Bleinroth et al., 1992).

No primeiro estudo sobre o armazenamento refrigerado do pedúnculo do caju (Singh & Mathur, 1952) percebe-se a sua extrema facilidade de degradação (Tabela 7).

TABELA 7 - Percentagem de deterioração do pedúnculo do caju armazenado a várias temperaturas.

Faixa de temperatura (°C)	1S*	2S	3S	4S	5S	6S
0	0	4	6	8	10	44
4,7	3	13	46	100	-	-
9,2	24	100	-	-	-	-
30,6	100	-			-	-

^{*} S - semanas após armazenamento.

Nas publicações mais recentes sobre conservação de frutos tropicais, são recomendadas as seguintes condições de temperatura e umidade relativa, respectivamente: 0 a 2°C e 85 a 90% (McGregor, 1987). No entanto, armazenado nessas condições, o produto não se presta para o consumo *in natura*, pois está sujeito à injuria pelo frio.

Desse modo, verifica-se que pouco se pesquisou nos últimos 40 anos sobre técnicas de pós-colheita para aumentar a vida útil desse importante produto do Nordeste brasileiro.

O desenvolvimento de novas técnicas pós-colheita capazes de aumentar a vida útil do pedúnculo do caju é extremamente necessário. A partir do trabalho realizado por Menezes (1992), atualmente podem ser recomendadas as seguintes condições:

- 1. Colheita: manual
- 2. Transporte para o galpão: imediato e evitando sobreposição
- 3. Pré-resfriamento: água fria, mínimo de 20°C
- 4. Tratamento antifúngico: ácido sórbico, 0,1% com Tween 20, 0,03%.
- Embalagem: bandejas de isopor (capacidade cinco frutos) envolvidas com filme de PVC flexível e auto-adesível (espessura cerca de 15μ).
- 6. Transporte e armazenamento: 5°C e UR entre 85% 90%

Nessas condições, o produto não está sujeito à injúria por frio, apresenta vida útil mínima de dez dias e sofre degradação mínima de vitamina C.

8 REFERÊNCIAS BIBLIOGRÁFICAS

BATE-SMITH, E.C. Flavonoid compounds in foods. Advances in Food Research, New York, v. 5, p.262-292, 1954.

BIALE, J. B.; BARCUS, D. E. Respiratory pattern in tropical fruits of the Amazon Bazin. **Tropical Science**, London, v.12, n. 2, p.93-104, 1967.

- BIALE, J.B.; YOUNG, R. E. Respiration and ripening in fruits retrospect and prospect. In: FRIEND, J.;RHODES, M. J.C. (eds.) Recent advances in the biochemistry of fruits and vegetables, London: Academic Press, 1981. p.1-37.
- BLEINROTH, E.W.; SIGRIST, J.M.M.; ARDITO, E.F.G.; CASTRO, J.V.; SPAGNOL, W.A.; NEVES FILHO, L.C. **Tecnologia de pós-colheita de frutas tropicais.** Campinas : ITAL, 1992. 203p. (Manual Técnico, 9).
- CARRARO, F.; CUNHA, M.M. Manual de exportação de frutas. Brasília: MAARA-SDR-FRUPEX/IICA, 1994. p.254.
- CECHI, H.M.; RODRIGUEZ-AMAYA, D. D. Carotenoid composition and vitamin A value of fresh and pasteurized cashew apple (*Anacardium occidentale* L.) juice. **Journal of Food Science**, Chicago, v. 46, n. 1, p.147-149, 1981.
- CHEMPAKAM, B. Distribuition of ascorbic acid and ascorbic acid oxidase activity in the developing cashew apple (*Anacardium occidentale* L.). **Journal of Horticultural Science**, Ashford, v. 58, n.3, p.447-448, 1983.
- CHITARRA, M. I. F.; CHITARRA, A. B. **Pós-colheita de frutos e hortaliças:** fisiologia e manuseio. Lavras: ESAL/FAEPE, 1990. 320p.
- CRANE, J. H.; CAMPBELL, C. W. Origin and distribution of tropical and subtropical fruits. In: NAGY, S.; SHAW, P. E.; WARDDOWSKI, W. F. Fruits of tropical and subtropical origin: composition, properties and uses. Lake Alfred: FSS, 1990. p.1-65.
- CZYHRINCIW, N. Tropical fruit technology. Advances in Food Research, New York, v.17, p.152-207, 1969.
- FALADE, J. A. Vitamin C and other chemical substances in cashew apple. **Journal of Horticultural Science**, Ashford, v. 56, n. 2, p.177-179, 1981.
- FAO. **Production.** Rome: 1992. v.46. 281p. (FAO. Production Series, 112).

- FAO. Prevención de perdidas de alimentos poscosecha: frutos, hortalizas, raíces y tuberculos. Roma: 1993. 183p. (Colécion FAO Capacitación, 17/2).
- FUNDAÇÃO NÚCLEO DE TECNOLOGIA INDUSTRIAL. Aproveitamento industrial do caju (Anacardium occidentale L.). Fortaleza: 1981. 52p.
- HASLAN, E. Vegetable tannins. In: STUMPF, P.K.; CONN, E.E. (ed.). **The biochemistry of plants:** a compreensive treatise. New York: Academic Press, 1981. v.7, p.527-556.
- IBGE. Anuário Estatístico do Brasil 1992. Rio de Janeiro : 1992. v.52, 1119p.
- JOHSON, D. The botany origin and spread of the cashew (Anacardium occidentale L.). The Journal of Plantation Crops, Kerala, v.1, n.2, p.1-7, 1973.
- KESHINRO, O.O.; AKINYELE, I.O. Tropical fruits as sources of vitamin C. Food Chemistry, London, v.5, p.163-167, 1980.
- LANDGRAF, H. Exotenverarbeitung an beispielen aus brasilen. Flussiges Obst, v.56, n.12, p.765-769, 1989.
- LOPES, M.H. Composição química e aproveitamento da "pêra" de caju de Moçambique. **Agronomia Moçambicana**, Lourenço Marques, v.6, n.2, p.119-131, 1972.
- MAPSON, L.W. Vitamins in fruits. In: HULME A.C. The biochemistry of fruits and their products. London: Academic Press, 1970. v.1, p.369-382.
- McGREGOR, B.M. Tropical products transport handbook. Washington: USDA, 1987. 148p. (Agriculture Handbook, 668).
- MENEZES, J.B. Armazenamento refrigerado de pedúnculos do caju (*Anacardium occidentale* L.) sob atmosfera ambiental e modificada. Lavras: ESAL, 1992. 102p. (Dissertação de Mestrado).
- MERMELSTEIN, N.H. Quality of fruits and vegetables. **Food Technology**, Chicago, v.44, n.6, p.99-106, 1990.
- MOURA FE, J.A.; HOLANDA, L.F.F.; MARTINS, C.B.; MAIA, G.A. Características químicas do hipocarpo do caju (*Anacardium occidentale* L.). Ciência Agronômica, Fortaleza, v.2, n.2, p.103-110, 1972.

- MUDAMBI, S.R.; RAJAGOPAL, M.V. Variation in vitamin C content of cashew apple with maturity. **Journal of Food Technology**, Oxford, v.12, n.5, p.555-557, 1977.
- NAGARAJA, K.V.; NAMPOOTHIRI, V.M.K. Chemical characterization of high-yielding varieties of cashew (*Anacardium occidentale* L.). **Qualita Plantarum Foods Humany Nutrition,** Dordrecht, v.36, p.201-206, 1986.
- OZAWA, T.; LILLEY, T.H.; HASLAM, E. Poliphenol interactions: astringency and the loss of astringency in ripening fruit. **Phytochemistry**, Elsmford, v.26, n.11, p.2937-2942, 1987.
- PRICE, R.L. HOLANDA, L.F.F., MOURA FÉ, J.A. MAIA, G.A. MARTINS, C.B. Constituents of brazilian cashew apple juice. Ciência Agronômica, Fortaleza, v.5, n.1-2, p.61-65, 1975.
- SASTRY, L.V. SETTY, L.; SATYAVANTHI, V.K.; PRUTHI, J.S.; SIDAPPA, G.S. Polyphenol constituent in cashew apple juice as influenced by region, strain and selection. **Indian Journal of Applied Chemistry,** New Delhi, v.25, n.4-6, p.119-122, 1962.
- SINGH, K.H.; MATHUR, P.D. Studies in the cold storage of cashew apples. **The Indian Journal of Horticulture,** Bangalore, p.116-122, 1952.
- WARDOWSKI, W.F. AHRENS, M.J. Cashew apple and nut. In: NAGY, S.; SHAW, P.E.; WARDOWSKI, W.F. Fruits of tropical and subtropical origin: composition, properties and uses. Lake Alfred: FSS, 1990. p.67-87.
- WILLS, R.B.H.; McGLASSON, W.B.; GRAHAM, D.; LEE, T.H.; HALL, E.G. **Postharvest:** an introduction to the physiology and handling of fruit and vegetables. Hong Kong: South China Printing Company, 1989. 174p.
- WUNNACHIT, W.; SEDGLEY, M. Floral structure and phenology of cashew in relation to yield. **Journal of Horticultural Science**, Ashford, v.67, n.6, p.769-777, 1992.

