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Preface 

This docum'ent reports the work undertaken by Dr. Marcos Deon Vilela de 

Resende whilst a Fellow of the Rothamsted Research Institute as a Post Doctoral 

Scientist in the Biomathematics Unit, under the guidance of Dr. Robin Thompson 

and with financial support of the referred institute, located in London, England. 

The research project entitled "Spatial Analysis in Perennial Crops" concerned 

with adapting and extending statistical models for efficient analysis of field 

experiments. The analytical procedures described are based on the REML 

method for variance components mixed models. The REML method was 

invented and improved by Dr, Robin Thompson and co-authors and nowadays is 

the standard procedure for statistical analysis in a great range of applications. ln 

agricultural field trials the REML method replaced the traditional method of 

analysis of variance (ANOVA), providing more accurate estimates and 

predictions. 

Chapter 1 considers the spatial statistical analysis of longitudinal data or repeated 

measures. Practical experiments with severa I perennial plants generate annually 

a large amount of data on repeated measures. Improved methods for analysis of 

such kind of data were developed which willlead to higher efficiency of scientific 

research in this field. 

Chapter 2 considers the analysis of multi-environment trials through the factor 

analytic multiplicative mixed models (FAMM) which present severa I advantages 

over the traditional additive main effects and multiplicative interaction analysis 

(AMMI), The FAMM models allow for variance heterogeneity, correlated errors 



within trials and unbalancing. ln addition, provide BLUP of treatments effects, 

easy choice of the number of multiplicative terms needed and estimates of the 

full correlation structure among environments. 

Chapter 3 deals with competition among plants and its influences on statistical 

inference from field trials. Several alternative modelling approaches were 

evaluated for joint consideration of competition and environmental trend or 

spatial effects. Improved models were found for routine of data analysis in annual 

and perennial plants. 

Several plant species are of great economic and social importance in Brazil. 

Scientific experiments with these plants are designed with the objectives of 

providing new technologies which will contribute for the enhancement of 

production and productivity of the crops. lhese enhancements will contribute for 

the economic and social development of the country as well as for the 

environmental conservation as a result of a reduced pressure over the natural 

resources. lhe plant breeding programmes in the country produce annually a 

huge amount of field data which need to be statistically analysed in an efficient 

way. ln this context, optimal statistical methodology is essential in transforming 

data in useful scientific information for the rural development. ln this sense, the 

research reported here will bring great impacto 

Vitor A tanso Hoeflich 

Chefe Geral da Embrapa Florestas 
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1 .1 Introduction 

Multivariate Spatial 
Statistical Analysis of 
Multiple Experiments and 
Longitudinal Data 
Marcos Deon Vilela de Resende 

Robin Thompson 

1. Multivariate Spatial Statistical 
Analysis of Longitudinal Data 

Traditional analysis of agricultural field trials considers measures taken from 

adjacent plants or plots as non-correlated and the spatial positions of the 

observations are ignored. Hence, the residual covariance matrix is modelled as a 

diagonal one, with errors assumed as independents. However, the spatial 

dependence does exist and contributes to the increasing of the residual variance, 

in a way that is relevant to consider it in the analysis of trials by approaching the 

correlated erro r structure through adequate models. 

According to Fisher (1925) and Steel and Torrie (1980), randomisation of 

treatment plots across replications can provides neutralisation of the effects of 

spatial correlation, leading to a valid analysis of variance. However, although the 

randomisation theory emphasises this kind of neutralisation, that is more efficient 

when spatial models are used. Besides, the local control schemes relying on 

blocking can be inefticient in accounting of ali environmental gradients and 

trends and even the incomplete blocks do not provide a complete evaluation of 

the environmental eftects. Once blocking is made before the establishment of the 

trials, the presence of patchy and environmental gradients within blocks is 

frequently observed (mainly in perennial crops) by the occasion of the data 
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collecting. This reveals that blocks were not adequately designed a priori. ln such 

a situation, only the spatial analysis techniques can circumvent the estimation 

problems and provide efficient analysis. 

The main procedures aimed at the control and account of spatial correlation 

among neighbouring observations are time series models (Gleeson and Cullis, 

1987; Martin, 1990; Cullis and Gleeson, 1991; Gilmour, Cullis and Verbyla, 

1997; Gilmour et aI., 1998; Cullis et aI. 1998; Smith, Cullis and Thompson, 

2001) using ARIMA models and REML estimates of variance components 

(Cooper and Thompson, 1977) and geostatistical models (Cressie, 1993; 

Grondona and Cressie, 1991; Zimmerman and Harville, 1991). 

The time series models were first used by Gleeson and Cullis (1987) that 

considered the errors through an autoregressive integrated moving average 

process (ARIMA (p, q, d)) in one direction. This model was considered 

inefficient and Martin (1990) and Cullis and Gleeson (1991) extended such 

model to two directions: rows and columns. The extended model is of the form 

ARIMA (p" d" q,) x ARIMA (P2' d2, q). This class of models is called error in 

variables and account for a tendency effect (E) plus an independent erro r 11. ln 

annual crops experiments and in knowledge absence of the correct correlation 

structure, Gilmour, Cullis and Verbyla (1997) suggested the modelling of ç as a 

first order separable autoregressive process (AR 1 x AR 1). This auto-regressive 

process in two directions has shown efficiency in a gamma of situations 

(Grondona et aI., 1996; Gilmour, Cullis and Verbyla, 1997; Cullis et aI., 1998; 

Apiolaza, Gilmour and Garrick, 2000; Gilmour, 2000; Qiao et aI., 2000; Costa 

e Silva et aI., 2001; Resende and Sturion, 2001; Smith, Cullis and Thompson, 

2001; Stringer and Cullis, 2002; Resende, Thompson and Welham, 2003). A 

process (AR 1 x AR 1) is flexible and permits to model local and global 

tendencies as well as extraneous variations, taking into account the three major 

sources of spatial variation, according to Gilmour, Cullis and Verbyla (1997). 

The ARIMA methods of Gleeson and Cullis (1987), Martin (1990) and Cullis and 

Gleeson (1991) encompass the nearest-neighbour (NN) methods of Papadakis 

(1937), the Papadakis' iterated NN method (Papadakis, 1970; Bartlett, 1978) 

and other previous methods (Papadakis, 1984; Bartlett, 1938; Atkinson, 1969; 

Wilkinson et aI., 1983; Green et aI., 1985; Besag and Kempton, 1986; Williams, 

1986) of neighbour analysis. 
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The geo-statistical procedures consider directly the spatial heterogeneity through 

the inclusion of the tendency effects and error correlation in modelling the 

residual covariance matrix (Duarte, 2000). They search for a general covariance 

function estimate, which is used directly in estimation and prediction procedures. 

They permit the evaluation of the spatial variability pattern in the experimental 

area through the adjusted semivariance matrix. This matrix is used as weighting 

in the generalised least square equations. The semivariance matrix can be 

adjusted by several models such as spherical, exponential and Gaussian. The 

standard model for fitting a function to the experimental variogram in field trials is 

the exponential one. Grondona and Cressie (1991) and Cressie (1993) tried to fit 

several classes of models to the experimental variogram in several field trials and 

concluded that none achieved a better fit (according to the weighted-Ieast-square 

criterion) than the exponential model. Other results based on experimental data 

have also shown that the exponential spatial model mostly explained the sam pie 

variogram (Joyce et aI., 2002). And because the covariogram model is 

exponential, residuais can be interpreted as a realisation of a first-order 

autoregressive processo This makes sense since the AR 1 model projects the 

autocorrelation to distant lags as a power function of the distance apart. The 

exponential model does about the same. According to Gleeson (1997), the 

geostatistical approach of Zimmerman and Harville (1991) called random field 

linear model is equivalent to fitting separable ARIMA processes and according to 

Gilmour, Thompson and Cullis (1995) it is equivalent to a first order separable 

autoregressive process (AR1 x AR1) without the independent error. However, 

the geostatistical models are often isotropic and Cullis and Gleeson (1991) and 

Gilmour, Cullis and Verbyla (1997) have shown that anisotropic models are 

often preferred for modelling the variance structure in field trials. Furthermore, 

the assumption of separability results in significant savings in computer time. 

Based on these facts, the ARIMA time series models should be preferred as they 

encompass ali the other main approaches. 

The reports attesting the efficiency of spatial analysis are referring to annual 

crops or forest trees with a single measure per plant. The spatial analysis 

concerning to repeated measure data or multivariate data on each plant has not 

been accounted yet, despite the great number of crops that generates a large 

amount of this sort of data. Perennial plants are of extreme importance in several 

tropical and subtropical parts of the world and include crops such as coffee, tea, 

cashew, coconut, cocoa, rubber tree, oil palm, sugar cane and several fruit trees 

and forage plants. The application of spatial analysis in these categories of 
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plants involves modelling of the several random effects through different 

structures for each one, providing an adequate account of the repeated measures 

together with the spatial variation. Also, these repeated measures are commonly 

obtained from multi-environment trials and analyses involving several repeated 

measures in several sites with spatial variation are demanded. 

ln modelling longitudinal or repeated measures data arising from perennial 

individuais, several approaches can be used such as repeatability, multivariate, 

random regression, spline, character process and ante-dependence models. The 

simplest (repeatability) and the more complete and parameterised (multivariate) 

models are not likely to be useful in practice. Parsimonious approaches such as 

random regression or covariance functions (Kirkpatrick, Hill and Thompson, 

1994), smoothing cubic splines (White, Thompson and Brotherstone, 1999; 

Verbyla et aI., 1999), character process models (Jaffrezic, White and 

Thompson, 2003) and structured ante-dependence models (Jaffrezic et aI., 

2002) should be tried for the sake of practical efficiency. Character process and 

structured ante-dependence models have proved efficiency in a number of 

situations (Jaffrezic et aI., 2002). 

We analysed a total of 26,370 observations from 3 trials of tea plant concerning 

to 8 yield annual measures, through different spatial and non-spatial models. 

The classes of methods applied were: (1) univariate spatial models for individual 

annual measures on each trial; (2) longitudinal non-spatial models for the severa I 

measures on each trial; (3) longitudinal and spatial models simultaneously for 

repeated measures in each trial. These situations are mandatory in any breeding 

program of a perennial crop and ali data should be analysed simultaneously in 

sake for maximum efficiency of the improvement programo The adequate 

modelling and computing are criticai for obtaining reliable estimates and 

satisfactory practical results. 

1.2 Description of Models 

1.2. 1 General Linear Mixed Model and REML Estimation 

A general linear mixed model has the form (Henderson, 1984; Searle et aI. 1992; 

Gilmour et aI., 2002; Thompson, 2002; Thompson et aI., 2003): 

y=XJ3+Zt+E (1) 
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with the following distributions and structures of means and variances: 

1 ~ N(O, G) E(y) = Xl) 

E ~N(O, R) Var(y) = V = ZGZ'+R 

where: 

y: known vector of observations. 

~: parametric vector of fixed effects, with incidence matrix X. 

1: parametric vector of random effects, with incidence matrix Z. 

E: unknown vector of errors. 

G: variance-covariance matrix of random effects. 

R: variance-covariance matrix of errors. 

O: null vector. 

Assuming G and R as known the simultaneous estimation of fixed effects and the 

prediction of the random effects can be obtained through the mixed model 

equations given by: 

X' R-'Z ] [13] [X' R-Iy] 
Z'R-'Z+G-' l' - Z'R-'y 

The solution to this system of equations for p and l' leads to identical results 

as that obtained by: 

13 = (X'V-IXr X'V-Iy: generalised least square estimator (GLS) or best 

linear unbiased estimator (BLUE) of (3; 

f = GZ' V-I (y - x!3) = C' V-I (y - x!3) : best linear unbiased predictor 

(BLUP) of T ; where C' = GZ': covariance matrix between T and y. 

When G and R are not known, the variance components associated can be 

estimated efficiently through the REML procedure (Patterson and Thompson, 

1971; Searle et aI., 1992; Thompson, 1973; 1977; 1980; 2002; Thompson and 

Welham, 2003; Cullis et aI. 2004). Except for a constant, the residuallikelihood 

function (in terms of its log) to be maximised is given by: 
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L = -~ (logIX'V-
1 
XI+ loglVI+ V log a ~ + y'Py /a~) 

= -~ (loglC *1+ IOgIRI+ loglcl+ v log a ~ + y' Py / a ~) 

where: 

V = R + ZGZ I. 

v = N-r(x): degrees of freedom, where N is the total number of data and r(x) is 
the rank of the matrix X. 

C*: Coefficient matrix of the mixed model equations. 

Being general, the model (1) encompasses several models inherent to different 
situations such as: 

Univariate model 

G = Aa;; R = Ia ,2, where: 

cr ,2: variance of the random effects in ,. 

A: known matrix of relationships between the, elements. 
2 ·d I . cr E : resl ua vanance. 

Repeated measures mo dei including permanent effects (p) 

y = X~ + Z, +E 

Var(,·)=Aa 2
.; 

t 
Var(p) = la~; R = la; 

cr ~ : variance of permanent effects. 
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Multivariate models 

ln the bivariate case: 

G = A @ G o; R = 1 @ Ro; 

a t ,,]. 

2 ' a t , 

ar 
[

a 2 

Ro = ~' °2]' where: 
a E, 

cr til : random treatment effects covariance between variables 1 and 2. 

cr E
'

2 : residual covariance between variables 1 and 2. 

Spatial models (time series or geostatistical) 

R = I: non-diagonal matrix that considers the correlation between residuais 

through ARIMA models or covariance based on adjusted semivariance. 

1.2.2 Univariate Spa tia I Models for Individual Annual 
Measures on each Trial 

ln the context of the agricultural experiments, the general spatial model 

developed by Martin (1990) and Cullis and Gleeson (1991) has the following 

form: 

y = Xp + Zr: + ç + 11, where: 

y: known vector of data, ordered as columns and rows within columns; 

-r: unknown vector of treatment effects; 

p: unknown vector representing the spatial variation at large scale or global 

tendency (block effects, polynomial tendency); 

ç: unknown vector representing the spatial variation at small scale (within blocks) 

or local tendency, modelled as a random vector with zero mean and spatially 

dependent variance; 

11: unknown vector of independent and identically distributed errors. 
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Through ARIMA models, the error is modelled as a function of a tendency eftect 

(ç) plus a non correlated random residual (11). 80, the vector of errors is partitioned 

into E = ç + 11, where ç and 11 refer to the spatially correlated and independent 

errors, respectively. The traditional models of analysis do not include the ç 
component. 

Considering an experiment with rectangular shape in a grid of c columns and 

r rows, the residuais can be arranged in a matrix in a way that they can be 

considered as correlated within columns and rows. Writing this residuais in a 

vector following the field order (by putting each column beneath another), the 

variance of residuais is given by VarrE) = Var rE, + 11) = R = L = 

a t q= (C!> c) @ ~ (C!> r)] + /a ,~ , where cr t is the variance due to local tendency 

and a,~ is the variance of the independent residuais. 

The matrices I (cD,) alld I (cD,) refer to first order autoregressive correlation 
, , 

matrices with auto-correlation parameters cD and cD and order equal to the c r 

number of columns and rows, respectively. ln this case, ç is modelled as a 

separable first order auto-regressive process (AR1 x AR1) with covariance matrix 

Var (I; ) = a ~2 cl: (C!> c) @ I (C!>, )] (Gilmour et ai., 1997). This model can 
c , 

preserve the design information and structure, which is a desired feature 

according to Qiao et aI. (2000). 

One first order correlation matrix AR1 (p) is of the form (for 4 columns or rows): 

plto-I,I pll,-III plt,-I,I pi p2 p3 

I(p) = 
P 11,-1,1 ph-t2 1 pll,-t21 pi 1 pi p2 

11,-1,1 ph-12 1 1 pll,-I)I p2 pi 1 pi P 

P 
11,-1,1 P 11,-121 all,-I)I p3 p2 pi 1 

Another formulation can be used such as R = 8 + R *, where 
s= Var (ç)=cr,2[I (<1>,)181 I (<1>,)] and R*=Ia 2 .Thematrix8canbe 

" ~ 

included in G as well since ç is another non-correlated (with other effects) random 

eftect in the model (could be included in T), besides the error. 
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Using trials established in complete block designs the following models were 
fitted. 

Model 1: Complete block design, block as fixed eftects. 

Model2: Complete block design, block as fixed effects + (AR1 x AR1) without 

inclusion of the independent term erro r. 

Model 3: Complete block design, block as random eftects. 

Model4: Complete block design, block as random eftects + (AR1 x AR1) 

without inclusion of the independent term errar. 

Model 5: Complete block design, block as fixed effects + (AR2 x AR2) without 

inclusion of the independent term error. 

Model 6: Complete block design, block as fixed eftects + (AR2 x AR2) without 

inclusion of the independent term error + inclusion of rows and 

columns as random effects. 

Model7: Complete block design, block as fixed eftects + (AR1 x AR1) with 

inclusion of the independent term error. 

Model 8: Complete block design, block as fixed eftects + (AR2 x AR2) with 

inclusion of the independent term error. 

Model 9: Complete block design, block as fixed eftects + row and column as 

random effects (treatment and block are not orthogonal to row and 

column). 

Model 10: Complete block design, block as fixed effects + raw and column as 

random eftects + (AR 1 x AR 1 ) with inclusion of the independent term 

errar (treatment and block are not orthogonal to row and column). 

Model 11: Row and column as random effects, not considering block and spatial 

structure. 

Model 12: Row and column as random eftects (not considering block) + (AR1 x 

AR1) with inclusion of the independent term error. 

Model 13: Row as fixed and column as random effects, not considering block and 

spatial structure. 

Model 14: Row as fixed and column as random effects (not considering block) + 
(AR1 x AR1) with inclusion of the independent term error. 
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Model 15: Row and column as fixed effects, not considering block and spatial 

structure. 

Model 16: Linear trend across rows and columns, not considering block and 

spatial structure. 

Model 17: Linear trend across rows and columns, considering block but not the 

spatial structure. 

Model 18: Spatial structure (AR 1 x AR 1) with inclusion of the independent term 

error (equivalent to model 7 but without adjusting the block effect). 

Model 19: Row and column as fixed effects, not considering block but 

considering the spatial structure (AR 1 x AR 1). 

Other models including splines were also evaluated. 

1.2.3 Longitudinal Non-Spatial Models for Several Measures 
on each Trial 

Repeated measures data analyses were approached by several models, including 

repeatability, multivariate, character process, ante-dependence, random 

regression and cubic spline models. 

Character Process Models 

Pletcher and Geyer (1999) suggested the use of character process models for 

the analysis of repeated measures. These models are based on the theory of 

stochastic process and were extended by Jaffrezic and Pletcher (2000) aiming at 

the relaxing its more restrictive assumption of stationarity of correlations. The 

simplest character process model uses the covariance function 

C (t, s) = a la s P (/-s) , where C (t, s) is the covariance between repeated 

measures in times t and s, a I is the standard deviation of the trait in the time t 

and p (/-S) is the correlation between measures in times t and s. For data 

collected at regularly spaced times, this character process is equivalent to an 
autoregressive model with heterogeneous variance (ARH). 

Ante-dependence Models 

The basic idea of the ante-dependence models is that one observation in time t 
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can be explained by previous observations. Nunez-Anton and Zimmerman (2000) 

proposed the structured ante-dependence model in which the number of 

parameters is smaller than that in the traditional ante-dependence models. These 

models can deal with highly non-stationary correlation patterns and correspond, 

in their simple specifications, to a non-stationary generalisation of autoregressive 

models. They also consider the heterogeneity of variance between measures. 

The covariance matrix is of the form 

L= 

0'2 
1 

Sim. 

0'10'1P 1P 2 

0'20'3P 2 

0'; 

Random regression models 

0'10'4P 1P2P3 

0'20'4P 2 P 3 

0'30'4P3 

0'; 

By the random regression model (Meyer and Hill, 1997) the treatment effect is 
,1-1 • 

modelled by ~r ~ir<D(aik)r, where the term ~i,. denotes the set of I random 

regressions coefficients for the ith treatment, <D( a: )r is the rth polynomial on 

standardised age (ai:) of measurement k. The estimated G matrix for treatment 

effects is given by G = <1>8<1>', where <1> is a matrix containing the random effects 
of the polynomials for the ages of measurements and B is the estimated 
variance-covariance matrix of the polynomial coefficients. 

Cubic Spline Models 

A cubic spline is a smooth curve over an interval formed by linked segments 

of cubic polynomials at certain knot points, such that the whole curve and its 

first and second differentials are continuous over the interval (Green and 

Silverman, 1994). Natural cubic splines can be incorporated into the standard 

mixed model framework (White, Thompson and Brotherstone, 1999; Verbyla 

et aI., 1999). By the spline model the treatment effect is modelled by 

b,o +b<Jt" + L~:>"zl(t,,() where biOdenotes the intercept for treatment i, 

bil denotes the slope for treatment i and b ii denotes the random regression 

coefficient for the ith treatment at knot I. The t ik denotes the age of measurement 
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and Z,(t ik ) represents the spline coefficient for age t ik . The estimated G matrix 

for treatment effects is given by G = QZQ', where Q is a matrix containing 
the random effects of the spline for the ages of measurements and Z is the 

estimated variance-covariance matrix of the spline coefficients. 

1.2.4 Longitudinal Spatial Models for Repeated Measures on 
each Trial 

ln this case, the inverse of the correlated erro r variance matrix is given by 

[

Ha 2 
R -I == R -I ® H -I == 1;, 

o Ha 1;" 

Ha 1;" l-I 
Ha 2 ,where: 

1;, 

[

a 2 

Ro == a 1;, 

1;" 

H = [L (<1>,)® L (<1>,)] 

1.2.5 Model Fitting Procedure and Model Comparisons 

Likelihood Ratio Test (LRT) 

Given two nested models U and V with maximum of the residual likelihood 

function L(U) and L(V) and correspondent number of parameters nu and nv' it can 

be showed that D = -2 log L(U) -2 log L(V) approaches a chi square 

distribution with nv - nu degrees of freedom (assuming U as nested within V). 

Testing the significance of D against the appropriate chi square distribution 

constitutes the LRT testo When V is the saturated model, D is called deviance. 

50, alternatively, the difference between the deviances of the two models can be 

used to do the LRT testo 

The LRT test can be used to compare fitted models provided they have a nested 

structure and the same fixed effects. This permits comparison of models with 

different random factors for a constant structure of fixed effects. For comparing 

spatial models, the LRT statistic can be used to assess the order of the model to 

be fitted. Then, it is possible to test if an MA(2) model has a better fit than an 

MA(1), or whether an ARMA (1,1) is better than an AR(1). However, the use of 
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the LRT is limited to models fitted under the same regime of differencing. Testing 

models with different structures of fixed effects was considered by Welham and 

Thompson (1997). 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

Other criterion for model selection is the Akaike Information Criterion, which 

penalise the likelihood by the number of independent parameters fitted. By this 

criterion, any extra parameter must increase the likelihood at least by one unit 

for entering in the model. The AIC is given by AIC = -2 log L + 2 p, where p is 

the number of parameters estimated. Smaller values of AIC reflect a better 

global fit (Akaike, 1974). Other approach is the Bayesian Information 

Criterion (BIC) of Schwarz (1978), which is given by BIC = -2 log L + p log v, 

where v = N - r(x) is the number of residual degrees of freedom. BIC and AIC are 

calculated for each model and the model with the smallest value is chosen as the 

preferred model. AIC and BIC can be used for comparing non nested models, but 

the data should be the same which means the fixed effects should be the same. 

It can also be seen that both AIC and BIC depend on the basic quantity -2 log L. 

Variograms 

The variogram uses semivariances and is used in both methods of spatial 

analysis of field data: time series and geostatistics. The semivariance ranges 

from O (at lag O) to avalue equal to the variance of the observations (at a high 

lag). As the distance (called lags) between observations (plots or plants) 

increases, the variogram increases in value. The distance in which the variogram 

reaches a maximum or plateau (called si" c
1

) equal to the variance of the data, is 

called range. The variograms display the spatial behaviour of the variable and 

inform about the pattern of variability in severa I directions. A variogram that 

reaches a si" or plateau is said to be stationary. The assumption of stationarity is 

made by the character process models such as the autoregressive. The 

variograms associated to various models were used as a mean of guiding the 

fitting procedures. 
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Software 

Ali models were fitted using the software ASREML (Gilmour and Thompson, 

1998; Gilmour, Cullis, Thompson and Welham, 2002) which uses the REML 

procedure through the algorithm average information and sparse matrix 

techniques (Gilmour, Thompson and Cullis, 1995; Johnson and Thompson, 1995; 

Thompson, Wray and Crump, 1994; Thompson et aI., 2003). The software 

GENSTAT (Thompson and Welham, 2003; Welham, Thompson and Gilmour, 

1998) was also used. 

1.3 Application 

The data set concerning to tea plant came trom three trials established in comple­

te block designs with six plants per plot and in a spacing of 3 x 2 meters. The trait 

leaf weight was evaluated at individual levei in several consecutive years. Trial 1 

was established with 141 treatments (open pollinated progenies) and 10 

replications, summing 8,460 plants and 16,920 observations (two consecutive 

years). Trial 2 provided 5,400 observations (60 treatments x 5 replications x 6 

plants per plot x 3 annual measures). From trial 3 4,050 observations were 

analysed (45 treatments, 5 replications, 6 plants per plot and 3 annual measures). 

The 45 treatments in trial 3 are also in trial 2. The basic model for ali trials included 

block, treatments, plot and residual effects. 

1.3. 1 Univariate Spatial Models for Individual Annual 
Measures on each Trial 

Results concerning to trial 1 are presented in Table 1. 



Table 1.Summary of results concernmg to models 1 to 19 for the traitleaf weight in the first and second years 

of harvest tn trial 1 The estimates are genetic variance among treatments (progentes) (â,,2), non* 

~ 2 
correlated residual variance (a 11 ), narrow sense heritability (h J L adjusted narrow sense heritabtlity 

proportional only to th e unaeeounted error (11), shrinkage fac to r 

(À. =(â~ -3â:)i(4â:)) 01 the genetie eflects in the mixed model equations and effictency (E fite.) 01 

'2 
models over the model1, in term sol had.i 

Leal weight in the first measure 

Non-S patial Model, 

M o dei Oeviance iz2 h2 ;tI 
' 2 , 2 E Ilic 

a4J 
cr, cr~ 

1 -3105 78 O 1413 O 1905 4 250 0.0110 0.2214 1 00 
3 -3137 40 O .1378 O 1905 4 .250 0.0110 0.2214 1 00 
9 -3201 .88 O 1416 O 1955 4 1 15 O .0111 0.2160 1 03 

11 -3213 .00 O 1391 O 1955 4.1 15 0.0111 0.2160 1 0_3 
13 -3018 .58 O .1439 O .1955 4 .1 15 O .0111 O .216 O 1 03 
15 -2523 58 O 1600 O .2022 3 .946 0.0115 0.216 O 1 06 
16 -3085 37 O 1371 O 1864 4 .366 0.0108 O .2210 0.98 
17 -3083 82 O 1422 O 1913 4 .227 0.0111 0.2210 1.004 

S patial Models without" 

2 -3862 28 0.1652 0.0126 
4 -389434 O 1613 0.0126 
5 -4039.31 O .1667 0.0128 
6 -4045.31 O 1690 0.0128 

Spotial Model, with Tl 

7 -4254.48 O 1737 0.3296 2 .034 0.0134 O .1492 1.730 
8 -4189. 15 O 1788 0.3145 2 180 0.0132 O 1547 1 .651 • 

10 -4257 66 O 1728 0.3278 2 .051 0.0133 O .1490 1 .721 
12 -4283 01 O 1725 O 3276 2 052 0.0134 O 1502 1 .720 
14 -4069 91 O 1737 0.3278 2 051 0.0133 O 1490 1 721 
18 -4278 02 O .1717 0.3264 2 .063 0.0134 O 1508 1 713 
19 -3498 55 O 1792 0.3352 1 .983 0.0136 O 1487 1 .760 

s:: 
c: 

'" ii· 
CD 
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" 9l 
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:l 
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Leafweight in the second measure 
N S t"IMdl on- jpa la o es 

Model Deviance i? h;dJ ~ 
1 11853.72 0.1688 0.2346 3.262 
3 11836.52 0.1654 0.2346 3.262 
9 1168990 0.1691 0.2438 3.101 

11 11683.96 0.1668 0.2438 3.101 
13 11767.86 0.1730 0.2438 3.101 
15 12027.38 0.1781 0.2493 3.012 
16 11926.37 0.1620 0.2282 3.383 
17 11872.48 0.1702 0.2361 3.235 

s :ipatlal M odels without 11 
2 11424.52 0.1900 - -
4 11407.16 0.1862 - -
5 11247.98 0.1887 - -
6 11208.30 0.1905 - -

s :ipatial Models with 11 
7 11089.97 0.1927 0.3465 
8 11084.85 0.1914 0.3630 
10 11070.69 0.1933 0.3489 
12 11056.93 0.1920 0.3477 
14 11150.56 0.1961 0.3491 
18 11080.62 0.1907 0.3438 
19 11456.87 0.1974 0.3485 

I\~odels wlth the same structure ln terms of the flxed effects 
Block as fixed effects models 1,2,5,6,7,8,9,10 
Constant as flxed effect m odels 3, 4, 11, 12, 18 
Row as flxed effect models 13 and 14 
Row s and c olum ns as fixed effects m odel s 15 and 19 

1.886 
1.755 
1.866 
1.876 
1.865 
1.909 
1.870 

~2 

(J"~ 
~ 2 

(J"'1 
Eflic. 

0.083 1.339 1.00 
0.083 1.339 1.00 
0.084 1.294 1.04 
0.084 1.294 1.04 
0.084 1.294 1.04 
0.086 1.294 1.06 
0.081 1.339 0.97 
0.084 1.339 1.006 

0.094 - -
0.094 - -
0.093 - -
0.092 - -

0.0965 1.0175 1.477 
0.0956 0.9669 1.547 
0.0965 1.0099 1.487 
0.0966 1.0148 1.482 
0.0965 1.0093 1.488 
0.0965 1.0263 1.465 
0.0964 1.0101 1.486 
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The deviance criterion is not adequate for comparing models with ditferent fixed 

etfects. The Ale criterion can be used but might not reflect superiority for 

genetic selection. 80, the efficiency in terms of the adjusted heritability 

(proportional only to the unaccounted error) can be used for inference about the 

best models. The adjusted narrow sense heritability estimates presented in the 

previous table are referring to individual models rather then parent models. 

The two traits (sequence measurements in consecutive years) presented 

approximately the sam e behaviour in terms of results across models. Among the 

non-spatial models, the row-column analysis (models 11, 13 and 15) performed 

better than the randomised block analysis (models 1 and 3). This can be 

explained by the local control in two directions provided by the row-column 

analysis and by the small block provided by rows since each original block was 

composed by six rows. Due to this last reason there was no need to fit block 

additionally to the row and column (models 9,10 and 17). Among the spatial 

models, the block effect was insignificant in 10, which was then equivalent to 

12. 

The spatial models (2, 4, 5, 6, 7, 8, 10, 12, 14, 18 and 19) were always 

much better than the non-spatial ones (1, 3, 9, 11, 13, 15, 16 and 17) as 

judged by deviances of the models as well as by selection efficiencies in terms 

Df the adjusted heritabilities or shrinkage factors for treatment effects in the 

mixed model equations (Table 1). The spatial models with inclusion of fJ (models 

7,8, 10, 12, 14, 18 and 19) were always better than that without fJ (models 2, 4, 5 

and 6) as judged by deviances of the models as well as selection efficiencies in 

terms of the adjusted heritabilities or shrinkage factors for treatment effects in 

the mixed model equations (Table 1). 

The need for keeping the design features in the analysis can be seen by 

comparing models 7, 12 and 18, that led to almost the same efficiency. The rate 

of recovering of design features by spatial analysis is enhanced when the 

independent error is fitted. A model without plot and design features was fitted 

for the two traits and provided almost the same efficiency as model 12, showing 

that sometimes simple spatial models can be used. 

For two dimension spatial models without fJ (models 2 and 5), the model AR2 

was better than the AR1 (change in deviance of 176.54). However, that 

superiority was not kept (change in deviance of 5.12) when models (7 and 8) with 
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Tl were fitted. ln this case, the log L failed to converge for one of the traits. So 

there is no need for AR2 in models with inclusion of Tl. Besides, the two 

dimensional AR2 models fail to converge in a number of situations, revealing to 

be an over-parameterised model. 

Little difference (in terms of the adjusted heritability), if any, was noted in fitting 

local control as fixed or random effects in the non-spatial models (models 1 

against 3; 11 against 13 or 15) and spatial models (12 against 14 and 19), with a 

slight superiority for fitting row and column as fixed effects. However, this 

superiority probably is not real as the columns are incomplete and do not 

contributes for the recovering of genetic information when the column effect is 

fitted as fixed. Besides, the column effect was not significant in models 11 and 

12 and the column variance reached zero. lhis prevents its fitting as fixed 

effects in models 15 and 19, which willlead to over-fitting. When an effect is 

treated as fixed, it is considered that its determination coefficient is 1. For this to 

be true, the effect variance should be, at least, greater than zero. Effects with 

variance tending to zero should not be fitted as fixed. ln spatial analysis, the 

local control effects tend to be forced to zero and so, probably, such effects 

should be fitted as random. ln a non-spatial context, very often is recommended 

to treat complete local controls as fixed effects for the sake of unbiased 

prediction/estimation. 

lhe overall best methods for the two traits were 12 and 14, both corresponding 

to a row-column analysis + a spatial (ARl x AR1) + independent term error. 

For these best models, the efficiency over the traditional randomised complete 

block analysis ranged from 1.48 to 1.76, i.e., 48% to 76% of superiority. 

Improved designs can be used to have high efficiency when assuming a spatial 

model such as model 12 (establishing the experiment according to model 12). ln 

other words, appropriate systematic designs are needed when spatial patterns 

are present in the field. Spatial analysis has been shown to improve the precision 

and accuracy of treatment estimates, even with designs not optimised spatially. 

It is expected that designs with good general spatial properties will further 

increase the efficiency of treatments estimates. lhis would permit the fitting of 

only one spatial model to ali trials as advocated by Kempton et aI. (1994). 

Models ARMA and MA were also tried. lhe models with error structure 

(ARMA 1 x ARMA 1) and (AR2 x AR2) are over-parameterised and, as the (MA 1 x 

MA 1), failed to converge. Gleeson and Cullis (1987) found that differencing in 
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one direction and then fitting a moving average (MA) correlation structure for the 

residuais in the sam e direction resulted in great gains in efficiency. However, 

differencing in two dimensional analysis can be prone to discard treatment 

information according to Kempton et aI. (1994), who found that (MA 1 x MA 1) 

after first-differencing was inefficient for many trials. Several authors have 

questioned the need for differencing (Martin, 1990; Zimmerman and Harville, 

1991). Others acknowledged that differencing is unnecessary for many trials 

(Cullis et aI. 1998). Furthermore, differencing can often lead to the need for 

more complex modelling of the variance structure for the plot errors. ln 

geostatistics, trend is modelled as a mixture of spatial covariances and/or 

deterministic functions of spatial coordinates. Other alternatives to differencing 

are the inclusion of polynomial functions of the spatial coordinates or the use of 

smoothing splines to model global trend. Differencing is often wasteful of 

degrees of freedom and information on treatments or genetic effects. 

The variograms for the best models were stationary and exhibited approximately 

the same pattern. The autocorrelation coefficients for models without 

independent errors were approximately 0.21 and 0.29 for AR Column and 0.13 

and 0.14 for AR Row, for the two traits, respectively. For models with 

independent errors, the autocorrelation coefficients were approximately 0.79 and 

0.75 for AR Column and 0.50 and 0.52 for AR Row, for the two traits, 

respectively. These high autocorrelation coefficients obtained show that the AR 

process is modelling fertility gradient rather than competition. This is coherent 

with the spacing used (3 by 2 meters) and with crop management in which each 

year ali the leaves are harvested. These features tend to avoid competition 

between plants. 

Although the variograms have shown a reasonable behaviour, models with 

splines were also tried, some extending the previous model 12 and others using 

only splines to account the spatial variation. Results are presented in Table 2. 
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Table 2. Results concerning to some models for the trait leaf weight in the first two years 
of harvest in trial 1. The estimates are: genetic variance among treatments 

~2 ~2 

(progenies) (cr T ), non-correlated residual variance ( cr '1), adjusted narrow sense 

heritability (h';,[i = (40',:)/(6,: +6~») proportional only to the unaccounted error 

~2 

('1) and efficiency (Effic.) of models over the model 1, in terms of hadi . Spl(rc) 

means cubic splines applied on row and columns, 

Model Oeviance Eff. 

Leaf weight 1 - Trial 1 
1 -3105.78 0.1905 0.0110 0.2214 1.00 

11 -2523.58 0.1955 0.0111 0.2160 1.03 
Spl(rc) -3202,72 0.1961 0.0112 0.2173 1.03 

12 -4283.01 0,3276 0,0134 0.1502 1.72 

12 + Spl(rc) -4270.12 0.3302 0.0134 0.1489 1.73 

Leaf welght 2 - Tnal 1 
1 11853,72 0.2346 0.0830 1.3390 1.00 

11 11683.96 0.2438 0.0840 1.2940 1.04 
Spl(rc) 11731.32 0.2464 0.0852 1.2979 1,05 

12 11056.93 0.3477 0.0966 1.0148 1.48 
12 + Spl(rc) 11070,08 0.3492 0.0965 1.0088 1.49 

It can be seen that the extended model 12 through the inclusion of splines did 

not improve the fito lhe deviances of the extended models were higher as the 

spline variance component is constrained to be positive, but the efficiencies in 

terms of the adjusted heritability were practically the same (lable 2). 

lhe approach of using splines in place of AR(1) x AR(1) process for modelling 

spatial variation was suggested by Kempton (1999) and used by Durban, Currie 

and Kempton (2001). ln our data set, such approach showed to be very 

inefficient being comparable only with the random row and column analysis 

(model 11). 

Results concerning to individual analysis of trial 2 of tea plant are presented in 

lable 3. 
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labia 3. Results concerning to some models for the trait leaf weight in the first three years of 
~O 

harvest in trial 2. lhe estimates are: genetic variance among treatments (progenies) (a ,- L 

~2 

non-correlated residual variance (aI]) and adjusted narrow sense heritability 

(h(~"i = (4â ~ )/(6 ~ +6,~)) proportional only to the unaccounted errar (11) and 

~J 

efficiency (Effic.) of models over the model 1, in terrns of h';di. 

Model Oeviance ~J ~J ~O Eff Local h- a- a~ adi , 
Control 

(signif.) 

Leal welght 1 
1 -1964.99 0.4778 0.0137 ± 0.004 0.1010 ± 0.004 1.00 Not sigo 

7 -2038.17 0.5248 0.0140 ± 0.004 0.0927 ± 0.004 1.10 

8 -2026.02nc -

11 -1995.02 0.4633 0.0131 ± 0.004 0.1000 ± 0.004 0.97 

12 -2059.70 0.5198 0.0138 ± 0.004 0.0924 ± 0.004 1.09 Not sigo 

13 -1855.95 0.4602 0.0130 ± 0.004 0.1000 ± 0.004 0.96 Row * 

15 -1661.66 0.3899 0.0108 ± 0.004 0.1000 ± 0.004 0.82 C**;r* 

Leaf welght 2 

1 830.15 0.7076 0.1038 ± 0.03 0.483 ±0.02 1.00 *6% 

7 703.19 0.7931 0.1061 ± 0.02 0.429 ± 0.02 1.12 

8 747.34 nc - - - -

11 795.78 0.7128 0.1017 ± 0.03 0.469 ± 0.02 1.01 

12 686.88 0.7934 0.1059 ± 0.02 0.428 ± 0.02 1.12 Not sigo 

13 871.88 0.7134 0.1018 ±0.03 0.469 ±0.02 1.01 R** 

15 984.87 0.6416 0.0896 ± 0.03 0.469 ± 0.02 0.91 C**;r* 

Leaf welght 3 

1 3415.14 0.5887 0.345 ± 0.10 1.999 ±0.07 1.00 ** 

7 3215.12 0.6852 0.351 ±0.08 1.698 ±0.07 1.16 

8 3358.81n - -
11 3379.20 0.6041 0.335 ±0.10 1.883 ±0.07 1.03 

12 3212.90 0.6849 0.350±0.08 1.694±0.07 1.16 Not sigo 

13 3378.11 0.6069 0.337 ±0.10 1.884±0.07 1.03 R** 

15 3401.23 0.5176 0.280±0.10 1.884±0.07 0.88 R**;c ns 

18 3213.71 0.6858 0.352 ± 0.08 1.701 ±0.07 1.16 
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It can be seen that the best models for ali three traits were 7 (complete block 

design + (ARl x AR1) + 11) and 12 (row-column design + (ARl x AR1) + 11) in 

terms of efficiency over the base model 1 (block analysis) and deviance values. 

lhe efficiencies (between 1.09 and 1.16) were in general much lower than the 

previous (of the order of 1.48 to 1.76) reported for trial 1. lhis is because there is 

much less environmental variability in this trial as revealed by the low 

significance of block effects for two of the three traits. Due to the same reason 

the efficiencies of row-column over block designs were small or did not exist in 

this case. For the trait leaf weight 1, block and row effects should not be fitted as 

fixed because they were non-significant. So, the results concerning to models 1, 

11, 1 3 and 1 5 are not comparable for the trait 1 . 

For this trial, column effects should not be fitted as fixed (model 15) as it is so 

small (size 30) and genetic information would be lost. With spatial analysis and 

inclusion of the independent error in the model there was no need to include the 

design features in the model, even when the block effects were significant (trait 

3). It can be seen from the deviance values that the model 7 and 18 were 

equivalent (lable 3). lhe model 8 with (AR2 x AR2) structure did not converge 

for ali traits. lhe auto-correlation coefficients were of the order of 0.80 and 

0.90 between rows and columns, respectively, for the three traits (0.79 and 

0.87; 0.79 and 0.87; 0.81 and 0.90, for traits 1, 2 and 3, respectively, 

according to the model 12). 

Results concerning to individual analysis of trial 3 of tea plant are presented in 

labia 4. 



Table 4. Results concerning to some models for the trait leaf weight in the first three years of harvest in 

trial3 The estimates are. genetlc variance among trealments (progenles) ( ãJ non-con'elaled 

Model 

1 
11 
12 

12AR2 

1 
11 
12 

12AR2 

1 
11 
13 
12 

12AR 

residual variance ( â 2
) and adJusted narrow sense hentability (h2

d. = (4â- 2
) /(â- 2 + ô-2

)) 1'/ a Y g g ry. 

proportlonal only to lhe unaccounted error (11) and efficlency (Effic.) of m odels over lhe model1, 
A 2 

in terms 01 h"dj 

Deviance 

Leal welahl 1 -
-1815.12 0.8736 0.0223 ± 0.005 
-1880.34 0.8735 0.0221 ± 0.005 
-1910.51 09360 0.0212 ± 0.005 
-1909.93ns - -

ea welgr L I ht 2 
36548 0.8527 0.0997 ± 0.03 
138.86 0.9159 O 1078 ± 003 
156.77 0.8830 O 1000 ± 0.02 
21608 nc - -

Leal welght 3 
3437.61 1.05 1.268 + 040 
3323.76 106 1.252 ± 0.31 
331946 106 1.256 ± 0.31 
319146 109 1.211 ± 0.29 
3284.14 nc - -

0.0798 ± 0.003 1.00 
00791 ± 0.005 1.00 

0.06940 ± 0.004 107 
- -

0.368 ± 0.02 1.00 

0.3630 ± 0.02 107 
0.3530 ± 0.05 104 

- -

3.584 ± 0.15 1.00 
3460±0.15 1.00 
3468±015 1.00 
3.240 ± 014 103 

- -

Local 
Conlrol 
(signll) 

Block ns 
C':r ns 
C':r ns 

-

C':r ns 
C ns:r ns 

-

c~; r* 
r' 
c ns:r ns 

-

w 
w 
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The auto-correlation coefficients between rows and columns were 0.45 and 0.83; 

0.95 and 0.89; 0.91 and 0.96, for traits 1,2 and 3, respectively, according to the 

model 12. This was the best model in terms of deviance. However, it does not 

provide significantly better efficiencies than the non-spatial models, except for 

trait 1. This is because there is small environmental variability in this trial as 

revealed by the non-significance of row effects for two of the three traits and by 

the high values of the adjusted heritability. The heritabilities greater than 1 can be 

due to an unrealistic assumption of half sib parentage between individuais in a 

family. The models with (AR2 x AR2) error structure were non-significant over 

the (AR 1 x AR 1) or did not converge. 

1.3.2 Longitudinal Non-Spatial Models for Several Measures 
on each Trial 

Results concerning to repeatability and multivariate models for the repeated 

measures in trial 1 are presented in Tables 5 and 6. Block, measure and block x 

measure interaction effects were fitted as fixed. 

Table 5. Estimates of the variance parameters: genetic among treatments (progeniesl 
" ., ..... .., " ") ..... ? 

(<J ,- I, among plots (<J; I, permanent (<J; I and residual (<J ~ I. Repeatability 

and multivariate models with original data in trial 1 . 

Repeatability Multivariate 
Model Model* 

Parameters estimates Both weight Leaf weight 1 Leaf weight 2 

~ 7 0.1913 0.0462 0.4397 <J ,-

~ 7 0.0739 0.0365 0.13854 
<J; 

~ 2 
<J p 

0.3038 

~2 0.5413 0.2214 1.3390 
<J~ 

Oeviance 14173.70 3357.02 

* lhe genetlc and residual covanances Involvmg the paI[ of ages 1-2 were 0.1393 and 0.3687, 
respectively. 
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lhe associated repeatability coefficient was 0.51, which can be classified as 

intermediate. lhe genetic correlation coefficient between the two measures in 

the multivariate analysis was 0.98. lhese results show that probably the trait is 

not changing so much genetically from one another measure or age. However, it 

can be seen that there is heterogeneity of variance between the measures. lhe 

deviance values show that the multivariate model is much better than the 

repeatability. lhis justifies the preference by the multivariate model. Results with 

standardised (divided by the phenotypic standard deviation) data are presented 

in labia 6. 

, 2 
Table 6. Estimates 01 the variance parameters: genetic among treatments (progenies) (O', ). 

'2 '2 '2 
among plots (O' K)' permanent (O' p) and residual (O' ~). Repeatability and 

multivariate models lor standardised data in trial 1. 

Repeatability M ultivariate 
Model Model" 

Parameters estimates 80th weight Leal weight 1 Leal weight 2 

, 2 
0', 

0.1799 0.1488 0.2184 

, 2 
O'K 

0.0848 0.1176 0.0764 

, 2 
O'p 

0.4541 

, 2 
O'~ 

0.2465 0.7124± 0.6649 

Deviance 7637.22 7316.52 

• lhe genetlc and residual covanances Involvmg the palr of ages '-2 were 0.1763 and 0.4661, 
respectively. 

With standardised data, the associated repeatability coefficient was 0.75, which is 

higher than the previous one. lhe standardisation led to an increased permanent 

variance estimate, while the others (except by the independent erro r) variance 

components were kept approximately constant (in comparison to the data in 

original scale) by the repeatability model. lhe genetic correlation coefficient 

between the two measures in the multivariate analysis was 0.98, which is the 

sam e as in the previous analysis. However, it can be seen that the heterogeneity 

of variance was reduced after standardisation. lhe deviance values show that the 

repeatability and multivariate models became eloser after standardisation. 
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Nevertheless, the AIC values were 7334.52 and 7645.22 for the multivariate and 

repeatability models. lhis shows that multivariate model, although less 

parsimonious, is still better than the repeatability model. 50, in practice, the 

multivariate model should be used for selection. ln case of choice in favour of 

the repeatability model, the data should at least be standardised. lhe use of 

multivariate model for selection implies giving weight to genetic values predicted 

for the two measures. lhese weights should be 0.5 if the two ages have equal 

importance. If the last measure provides a better representation of a mature trait, 

higher weight should be given for this measure. Nonetheless, the high genetic 

correlation may suggest that the weights should be 0.5 for each measure. 

Estimates for the multivariate model with original data in trial 2 are presented in 

lable 7. Block, measure and block x measure interaction eftects were fitted as 

fixed. 

Table 7. Estimates of the variance and covariance parameters for the multivariate model with original 
data in trial 2, concerning to three repeated measures. 

Treatment (genetic) Plot Residual 

Covar.\Variance\Correl. Covar. I VariancelCorrel. Covar.\Variance\Correl. 

0.0134 0.9239 0.9984 0.0248 0.8638 0.7095 0.1011 0.6766 0.6128 

0.0342 0.1020 0.9211 0.0422 0.0964 0.9123 0.1495 0.4827 0.7686 

0.0673 0.1711 0.3380 0.0817 0.2072 0.5352 0.2755 0.7551 1.9990 

Oeviance = -787.172 

lhe deviance value (lable 7) reveals that the multivariate model is far more 

suitable for the original data than the repeatability model (deviance 5070.64). 

Such model gave high values for the genetic correlations between pairs of 

measures. lhe correlations were ali within the parameter space but the model 

had to be constrained to achieve this. Without constraining the G matrix to be 

positive definite, correlations higher than 1 and negative variance components 

were obtained. ln the constrained model, the G matrix is bent and this process 

involves shrinking the variances towards their mean. lhe unconstrained analysis 

is less biased because bias is introduced when constraining the solution to the 

parameter space. Convergence turned difticult as the number of measure 

increased. 50, more suitable models needed to be searched. 
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Results concerning to the character process model called first order 

autoregressive with heterogeneous variance (ARH) for the treatments effects are 

presented in Table 8. 

Table 8. Estimates of the variance and covariance parameters for the character process 
model called first order autoregressive with heterogeneous variance (ARH) 
applied to original data in trial 2, concerning to three repeated measures. 

Treatment (genetic) Plot Residual 

Covar. \ Variance\Correl. Covar. \ Variance\Correl. Covar.\ Variance\Correl. 

0.0129 0.9761 0.9528 0.0254 0.8667 0.7532 0.1011 0.6766 0.6128 

0.0357 0.1033 0.9761 0.0430 0.0968 0.9109 0.1495 0.4827 0.7686 

0.0619 0.1792 0.3261 0.0891 0.2104 0.5510 0.2755 0.7551 1.9990 

Deviance -782.94 

The ARH and multivariate models presented almost the sam e deviance and the 

Ale values were -750.94 and -751.17, respectively, which are basically the 

same -751. So, the two models are equivalents by the parsimony criterion. 

However, the ARH presented easy convergence without constraining the G 

matrix to be positive definite, fitted a small (two less than the multivariate mode!) 

number parameters and gave correlations within the parameter space. Besides, it 

gave a more realistic correlation between the most distant measures 1 and 3. 

The ARH model is then much preferred. Such model assumes stationarity and 

same correlation in ali intervals of same lag. 

Other model evaluated was the structured ante-dependence model (SAD) which 

has also parsimony and does not assume stationarity. Results are presented in 

Table 9. 
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Table 9. Estimates of the variance and covariance parameters for the structured ante­
dependence model (SAD) with original data in trial 2, concerning to three 
repeated measures. 

Treatment (genetic) Plot Residual 

Covar. \ Variance\Correl. Covar. \ Variance\Correl. Covar. \ Variance\Correl. 

0.0128 0.9840 0.9580 0.0254 0.8667 0.7532 0.1011 0.6766 0.6128 

0.0358 0.1032 0.9730 0.0430 0.0968 0.9109 0.1495 0.4827 0.7686 

0.0618 0.1784 0.3250 0.0891 0.2104 0.5510 0.2755 0.7551 1.9990 

Deviance -783.04 

The SAD and ARH models presented basically the same deviance (-783) and 

then are equivalent by this criterion. Nonetheless, the SAD model fitted one 

more parameter than the ARH model and is not preferred in terms of parsimony 

by the AIC rule. The results for plot and residual effects were exactly the sam e 

by the two models. The genetic components were slightly different but are both 

coherent in terms of the magnitude of the correlation coefficients, i.e., smaller for 

the lag 1-3. This was not achieved by the multivariate model. 80th models 

could be used efficiently in practice. The SAD model allows for different 

correlation for lags of same size. 

These two classes of models were also used for modelling the other random 

terms of the model. Results concerning to correlations for treatment and plot 

terms modelled by ARH and SAD are presented in Table 10. 

Table 10. Estimates of the correlation parameters for the structured ante-dependence 
model (SAD) and character process (ARH) for modelling both the treatment 
and the plot effects. Original data set in trial 2 (three repeated measures) 
was used. 

Treatment (genetic) Plot Residual 

ARH\SAD ARH\SAD ARH\SAD 

- 0.990 0.968 - 0.851 0.769 - 0.6766 0.6128 

0.982 - 0.977 0.882 - 0.903 0.6766 - 0.7686 

0.964 0.982 - 0.778 0.882 - 0.6128 0.7686 -

Deviance ARH\SAD -780.76\-782.20 
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The results show that the plot effect can be perfectly modelled by the ARH or 

SAD processo The deviance values were elose to the previous where the plot 

effect was modelied in a multivariate fashion. The Ale values here were -

752.76 and -750.20 for ARH and SAD, respectively, which are close to the 

values -751 and -749 for ARH and SAD, respectively, obtained with the two 

models but with multivariate plot effect. Comparing these four AIC values, the 

choice is for the ARH model for both treatment and plot effects (AI C -752.76). 

The modelling of the residual term by the ARH was also evaluated. The resultant 

deviance for modelling the three effects simultaneously as an ARH process gave 

a deviance of only -677.46. Also the residual correlations obtained were very 

different than the previous ones. Then the residual should be modelled in a 

multivariate way. 

Other approaches were also evaluated. The banded correlation or Toeplitz model 

converged with a deviance of -794.28. Nevertheless, gave a genetic correlation 

higher than one, just the correlation supposed to be the small one. When 

constraining the model to give a positive definite G matrix, the convergence 

failed. This model assumes equal correlation for lags of same size as does the 

ARH model, but the elements of the several diagonais are different and not a 

function of the correlation for lag 1. 

Random regression models were also tried and results for the full constrained 

model are presented in Table 11. 

Table 11. Estimates of the variance and covariance parameters for the full (quadratic fit) 
random regression model with original data in trial 2, concerning to three 

repeated measures. 

Treatment (genetic) Plot Residual 

Covar. \ Variance\Correl. Covar.\ Variance\Correl. Covar.\ Variance\Correl. 

0.0134 0.9239 0.9984 0.0248 0.8638 0.7095 0.1011 0.6766 0.6128 

0.0342 0.1020 0.9211 0.0422 0.0964 0.9123 0.1495 0.4827 0.7686 

0.0673 0.1711 0.3380 0.0817 0.2072 0.5352 0.2755 0.7551 1.9990 

Oeviance -787.172 
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Results were identical to those (which were not suitable) from the multivariate 

analysis as expected for the full fitting of the random regression model, i.e., for 

fitting a quadratic polynomial. ln a search for parsimony a reduced fit was tried 

and the results are presented in lable 12. 

Table 12. Estimates of the variance and covariance parameters for the reduced (linear 
fit) random regression model with original data in trial 2, concerning to three 
repeated measures. 

Treatment (genetic) Plot Residual 

Cova r .\ Variance\Correl. Covar. \ Variance\Correl. Covar. \ Variance\Correl. 

0.0098 1.0552 1.0765 0.0248 0.8638 0.7095 0.1011 0.6766 0.6128 

0.0331 0.1004 1.0040 0.0422 0.0964 0.9123 0.1495 0.4827 0.7686 

0.0563 0.1677 0.2791 0.0817 0.2072 0.5352 0.2755 0.7551 1.9990 

Oeviance -777.08 

lhe deviance (-777) of the model is higher than that (-783) obtained from the 

ARH and SAD models for treatment effects (lables 8 and 9). lhe AIC value is 

-747 which is higher than that obtained for ARH (-751) and SAD (-749) models. 

So, the reduced random regression model is not a choice. Also, this model 

showed a poor reconstruction of the G matrix for treatment effects leading ali 

correlations to be higher than 1 (lable 12). lhese results are in accordance with 

Apiolaza, Gilmour and Garrick (2000) who found that random regression models 

were often inappropriate. 

lhe fit of smoothing cubic splines was also tried. lhe deviance obtained was 

only -748.33, which was the worst between the parsimonious models tried. 

lhis result was expected as function of the small number of ages available for 

fitting. 

ln conclusion, the best approaches for trial 2 were the ARH and SAD models for 

treatment and plot effects. lhese models should be extended and used in 

conjunction with the spatial models for the residuaIs. 

Results concerning to multivariate models for the repeated measures (original 

data) in trial 3 are presented in the lable 13. Slock, measure and block x 

measure interaction effects were fitted as fixed. 
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Table 13. Estimates of the variance and covariance parameters for multivariate model 
with original data in trial 3, concerning to three repeated measures. 

Treatment (genetic) Plot Residual 

Covar.\ Variance\Correl. Covar. \ Variance\Correl. Covar.\ Variance\Correl. 

0.0273 0.9864 0.9246 0.0117 0.8757 0.7782 0.0798 0.5714 0.5383 

0.0468 0.0825 0.9569 0.0400 0.1780 0.9556 0.0979 0.3680 0.7611 

0.1714 0.3086 1.2600 0.1107 0.5305 1.7320 0.2879 0.8742 3.5840 

Deviance = -60.3412 

lhe genetic correlation coefficient between the two first measures in the 

multivariate analysis was 0.986, which is close to the values obtained for ages 

1 and 2 in trials 1 and 2. The genetic correlation between ages 1 and 3 was 

0.92 and between 2 and 3 was 0.97. lhese results show that probably the trait 

is approximately the same in ali three ages. These results are coherent showing 

that the small correlation occurred between ages 1 and 3. 

lhe deviance values reveal that the multivariate model is far more suitable for the 

original data than the repeatability model (deviance 6754.42). Such model gave 

high values for the genetic correlations between pairs of measures. The 

correlations were ali within the parameter space and the model had not to be 

constrained to achieve this. Even so, more parsimonious suitable models were 

searched. 

lhe ARH and SAD models were used for modelling both the treatment and the 

plot effects. Results concerning to correlations and deviances are presented in 

labia 14. 

Table 14. Estimates of the correlation parameters for the structured ante-dependence 
model (SAD) and character process (ARH) for modelling both the treatment 
and the plot effects in trial 3 (three repeated measures). 

Treatment (genetic) Plot Residual 

ARH\SAD ARH\SAD ARH\SAD 

1.0000 0.9472 0.9214 1.0000 0.8575 0.8118 1.0000 0.5742 0.5345 

0.9640 1.0000 0.9728 0.9417 1.0000 0.9467 0.5705 1.0000 0.7618 

0.9290 0.9640 1.0000 0.8869 0.9417 1.0000 0.5317 0.7629 1.0000 

Deviance ARH\SAD = -60.50\-64.16 
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The structured ante-dependence model (SAD) and character process (ARH) for 

modelling both the treatment and the plot effects gave smaller deviance than the 

multivariate model. So they are better. Besides, the ARH fitted four less 

parameters and the SAD fitted two less parameters than the multivariate model. 

The Ale values for AHR and SAD were -32.59 and -32.16, respectively, that 

are basically the same. So, either of these two models could be used. 

The modelling of the residual term by the ARH was also evaluated. The resultant 

deviance for modelling the three effects simultaneously as an ARH process gave 

a deviance of only 73.26. Also the residual correlations obtained were very 

different than the previous ones. Then the residual should be modelled in a 

multivariate way. 

Again, the best approaches were the ARH and SAD models for treatment and 

plot effects. These models should be extended and used in conjunction with the 

spatial models for the residuais. 

1.3.3 Longitudinal Spatial Models for Repeated Measures on 
each Trial 

Results concerning to multivariate spatial model for trial 1 are presented in Table 

15. 

Table 15. Estimates of the variance parameters: genetic among treatments (progeniesl 
~2 ~2 A2 

(O', I, among plots (O'" I, residual (O' '1 I and respective covariance and 

correlation by the multivariate spatial model for leaf weight in trial 1. 

Correlation Covariance Variance 

Parameters estimates 80th weight 80th weight Leaf weight 1 Leaf weight 2 

A2 0.9736 0.1390 0.0465 0.4386 
0', (Treatmentl 

~2 0.9771 0.0251 0.0068 0.0975 
O'K (Plotl 

A 2 0.6697 0.3378 0.1952 1.3030 
0''1 (Independent Error) 

Oeviance 2764.12 
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It can be seen that the multivariate spatial model is the best option for the 

analysis and selection concerning this experimento The deviance of this model 

(2764.12) is much lower than that of the multivariate non-spatial model 

(3357.02). The models fitted 11 and 9 random effects and the Ale values were 

2786.12 and 3375.02 for the multivariate spatial and non-spatial models, 

respectively. So, the choice is for multivariate spatial modelo The variogram 

showed the same behaviour as in the two univariate spatial analyses. 

The genetic variance components stayed almost the same as in the multivariate 

non-spatial modelo However, the plot variances were greatly reduced. The 

residual variances were also reduced by spatial analysis as expected. The genetic 

correlation showed about the same magnitude as in the non-spatial analysis. ln 

conclusion, for trial 1, the selection should be practised according to the 

multivariate spatial analysis with weights to be given to genetic values in each 

measure. 

For trial 2, the superior approaches for analysing the repeated measures were 

extended by incorporating spatially correlated residuais. Three models were tried: 

ARH for treatments, ARH for treatments and plots and SAD for treatments and 

plots. The deviance values obtained were -769.92, -767.70 and -769.82, 

respectively. These values are higher than that obtained with the best non­

spatial models and the autocorrelation parameters were fixed at boundary of 1 , 

revealing that there is no need for spatial analysis for this multivariate data. This 

was expected as the efficiency of spatial analysis for the univariate case in this 

experiment was low as a function of the low environmental variability in the tria!. 

ln the multivariate case for the repeated measures, the amount of information 

about one individual increase and the model is automatically improved becoming 

more difficult to add important information trom the spatial analysis. Besides, the 

autocorrelation estimates approached 1, revealing that the estimated correlated 

error was of small magnitude. 

For trial 3, the ARH model for both treatment and plot effects was extended by 

incorporating spatially correlated residuais. The autocorrelation parameters were 

fixed at boundary 1 and the analysis did not converge. As mentioned for the 

trial 2, this result was expected. 
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1 .4 Conclusions 

• For individual analysis the best model out 01 19 was the row-column analysis + 
a spatial autoregressive (ARl x AR1) correlated errar + independent term error 

(efficiency between 1.09 and 1.76 over block analysis, i.e., between 9% and 

76% 01 improvement). 

• The traits (sequence measurements in consecutive years) gave approximately 

the same behaviour in terms 01 results and variograms across models. 

• ln general, the best approaches involved the modelling 01 treatment effects by 

ante-dependence or autoregressive models with heterogeneous variance and 

the modelling 01 error as a spatial autoregressive (ARl x AR1) correlated errar 

+ independent term error. 



2.1 Introduction 

2. Factor Analytic Multiplicative 
Mixed Models in the Analysis of 
Multiple Experiments 

Analysis of experiments repeated on several sites or environments are very 

common and important in agriculture. Such trials aim at providing inferences 

concerning to responses on both broad (in the average of ali sites) and specific 

environments. To attain this, ali the information should be analysed 

simultaneously. Traditional analysis of these multi-environment trials (MET) has 

been done through joint analysis of variance (ANOVA) and linear regression 

techniques. ln general, stability and adaptability approaches (Finlay and 

Wilkinson, 1963; Eberhart and Russell, 1966) have been used to study treatment 

x environment interaction, mainly referred to as genotype x environment 

interaction or 9 x e. ln spite of their generalised use, these regression based 

methods present limitations that have been reported in literature, such as 

inefficiency in the presence of non-linearity generating simplified response 

models (Crossa, 1990; Duarte and Vencovsky, 1999). Some proposed models 

(Cruz et aI., 1989) carrect this inefficiency but the 9 x e component has been 

estimated but not decomposed into the pattern (tendency) and noise 

components. 

A first attempt to circumvent these limitations was the proposed technique called 

AMMI (Additive Main Effects and Multiplicative Interaction Analysis). This 

technique has been well described by Gauch (1988; 1992) and attributed to 

Fisher and Mackenzie (1923) and Gollob (1968). Another denomination of the 

method is PCA (Doubled Centred Principal Components Analysis). AMMI may be 

viewed as a procedure to separate pattern (the 9 x e interaction) from noise 

(mean error of treatment mean within trial). This is achieved by PCA, were the 

first axes (i.e. the axes with the largest eigenvalues), recover most of the 

pattern, whilst most of the noise ends up in later axes. The pattern can be 

viewed as the whole 9 x e effect weighted by an estimate of the pattern-to-noise 

ratio associated with the respective effect. This pattern-to-noise ratio is a 

variance component ratio analogue to a repeatability ar heritability coefficient 

(Piepho, 1994). The multiplicative models AMMI have been popularised in a 

fixed model context and found a number of applications (Gauch, 1988; 1992; 

Crossa et aI., 1990). AMMI analysis combines in a model, additive components 

for main effects (treatments and environments) and multiplicative components 
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for 9 x e effects. It combines a univariate technique (ANOVA) for the main effects 

and a multivariate technique (PCA-principal component analysis) for 9 x e effects. 

Crassa (1990) suggests that the use of multivariate techniques permits a better 

use of information than the traditional regression methods. 

Although useful, the AMMI models present at least five great limitations: 

consider the genotype and 9 x e effects as fixed; is suitable only for balanced 

data sets; does not consider the spatial variation within trials; does not consider 

the heterogeneity of variance between trials; does not consider the different 

number of replications across sites. lhese features are not realistic in analysing 

field data, where the data are generally unbalanced and treatments (genotypes) 

are in a great number not supporting the assumption of fixed genotype effects 

(implicit heritability at mean levei equal 1). lhe AMMI model estimates 

phenotypic and not genotypic values. If genotypes are considered as random, 

effects can be predicted by best linear unbiased prediction (BLUP). Hill and 

Rosenberger (1985) and 5troup and Mulitze (1991) showed that assuming 

random genotypes may be preferable in terms of predictive accuracy even when 

genotypes would be considered fixed by conventional standards. Assuming 

genotype as random effects it is possible to obtain shrinkage predictions of the 

random interaction 9 x e terms and so to separate pattern and noise as do AMMI 

models. ln this sense, BLUP and AMMI may be seen as two approaches to 

achieve the same goal, namely to separate pattern from noise. lhe BLUP 

procedure estimates the GL5 of interaction effects and then weights them by an 

estimate of the correspondent pattern-to-noise ratios. However, the BLUP 

procedure has a number of advantages that circumvent ali the limitations of 

AMMI. It has also been shown that BLUP can be predictively more accurate than 

AMMI models (Piepho, 1994). 

lhe full multivariate BLUP model is the best approach for analysing data on 

multiple experiments. lhis model provides response on each environment 

through the use of ali information. However, with great number of experiments 

the mixed model analysis is unlikely to converge. lhe variance-covariance matrix 

in this case is completely unstructured, which means a great number of 

parameters to be estimated. 50, the parsimonious model behind AMMI is an 

interesting feature. Van Eeuwijk et aI. (1995) suggested to obtain a genotype by 

environment BLUP and then subject this table to AMMI analysis, using an single 

value decomposition procedure. A better approach was found by Piepho (1998). 

ln a mixed model setting, he presented a multiplicative factor analytic model with 
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random genotype and 9 X e effects, which is conceptually and functionally better 

than AMMI. ln the sam e context, Smith, Cullis and Thompson (2001) presented 

a general class of factor analytic multiplicative mixed models that encompass the 

approach of Piepho (1998) and include separate spatial errors for each 

environment. Such general class of models provides a full realistic approach for 

analysing MET data (Thompson et aI., 2003). 

The multivariate technique of factor analysis (Lawley and Maxwell, 1971; 

Mardia, Kent and Bibby, 1988; Comrey and Lee, 1992) provides simplification 

of correlated multivariate data as do other multivariate methods such as principal 

components analysis and canonical transformation. These techniques consider 

the correlation between variables and generate a new set of independent (non­

correlated) variables. The technique of factor analysis can be considered as an 

extension of the principal component analysis. The factor analytic variance­

covariance structure may be regarded as an approximation to the completely 

unstructured variance-covariance matrix and can provide parsimonious models. 

Analysis of multi-environment trials (MET) has also been traditionally based on 

sim pie models assuming error variance homogeneity between trials, independent 

errar within trial, genotype x environment (g x e) effects as a set of independent 

random effects. The combined analysis of MET data through realistic models is a 

complex statistical problem, which requires extensions to the standard linear 

mixed model. Such extensions have been done recently. Cullis, Gogel, Verbyla 

and Thompson (1998) presented a spatial mixed model analysis for MET data, 

which fits a separate errar structure for each site, circumventing the assumptions 

of error variance homogeneity among trials and independent error within triai. 

The relaxation of the assumption concerning to independence of 9 x e effects 

can be achieved with the use of multiplicative models. 

ln a mixed model setting, multiplicative models for random 9 x e interaction 

terms induce correlations between the interactions. Mixed models with 

multiplicative terms are closely related to the so-called factor analytic variance­

covariance structure advocated by Jennrich and Schluchter (1986). Piepho 

(1997) proposed multiplicative mixed models for multi-environment analysis but 

assumed random environment rather than random genotype effects. The same 

author proposed the use of factor analytic multiplicative mixed (FAMM) models 

with random genotype etfects (Piepho, 1998). Smith, Cullis and Thompson 

(2001) presented a general class of FAMM models that encompass the approach 
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of Piepho (1998) and provides: accounting of heterogeneity of 9 X e variance; 

accounting of correlation among 9 x e interactions; appropriate spatial erro r 

variance structures for individual trials. This factor analytic multiplicative mixed 

spatial (FAMMS) model provides parsimonious models for large multivariate data 

sets and a better conceptual approach for interaction effects based on 

multiplicative model. The model can be regarded as a random effects analogue 01 

AMMI. Smith, Cullis and Thompson (2001) reported that the advantages of 

FAMMS models are numerous and include: (i) within trial spatial variation can be 

accommodated; (ii) between trial error variance heterogeneity can be 

accommodated; (iii) unbalanced data are easily handled; (iv) genotype effects 

and 9 x e interactions can be regarded as random, leading to better predictions; 

(v) the goodness of fit of the model, i.e., number of multiplicative terms needed, 

can be formally tested through REMLLRT. Through a unified mixed model 

approach the stabitity parameters are integrated into broad (selection for an 

average environment). specific (selection for specific environments) and new­

environment (selection for a non-tested environment) inferences. Also, traditional 

methods such as that of Wricke (1965) can be applied over the predicted 

genotypic values, eliminating the original disadvantage of the method, 

concerning the consideration of phenotypic rather than genotypic values of 

interaction effects. 

The present paper deals with the application of FAMM and FAMMS models in 

two large unbalanced data sets aiming at the emphasising their advantages over 

AMMI models in terms of the assumptions of erro r variance homogeneity 

between trials and independent error within trials. Also, the ability of FAMM 

models in providing parsimonious models is also stressed. 

2.2 Factor Analytic Models 

A model concerning to evaluation of several treatments or genotypes in several 

environments is given by: 

~, g, e, ge and E are the fixed constant, genotype, environment, genotype x 

environment interaction and within environment error effects, respectively. The j.I 

and e effects can be regarded as fixed and the others as random. A model 

referring to random genotype effects in each environment can be written as: 
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Yii = f.! + g ii + e i + E Ij • 

ln the context of MET data, the factor analysis approach can be used to provide a 

class of structures for the variance-covariance matrix Go' The model is postulated 

in terms of the unobservable genotype effects in different environments: 
k 

gij = I À irfir +0 ii ,where: 
r=1 

gjj : efféct of the genotype i in environment j; 

Àjr : loading for factor r in environment j; 

fr : score for genotype i in factor r; 

Õ ii : error representing the lack of fit of the model. 

The FAMM model is presented according to Smith, Cullis and Thompson (2001). 

Applied to the 9 genotype effects on s environments, the factor analytic model 

postulates dependence on a set of random hypothetical factors 

fr (pi) , (r = l.. .. k < s) . ln vector notation, the factor analytic model for these 

effects is 

g, = 0"1 ® I K ) fi + .... + 0. .. k ® I K ) fk + Õ ,where: 

À (,xl) : loadings or weights of the factors in environments; 
r 

o (g,xl) : vector of residuais or lack of fit for the model (also called vector of 

specific factors). 

ln a compact way, the model is: 

g, = (A ® I K ) f + Õ ,where: 

A(,xk) =p"I ..... Àk] ; 

f(Kk xl) = (/I·,f; .... fk')'. 
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lhe ioint distribution of f and (5 is given by 

lf' °0 I, J 1 ,where: 

lf' = diag (\jf 1 ••••• \jf JI) ; 

\jf i : specific variance for the ith trial. 

lhe variance matrix for the genotype effects on environments is given by 

vare g J = (A r.g; J g ) vare f)( A" r.g; J g) + vare 8 ) 

= (AA' + \.fi) r.g; J g . 

lhe model for genotype effects in each environment leads to a model for G in 

which: 

k 

(J g ii = I À ~r + \jf 1 : genotype variance in environment i; 
r==l 

k 

a gJJ' = .L)" ir À)',. : genotype covariance between environments i and i'; 
r=1 

k k k 

P g ". = L ÀlrÀj"r /[(L À~r +\jf )(L À~'r +\jf 1,)]112: genotype correlation 
ro::\ r=l r:::.: 1 

between environments i and j' 

lhe equation for gs has the form of a (random) regression on k environmental 

covariates 1.. 1 .... Àk in which ali regressions pass through the origino It may be 

more appropriate to allow a separate (non-zero) intercept for each genotype. lhis 
is equivalent to the model with genotype main effects, g, and a k-factor analytic 

model for 9 x e interaction. lhen, the expression for gs turns to 

g , = (1, 0 / g ) g + ge 

=(1,0/ g )g+(!\0/ g )f+ õ . 
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The vector 9 has mean zero and variance (J ~I or (J ~A where A is a genetic 

relationship matrix. The model can be written as 

g, = (cr " 1, 0 I" ) /0 + (/\ 0 l. ) / + 8 

= (/\g0l.)/,,+8, 

where: 

A]; 

lo=g/cr g ; 

I~ = (/;/)· 

Thus the model with genotype main effects and a k-factor analytic model for 9 x 

e interactions is a special case of a (k + lI-factor analytic genotype effects in 

each environment, in which the first set of loadings are constrained to be equal. 

The feature that distinguishes equations for g s from standard random 

multivariate regression problems is that both the covariates and the regression 
coefficients are unknown and therefore must be estimated from the data. The 
model is then a multiplicative model of environment and genotypes coefficients 
(known as loadings and factorial scores, respectivelyl. Here lies the analogy with 
AMMI models. However, a key difference is that the multiplicative model in 

equation for gs accommodates random effects, whereas AMMI is a fixed-effects 

model. The FAMM models are also called random AMMI. 

2.3 General Linear Mixed Model and REML Estimation 
of Factor Analytic, Multivariate and Spatial Models 

A general linear mixed model has the form (Henderson, 1984; Searle et aI. 1992; 

Thompson et aI., 20031: 

y=Xj3+Zt+E (1), 

with the following distributions and structures of means and variances: 
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"C - N(O, G) E(y) = X~ 

é: - N(O, R) Var(y) = V = ZGZ '+R 

where: 

y: known vector of observations. 

~: parametric vector of fixed effects, with incidence matrix X. 

T: parametric vector of random effects, with incidence matrix Z. 

8: unknown vector of errors. 

G: variance-covariance matrix of random effects. 

R: variance-covariance matrix of errors. 

O: null vector. 

Assuming G and R as known the simultaneous estimation of fixed effects and the 

prediction of the random effects can be obtained through the mixed model 

equations given by: 

[

X'R-1X 

Z'R-'X 

The solution to this system of equations for ~ and t leads to identical results 

as that obtained by: 

~ = (X'V-IXr X'V-Iy: generalised least estimator (GLS) or best linear 

unbiased estimator (BLUE) of 13; 
-t = GZ'V- I (y - x(3) = C'V- I (y - x(3): best linear unbiased predictor 

(BLUP) of T; where C' = GZ': covariance matrix between T and y. 

When G and R are not known, the variance components associated can be 

estimated efficiently through the REML procedure (Patterson and Thompson, 

1971; Searle et aI., 1992; Thompson, 1973; 1977; 1980; 2002; Thompson and 

Welham, 2003). Except for a constant, the residuallikelihood function (in terms of 

its log) to be maximised is given by: 
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L=-± (log[X'V 'XI+logIV[+v log a,2 +y'Py/a~) 

= - ± (log IC *1+ loglRI+ logIG[+ V log a ,2 + y' Py / a (2) 

where: 

V = R + ZGZ '. 

V = N-r(x): degrees of freedom, where N is the total number of data and r(x) is 

the rank of the matrix X. 

C*: Coefficient matrix of the mixed model equations. 

Being general, the model (1) encompass several models inherent to different 

situations such as: 

Univariate model 

G = Aa ,2; R = la ~ , where: 

cr 1
2 

: variance of the random effects in T. 

A: known matrix of relationships between the T elements. 

a ~ : residual variance. 

Multivariate models 

ln the bivariate case: 

[
ZI z= 
O 

O]; T = [T ,]; 
Z 2 T 2 

[

a 2 
G _ T, 

o - a 
t el 

ar 
[
a ,2 O] 

R =' where 
o O a 2 ' E, 

cr 1 : random treatment effects covariance between variables 1 and 2. 
12 

cr e : residual covariance between variables 1 and 2. 
(..12 
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Spatial models (time series or geostatistical) 

R = I: non-diagonal matrix that considers the correlation between residuais 

through ARIMA models or covariance based on adjusted semivariance. 

ln the context of the agricultural experiments, the general spatial model 

developed by Martin (1990) and Cullis and Gleeson (1991) has the following 

form: 

y = Xp + Zr + I; + 11, where: 

y: known vector of data, ordered as columns and rows within columns; 

T: unknown vector of treatment effects; 

~: unknown vector representing the spatial variation at large scale or global 

tendency (block effects, polynomial tendency); 

ç: unknown vector representing the spatial variation at small scale (within blocks) 
or local tendency, modelled as a random vector with zero mean and spatially 

dependent variance; 

11: unknown vector of independent and identically distributed errors. 

Through ARIMA models, the errar is modelled as a function of a tendency effect 

(1;) plus a non correlated random residual (11). So, the vector of errors is partitioned 

into E = I; + 11, where I; and 11 refer to the spatially correlated and independent 

errors, respectively. The traditional models of analysis do not include the I; 
component. 

Considering an experiment with rectangular shape in a grid of c columns and r 

rows, the residuais can be arranged in a matrix in a way that they can be 

considered as correlated within columns and rows. Writing this residuais in a 

vector following the field order (by putting each column beneath another), the 

variance of residuais is given by VarrE) = Var (I; + T])= R = L 

= a ,'[ ~ (<I>, ) @ ~ (<I> , )] + la ,~ , where cr f,2 is the variance due local tendency 

and cr ~ is the variance of the independent residuais. 

The matrices I (<P ,) and I (<P , ) refer to first order autoregressive 

correlation matrices with auto-correlation parameters <I> c and <I> r and order 
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equal to the number of columns and rows, respectively. ln this case, ç is 
modelled as a separable first order auto-regressive process (AR 1 x AR 1) with 
covariance matrix VaI" (ç ) = (J ,'[I (cD, ) ® I (cD,)] (Gilmour, Cullis and Verbyla, 

1997). The auto-regressive parameters are efficiently estimated by REM L 

(Cooper and Thompson, 1973; Gilmour, Thompson and Cullis, 1995). 

The mixed model equations and variance structure for spatial factor analytic 

models can be given by 

R-'=R()'@H I. 

[ , cr~, } 
a; 

Ro = O" 
c" 

X'R'Z 

Z'R'Z+G- ' 

W'R'Z 

(i' = (i(;' @ 

G "[ cr ,,, () 

a g" 

X'R-'W 

Z'R'W 

W'R-'W+C 
1

-1 rX'R-Iyl 
Z'R- ' Y j where: 

I W'R-'y 

A -I. C-'=C()I@/ 

cr~], whe'e :'} [cr ; Co = ' 
O 

x" 

P and K: vectors of fixed effects and random plot effects, respectively. 

H, = [I (cD" ) ® I (cD " )] : spatial correlation matrix for the environment 1; 
" , 

H, = II (cD, ) ® I (cD, )1 : spatial correlation matrix for the environment s; 

[
HI 

H= 
O 

ln this case, the genotype main effects are fitted implicitly in gs = [gl'" gs]' . The 

explicit fitting of genotype main effects term is achieved by including another 
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random vector for these main effects in the mixed model equations. After that, 

the 'is effects in the mixed model equations will represent 9 x e interactions. 

Solving the mixed model equations above provides BLUPs of genotype effects 

in individual environments. The BLUPs of the genotype's factorial scoresfcan 

then be obtained from iI, as 

Z = vâr(f)[Z (Â ® I g»)' Py 
=[Â'(ÂÂ,+tp)-1 ®l.]gs' 

The estimates are: 

J\. : matrix of estimated loadings; 

\}' : matrix of estimated specific variances. 

The BLUPs of the residuais of the 9 x e interactions can be obtained by 

Õ =['Í'(ÂÂ'+ 'Í')-l 0/~]g,. 

It can be seen that the factor analytic model requires calculations of the 

parameters A and \}' which compound the variance-covariance matrix Go. and 

can be estimated by REM L (Patterson and Thompson, 1971) through the 

algorithm average information (Gilmour, Thompson and Cullis, 1985; Johnson 

and Thompson, 1995). A specific REML algorithm for factor analytic models was 

developed by Thompson et aI. (2003). 

With assumption of the model y = X~ + Z [( J\. 0 I. ) f + o ] + G , the predicted 

effects of genotypes in an average environment ( 'is ) can be given by the 

formula: 
" ,..."" "-' 

g-=~+[(À1Ào ..... Àk)01 ]f· s _ g 

The quantities i r and f are the mean across environments of the estimated 

loadings for the rth factor, and the estimated factorial se ores for genotypes, 

respectively. This is a prediction at the average values of the loadings. By 

definition of the loadings these are predictions of genotype means for an 
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environment that is average in the sense of having average covariance with ali 

other environments. The prediction of overall genotype performance is the same 

irrespective of the inclusion of genotype main effects in the model. The issue of 

interpretation of the genotype main effects included is important. These are not 

main effects in the usual sense, namely a measure of overall genotype 

performance, but are merely intercepts in the regression. They therefore reflect 

genotype performance in an environment that has zero values of the loadings. 

That inclusion would provide results of genotype main effects identical to the 

predicted values for an average environment (gs ) (Smith, Cullis and 

Thompson, 2001). 

One form of obtaining the overall performance of genotypes is by forming the 

two-way table of predicted genotype means for each environment and then 

averaging across environments to obtain the overall genotype means. These 

predicted means are also given by the formula: 

gsm = (3 +[(À) À2 .... ·Àk)®Ig]] +8' 

This formula differs from gs only by the adding of the unexplained 9 x e effects, 

which refers to the lack of fit from the factor analysis. This overall performance is 

only likely to be a good predictor if the correlation of genotype in different 

environments is high. 

2.4 Constraints and Rotation on Loadings and 
Interpretation of Environmental Loadings and 
Factorial Scores 

When the number k of factors is greater than 1, constraints must be imposed on 

the factor analytic parameters in order to ensure identifiability. This arises 

because the distribution of (A ® l~ ) f is singular. It can be shown that k(k-1 )/2 

independent constraints must be imposed on the elements of A. According to 

Mardia, Kent and Bibby (1988), the factor analytic model is not unique under 

rotation so the constraints must be chosen to ensure uniqueness. One set of 

constraints that fulfils this requirement is to set ali k(k-1 )/2 elements in the upper 

triangle of A to be zero, i.e., À jr = O for j < r = 2 ... k (Jennrich and Schluchter, 

1986). The implication of the constraints is that the number of variance 
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parameters in the factor analytic model with k terms is given by pk + p-k(k-1 )/2 

(Smith, Cullis and Thompson, 2001). 

The nonuniqueness of J\ when k > 1 introdu ces ambiguity in the interpretation o 

the environmental loadings and genotype scores. The constrained form of J\ is 

merely for computational ease and has no biological basis. So, rotation of 

loadings is advocated for generating meaningful results. Lawley and Maxwell 

(1971) describe a number of useful rotations. ln MET data the required rotation is 

A' = AT , where T is an orthogonal matrix. According to Johnson and Wichern 

(1988), the axes can then be rotated in a certain angle ~ and the rotated loadings 

[
COS<j> sen<j>] 

can be given by A' = AT ,with T= ,f. ,f.' 
-sen'l' cos'l' 

The loadings from factor analytic models are useful for clustering environments 

in terms of genetic correlations. The graphical display of loadings from a model 

with k > 1 can be very informative in this respect. 

ln factor analysis, the main interest is centred on the parameters of the factor 

model. Nevertheless, the predicted values of the common factors, named factor 

scores, are particularly useful in cluster analysis. 8esides their utility in 

predicting genotype averages, the genotype' s factorial se ores can also be plotted 

for the factors 1 and 2 for example, permitting inference about the grouping of 

genotypes based on their similarity. 

2.5 Goodness of Fit, Model Comparison and Fitting 
Procedure 

Selection of FAMM Models 

ln a search for parsimonious models the adequacy of the FAMM models of 

severa I orders k can be formally tested, as it is fitted within a mixed model 

framework. The model with k factors, denoted FAk, is nested within the model 

with k + 1 factors. Models including the main genotype effect (g) are 

intermediate between the factor analytic models of order k (FAk) and of order 

FAk + 1. The model FA 1 + 9 is intermediate to models FA 1 and FA2. Residual 

maximum likelihood ratio tests (REMLLRT) can be used to compare such models. 

Other approaches for testing the goodness-of-fit of factor analytic models 
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involve comparisons with the unstructured covariance matrix (Mardia, Kent and 

Bibby, 1988), which is very hard to obtain with a great number of environments. 

Likelihood Ratio Test (LRT) 

Given two nested models U and V with maximum of the residual likelihood 

function L(U) and L(V) and correspondent number of parameters nu and nv' it can 

be showed that D = -2 log L(U) -2 log UV) approaches a chi square 

distribution with nv - nu degrees of freedom (assuming U as nested within V). 

Testing the significance of D against the appropriate chi square distribution 

constitutes the LRT test. When V is the saturated model, D is called deviance. 

So, alternatively, the difference between the deviance of the two models can be 

used to do the LRT testo 

The LRT test can be used to compare fitted models provided they have a nested 

structure and the same fixed effects. This permits comparison of models with 

difterent random factors for a constant structure of fixed effects. For comparing 

spatial models, the LRT statistic can be used to assess the order of the model to 

be fitted. However, the use of the LRT is limited to models fitted under the same 

regime of differencing. 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

Other criterion for model selection is the Akaike Information Criterion, which 

penalise the likelihood by the number of independent parameters fitted. By this 

criterion, any extra parameter must increase the likelihood at least by one unit for 

entering in the model. The AIC is given by AIC = -2 log L + 2 p, where p is the 

number of parameters estimated. Smaller values of AIC reflect a better global fit 

(Akaike, 1974). Other approach is the Bayesian Information Criterion (BIC) of 

Schwarz (1978), which is given by BIC = -2 log L + p log v, where v = N - r(x) is 

the number of residual degrees of freedom. BIC and AIC are calculated for each 

model and the model with the smallest value is chosen as the preferred model. 

AIC and BIC can be used for comparing non nested models, but the data should 

be the same which means the fixed effects should be the same. 

Software 

Ali models were fitted using the software ASREML (Gilmour and Thompson, 

1998, 2002; Gilmour, Cullis, Thompson and Welham, 2002) which uses the REML 
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procedure through the average information algorithm (Gilmour, Thompson and 

Cullis, 1995; Johnson and Thompson, 1985; Thompson et aI., 2003). The 

software GENSTAT (Thompson and Welham, 2003) was also used. 

2.6 Applications 

Two large unbalanced data sets were used. The first one concerned to 200 

eucalypt treatments (progenies) evaluated for the trait trunk circumference on six 

sites in lattice designs with different replication numbers in each trial. The total 

number of plants evaluated was 65000. The second data set concerned to 60 

tea plant treatments (progenies) evaluated in complete block designs for the trait 

leaf weight in three consecutive years and in two trials. Trial 1 provided 5400 

observations (60 treatments x 5 replications x 6 plants per plot x 3 annual 

measures) and trial 2 provided 4050 observations (45 treatments, 5 replications, 

6 plants per plot and 3 annual measures). The 45 treatments in trial 2 are also in 

trial 1. 

2.6. 1 Euca/ypt Data Set 

Results concerning to several models applied to eucalypt data set on six 

environments are presented in Table 1. 

Table 1. Residual log-likelihoods (Log l) and likelihood ratio statistic (LRT) for the sequence 
models fitted to the eucalypt data. 

Model for G Log L LRT Varo param. Varo param. 
ln G total 

1.Uniform for 9 x e -151100 - 1 3 
2.Uniform for 9 -149228 1 3 
3.Uniform for 9 + 9 x e -147892 2672 2 4 
4.FA 1, varo homog. -147619 546 12 14 
5.FA2, varo homog. -147562 114 17 19 
6.Multiv.var. homog. -147556 12 21 23 

7.FA1, varo heterog. -146381 12 19 
8.FA 1 + g, var.heterog. -146381 O 13 20 
9.FA2, varo heterog. -146325 112 17 24 
10.Multiv. varo heterog. -146318 14 21 28 

The first part of Table 1 contains only models (1 to 6) fitted with assumption of 

homogeneous error variance. Model 1 fitted treatment effects on each 

environment and considered a common error variance for ali environments. 

Model 2 fitted treatment effects on an average environment and considered a 
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common error variance for ali environments. Model 3 fitted treatment effects on 

an average environment plus 9 x e interaction and considered a common error 

variance for ali environments. Model 4 fitted a factor analytic structure of order 1 

for treatment effects and considered a common error variance for ali 

environments. Model 5 fitted a factor analytic structure of order 2 for treatment 

effects and considered a common error variance for ali environments. Model 6 

fitted a full multivariate unstructured for treatment effects and considered a 

common error variance for ali environments. The second part of the same table 

contains only models (7 to 10) with assumption of heterogeneous error 

variance. Models 7 and 9 fitted a factor analytic structure of order 1 and 2, 

respectively, for treatment effects. Model 8 fitted a factor analytic structure of 

order 1 for treatment effects plus treatment main effects. Model 10 fitted a full 

multivariate unstructured for treatment effects. 

Contrasting the two parts in terms of the Log L it can be seen that the models 

allowing error variance heterogeneity are far better than the models assuming 

variance homogeneity. This shows the superiority of FAMM models over AMMI 

models, which do not consider the error variance heterogeneity. Common error 

variance for ali trials is implicit in the AMMI approach. Even the full multivariate 

model (6) for Go (21 parameters) with homogeneous variance is worst than the 

FA 1 model (7) for Go (12 parameters) with heterogeneous variance. This 

confirms the great importance of considering error variance heterogeneity in MET 

analysis. And this can only be done in the mixed modelling framework. So, it is 

a great advantage the factor analytic models being embedded in this framework. 

Other important feature of the FAMM models is the providing of parsimonious 

models in relation to the full unconstrained multivariate approach. The 

multivariate approach is prohibitive with a great (usually > 5) number of 

environments, generating over-parameterised and hard-to-converge models. 

Results trom Table 1 reveal that the model FAMM with two factors (FA2) is 

practically equivalent (REMLLRT of 14 and 12 on 4 degrees of freedom, p 

value > .01) to the full multivariate model in both situations, with and without 

allowing for variance heterogeneity. So, in practice a model with four less 

parameters can be used. It is worthy mention that ali the FAMM models 

converged without a need for constraining the Go matrix. 

A Model including the main genotype effect (g) is intermediate between the 

factor analytic models of order k (FAk) and of order FAk + 1, as it is FAk + 1 with 
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constraints. The model FA 1 + 9 is intermediate to models FA 1 and FA2. ln the 

present data set the models FA 1 and FA 1 + 9 were equivalent, giving the same 

Log L. ln fact, the estimate of the variance component for genotype effects was 

on the boundary; that is it was estimated as zero. The role of genotype main 

eftects in an FA model is purely in terms of the search for a parsimonious 

variance structure between a given FAk model and a FAk + 1 model. The 

approach for prediction of overall genotype means across environments is the 

same irrespective the inclusion of genotype main effects (Smith, Cullis and 

Thompson, 2001). ln a factor analytic context, the model without genotype main 

effects is equivalent to a model for genotype effects in each environment. 

Overall, the best parsimonious model was the FA2 with heterogeneous variance 

for errors (model 9 in Table 1). Results concerning to loadings, common, 

specific and error variances provided by this model are presented in Table 2. 

Tabla 2. Estimated loadings (on the correlation scale), common (communality), 
specific and error variances for the model FA2 fitted to the eucalypt data. 

Original Loadings and (Rotated) Common Specific Error 

Location Factor 1 Factor 2 
Variance Variance Variance 

(%) (%) 

1. L 1 0.845 (0.433) 0.498 (0.880) 0.962 0.038 20.0422 

2. L2 0.791 (0.443) 0.398 (0.767) 0.784 0.216 20.5270 

3. L3 0.837 (0.450) 0.454 (0.839) 0.907 0.093 22.6041 

4. L4 0.907 (0.596) 0.295 (0.745) 0.910 0.090 44.5751 

5. L5 0.979 (0.761 ) 0.104 (0.624) 0.969 0.031 38.0380 

6. L6 0.904 (0.837) -0.149 (0.372) 0.839 0.161 28.9856 

Eigenvalues 4.639 0.710 

Accu. Varo 0.773 0.892 
Explained 

It can be seen that the FA2 model explained a large amount (almost 90%) of the 

total genotypic variance. The first factor explained 77.3% of the variation and the j 

second factor added 11.9 %. The specific variances (in percentage of the total) 

were low, except for the environments 2 and 6, which were 22% and 16%, 

respectively. The high values of the common variance (or communality) show 

that the two factors explained a great percentage of the variance of each 
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environment and that the FA2 model fitted well to the data set (Table 2). 

The genotypic variance-covariance matrix and the correlations (obtained by 

Ai\. + \fi from model FA2 on the correlation scale) involving the severa I 

environments are presented in Table 3. 

Table 3. Estimated genotypic covariancelvariancelcorrelation matrix associated to model 
FA2 applied to eucalypt data set. 

L1 L2 L3 L4 L5 L6 
L1 6.312 0.867 0.933 0.914 0.879 0.689 
L2 6.964 10.225 0.843 0.835 0.812 0.655 
L3 7.375 8.481 9.905 0.893 0.867 0.689 
L4 8.132 9.463 9.959 12.555 0.919 0.776 
L5 6.566 7.754 8.108 9.682 8.837 0.869 
L6 5.135 6.207 6.425 8.148 7.659 8.784 

It can be observed that there is heterogeneity among the specific variances 

concerning to several environments (diagonal of Table 3). This justifies the use 

of models with heterogeneous specific variances. Piepho (1997, 1998) 

proposed the use of a factor analytic model with common specific variance for ali 

sites. However, Smith, Cullis and Thompson (2001) noted that models with 

heterogeneous specific variances were significantly better. It can be seen that 

there is also heterogeneity of covariance between the several combinations of 

environments. These covariances represent the genotypic variance free from 

interaction effects between each two sites. This heterogeneity explains the better 

fit of FAk and multivariate models over the model 3, which includes 9 + 9 x e. 

When there are only two environments, the bivariate and model 3 tend to give 

the same fitting (see results from tea plant data set). 

Results about correlations reveal that the first four environments have smaller 

correlations with the environment 6, which has higher correlations with 

environment 5 (Table 3). It can be observed that factor analysis put greater 

emphasis on environments 5 and 6 in the factor 1 (rotated loadings higher than 

0.76) and higher emphasis on sites 1, 2, 3 and 4 in factor 2 (rotated loadings 

higher than 0.74) (Table 2). This is the logic of factor analysis: to separate 

groups of traits with high correlations between them in each group and then put 

higher weights in traits of a group in one factor (factor 1) and higher weights in 
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traits of another group in the other factor (factor 2). Plotting the first set of 

loadings against the second will show the clustering of environments: L 1, L2, 

L3 and 4 elose together in one group and L5 and L6 in a second group. Other 

advantage of FAMM models over AMMI is that they provide an estimate of the 

full correlation structure, facilitating practical decisions to be made. 

The FAMM and AMMI models are also useful for the elustering of environments 

based on their similarity in terms of genetic correlations. This can be done 

through biplots (AMMI) or plot of loadings from the first factor against the 

loadings from the second factor (FAMM). The full structure of correlation 

provided by the FAMM models can be also subjected to methods of cluster 

analysis or other multivariate methods. Such methods traditionally operate on 

correlations estimated by pairs of environments through balanced ANOVA. The 

FAMM models use the information on ali environments simultaneously to give 

the correlation for pairs of environments, so providing more precise estimates. 

2.6.2 Tea Plant Data Set 

Multi-environment Spatial Analysis for each Trait 

The two trials contain 45 treatments in common, so it was possible to analyse 

ali data simultaneously. Although not ali progenies were represented in the two 

environments, the FAMM models were applied. An important remark is that the 

factor analysis under the mixed model can be done with incomplete data sets. 

Firstly, multi-environment spatial analyses were done for each trait in a 

combination of the two trials. Three objectives pursued by breeders were 

considered: selection for specific environments (multivariate multi-environment 

spatial mode!), selection for an average environment (univariate multi­

environment spatial mode!), selection for a non-tested environment (univariate 

multi-environment spatial models, including the genotype x environment 

interaction effects). The main features concerning variance structures of the 

models are presented in the sequence. 
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Selection for Specific Environments 

C -I C-I IV> A-I 
= o """ , where: 

Ti : vector of genetic effects in the environment i; 

cr ,2 : genetic covariance between two environments. 

Selection for an Average Environment 

R ~ 1 = R,; 1 @ H ~ 1 : G ~I = (I/a ,',. lA ~I, where: 

R = " 
[
a ,2 O 1 

o O aé,2, 

I 

[

Hla ,2 

R ~ = O '"" 

H I = [L (<l> I, ) @ L (<l> " )] : spatial correlation matrix for the environment 1; 
fi ri 

H 2 = [~ (<I> I, ) @ ~ (<I> I, l) : spatial correlation matrix for the environment 2; 

-tm : vector of genetic effects in an average environment; 

cr ,2", : genetic variance for an average environment. 

Selection for a New Environment 

w l = R;I i8l H -I; 

(J :c : variance of the 9 x e interaction effects; 

ge: vector of 9 x e interaction effects; 

Q-I = (l/cr :,,)/ 

Q: variance-covariance matrix of 9 x e interaction eftects. 

Results concerning to the first objective are presented in Table 4. The plot effect 

was not fitted because it was non-significant with spatial analysis. 
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Table 4. Estimates of the variance parameters: genetic among treatments (progeniesl 

in environment (ei
t

2
, I. genetic among treatments (progeniesl in 

, , 
environment 2 (a t-, I. genetic covariance among treatments across sites 

(ei t " I, correlated residual in site 1 
, 2 .. . 

(a ç, I, correlated residual ln slte 2 

(eit, I, non-correlated residual in site 1 (ei,~, I, non-correlated residual in site 

2 (ei,~, I, narrow sense heritability in site 1 (h1
2 l. narrow sense heritability in 

site 2 (h~ I, respective adjusted heritabilities (h';"i, and h';"i' I and residual 

auto-correlation coefficients between columns (AR Column ii and rows (AR 
Row ii, in the specific trial or site i. 

Parameters estim ates First year Second year Third year 

, , 0.0157±0.004 0.1074 ±0.02 0.3573 ±0.08 cr r-I 

, , 0.0214 ± 0.005 0.0978 ±0.02 1.1526±0.27 
(J t--; 

(J '! 12 

0.0087± 0.003 0.0585±0.02 0.3669 ±0.12 

, , 0.0296± 0.006 0.1439±0.03 0.9032±0.18 a ,-
" 

, , 0.0183 ± 0.018 0.1286±0.04 1.9108±0.62 a s-, 

â 2 0.0948±0.004 0.4326±0.02 1.7135±0.07 
'1, 

, , 0.0797±0.003 0.3531±0.02 3.2352±0.14 cr )~2 

h2 0.4492 0.6283 0.4806 
I 

h2 0.7163 0.7017 0.7261 , 

AR Column 1 0.8073±0.05 O .8463±0 .04 0.8875±0.03 

AR Row 1 0.8000±0.05 0.7967±0.05 0.8137±0.05 

AR Column 2 0.9816±0.03 0.9192±0.04 0.9603±0.02 

AR Row 2 0.9960±0.01 0.9482±0.02 0.9100±0.03 

Deviance -3966.24 829.13 6393.20 

h2 = (4ei 2 ) /( ei 2 + ei 2 ) 0.5683 0.7956 0.6902 
III/i] gl gl III 

h2 = (4ei :,> /( ei ,:, + ei ,~,> 0.8466 0.8676 1.04 
adi:: 
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The genetic correlations between environments were about 0.48, 0.57 and 

0.57 for leaf yield in years 1, 2 and 3, respectively. The magnitudes of these 

correlations reveal a need for specific selection for each site. The bivariate model 

involving the two sites was fitted also assuming variance homogeneity across 

sites and independent errors. The deviance values obtained were -3756.5, 

1127.04 and 6883.92, for the three traits, respectively. These are much higher 

than the -3966.24, 833.70 and 6393.74 obtained with the model allowing 

heterogeneity of variance and spatial errors. Such results reinforce that FAMM 

models could be more adequate than AMMI models, which do not allow for 

heterogeneity of variance and spatial errors. The residual auto-correlation 

coefficients were very high for the site 2 and spatial analysis could be abdicated 

for this site without loss of efficiency. 

Results concerning to the second objective are presented in Table 5. 

Table 5. Estimates of the variance parameters: genetic among treatments Iprogeniesl 

in an average environment lei t
2 

I, correlated residual in site 1 lei 1,2, I, 

correlated residual in site 2 lei~, I, non-correlated residual in site 1 lei,~, I, 

non-correlated residual in site 2 and respective residual auto-correlation 
coefficients between columns lAR Column ii and rows lAR Row ii, in the 
specific trial ar site i. 

Parameters First year Second Vear Third Vear 
estimates 

, 2 
(Jt 

0.01397±0.003 0.0797±0.02 0.4310 ±0.09 

ei 2 

1" 
0.0338± 0.007 O. 1606±0.03 0.9470±0.18 

, , 
0.0182 ± 0.005 Ci 1,-, O. 1350±0.04 1.9259±0.62 

ei 2 

~ , 0.09757±0.004 0.4423±0.02 1.7335±0.07 

, , 
Ci -

~ , 0.07531±0.004 0.3580±O.02 3.4773±0.15 

AR Column 1 0.8049±0.05 0.8154±O.05 0.8766±0.03 

AR Row 1 0.8365±0.05 0.8094±0.05 0.8169±0.05 

AR Column 2 0.8893±0.05 O .9000±0 .04 0.9487±0.02 

AR Row 2 0.7336±0.08 0.9290±0.03 0.9103±0.03 

Oeviance -3917.40 883.21 6483.50 
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This model (Table 5), albeit more parsimonious than the fuI! multivariate (Table 

4), gave a significant higher deviance and higher Ale value. So, the multivariate 

is preferred and selection for an average environment can be done by taking 

means of predicted genetic values in each environment. The superiority of the 

multivariate model can be explained by the heterogeneity of genetic variance 

across sites (Table 4). Data standardisation should correct this and make the 

univariate (for an average environment) model suitable. 

Results concerning to the third objective are presented in Table 6. 

Table 6. Estimates 01 the variance parameters: genetic among treatments (progeniesl 
"i ,,"') 

Iree 01 9 x e interaction ellects (O' ,- I. 9 x e interaction effects (O' ;c I, 
,,'"I ,,"') 

correlated residual in site 1 (O' 1,-, I, correlated residual in site 2 (O' 1,-, I. nono 
, , 

correlated residual in site 1 (O' ,;, I, non·correlated residual in site 2 and 

respective residual auto·correlation coellicients between columns (AR 
Column ii and rows (AR Row ii, in the specilic trial or site i. 

Param eters First year Second year Third year 
estim ates 

â 2 , 0.00865±0.003 0.0588±0.02 0.3305±0.12 

, , 
O' -

gc 0.00976±0.003 0.0442±0.01 0.3412±0.09 

, , 
O' -

1" 0.0298± 0.007 0.1437±0.03 0.9047±0. 18 

, , 
O' -

1,. 0.0183 ± 0.02 0.1286±0.04 1 .8799±0 .64 

, , 
O' -

~, 0.09469±0.004 0.4327±0.02 1 .7111 ±O .07 

, , 
O' I;, 0.07979±0.003 0.3505±0.01 3 .2502±0.14 

AR Column 1 0.8078±0.05 0.8466±0.04 0.8888±0.03 

AR Row 1 0.8004±0.06 0.7968±0.05 0.8144±0.05 

AR Colum n 2 0.9817±0.03 0.9187±0.04 0.9591 ±0.02 

AR Row 2 0.9959±0.09 0.9485±0.02 0.9161±0.04 

Deviance ·3965.28 829.22 6409.64 
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Comparing results from Tables 5 and 6 it can be seen by the deviance values 

that the model with interaction (Table 6) fits better to data, revealing the 

significance of the 9 x e interaction effects. 

This model gave approximately the same deviance and smaller AIC values in 

relation to the full multivariate (Table 4). Then it should be preferred. The 9 x e 

component encompassed ali the heterogeneity of genetic variance. From this 

model, predicted genetic values can be derived for each treatment (parent or 

individual) in each environment by summing the correspondent 9 and 9 x e 

predicted effects. After, the mean of predicted genetic values of each treatment 

ove r several environments can be taken aiming at the selection for an average 

environment. 

Another alternative is the obtaining of treatment effects in each environment 

directly by fitting only the 9 x e component, i.e., overlooking the 9 main effects. 

Applying this approach for the measure in the first year, the variance component 

for 9 x e obtained was 0.01858 which is approximately equivalent to the sum 

of variance component for 9 and 9 x e presented in Table 6, as expected. The 

deviance obtained was -3957.20 which is significantly (by LRT) higher then 

the -3965.28 reported in Table 6. This shows that the model with 9 is better. 

Factor Analytic Models (Spatial and Non-Spatiall for Multivariate and Multi­

Environment Data 

Although the univariate model with 9 and 9 x e for treatment effects is sufficient 

for the multi-site analysis of individual traits, the univariate approach is not 

appropriate for ali six measures together due to the great variance heterogeneity 

between measures in each site. So, a multivariate approach for the six traits 

together with fit of individual permanent effects in each site was adopted. The fit 

of permanent effects aimed at the elimination the residual covariance between 

measures in each site. The model is an extension lincreasing the number of traits 

to six and including permanent effects) of that concerning to selection for 

specific environments. 

However, the fit of this model not converged with spatial errors and a non­

spatial model was fitted. Results are presented in the sequence together with the 

factor analytic models, which were fitted as alternative parsimonious models. , 
I 
I 

,i 
l 

~I 
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Results concerning to factor analytic models for the six repeated measures in two 

environments in comparison with the multivariate model are presented in Table 

7. ln ali models the individual permanent effects were fitted as a mean of 

eliminating the residual correlation between repeated measures in each site. 

Table 7. REML log-likelihoods (LogL) and REMLLRT (LRT) for comparing models of fitting 
covariances structures involving six traits. Models fitted were multivariate for 
treatments and non-spatial for residuais (MNSl, factor analytic of order 1 for 
treatments and non spatial for residuais (FA 1 NS), factor analytic of order 1 for 
treatments and spatial (including both the correlated and independent term) for 
residuais (FA 1 SI. 

Number of Variance parameters 

Model for G G Total LogL LRT(P value) %Variance 

MNS 21 28 -2335.67 -

FA1NS 12 19 -1848.10 975.14(0.001 ) 

FA1S 12 37 -585.31 2525.58(0.001 ) 71.5 

It can be seen that the best model was the factor analytic with spatial error 

(FA 1 S). This model was superior to that one with non-spatial error (FA 1 NS). 

This fact is sufficient to show the superiority of factor analytic multiplicative 

mixed models (FAMM) ove r the additive main and multiplicative interaction 

effects (AMMI), which assumes fixed treatment effects and do not permit to 

model separate spatial errors. The proportion of genetic variance explained by 

the FA 1 S was 71.5%. This value is sufficient for the purpose of the analysis, 

i.e., genetic selection. 

The non-spatial factor analytic model showed to be superior to the non-spatial 

multivariate model (MNS), revealing the advantages of the factor analytic models 

in terms of parsimony and ability of fitting. The MNS model, although with more 

parameters, showed a smaller LogL and was hard to converge, demanding 

restriction on G to be positive definite. Even so, the convergence was not so 

reliable, as ASREML fixed some variance components on the boundaries. ln fact, 

it might not converged to a maximum likelihood solution. Other models like the 

fuI! multivariate with spatial error and factor analytic of order 2 did not converge. 
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Results concerning to genetic correlation for the best model (FA 1 S) are 

presented in Table 8. 

Table 8. Estimated genetic correlations obtained trom the FA1 S modelling. 

G enetic correlations 

Tra it 1 2 3 4 5 

1 1 0.982 0.999 0.665 0.852 

2 1 0.982 0.585 0.794 

3 1 0.664 0.851 

4 1 0.870 

5 1 

6 

6 

0.745 

0.653 

0.744 

0.862 

0.935 

1 

The estimated correlations are relatively coherent with previous estimates and 

expectation: higher correlation between repeated measures within site and lower 

correlations across sites. This, together with the suitable proportion of genetic 

variance explained by the FA 1 S model reveals the adequacy of the factor 

analytic model for analysis of this sort of data. Otherwise, the whole data set 

could not be analysed simultaneously. The variograms showed adequate 

behaviour. 

Gilmour and Thompson (2002) reported the computational aspects of analysing 

six traits in an animal breeding context, when some traits are highly correlated. 

They conclude that the Factor Analytic and Cholesky models appear best in this 

situation. We confirm the adequacy of FA models. The Cholesky appear to be 

inadequate for our data set with errors non-correlated across traits, as we fit the 

permanent effect to account the correlation across traits within sites and the 

errors are non-correlated across sites. 

Practical experiments with several perennial plants generate annually throughout 

the world a large amount of data on repeated measures. These measures are 

usually taken only three or four times before selection, since more than that, 

leads to less genetic gain per unit of time. Suitable models should be found for 

application in such kind of data in one or severa I experiments simultaneously. 

For analysing multi-environment data sets with longitudinal data, the factor 

analytic multiplicative mixed model proved to be a very useful tool, mainly when 

applied together with spatial analysis. The software ASReml showed to be 
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essential for modelling the complex data structure involving repeated measures, 

spatial dependency and multi-environment data sets in perennial plants. FAMM 

and FAMMS models can also be used for studies concerning QTL (quantitative 

trait loci) x environment interaction. This approach can be better than that 

advocated by Romagosa et aI. (1996). based on AMMI analysis. 

2.7 Conclusions 

• Parsimonious FAMM models were found for the two data sets: FA2 for euca­
Iyptus data set and FA 1 for tea plant data set. 

• There were great advantages of heterogeneous variance FAMM models over 
homogeneous variance FAMM models. This reveals the superiority of FAMM 
models ove r AMMI models. 

• It was noted heterogeneity among the specific variances in individual 
environments so factor analytic models with common specific variances for 
ali sites were not suitable. 

• FAMM models provided estimates of the full correlation structure, facilitating 
practical decisions to be made. 

• FAMM models with heterogeneous variance among traits and spatial errors 
within traits were advantageous over FAMM models with variance 
homogeneity and non-spatial error. This also shows the superiority of FAMM 
models over AMMI models, which do not allow for dependent or spatial 
errors. 

• For analysing multi-environment data sets with longitudinal data, the FAMM 
models proved to be a very useful tool, mainly when applied together with 
spatial analysis. 



3.1 Introduction 

3. Analysis of Interference and 
Environmental Trend in Field 
Trials by Joint Modelling of 
Competition and Spatial 
Variability 

Analysis of plant field experiments should be based on realistic approaches 

taking into account the biological process associated to the trait evaluated as 

well as the environmental influences. Experimental designs play a key role in 

providing reliable data sets for analysis. However, the local control schemes 

relying on block can be inefficient in accounting of ali environmental gradients 

and trends and even the incomplete blocks do not provide a complete evaluation 

of the environmental effects. The spatial dependency or environmental trend 

within blocks, due to fertility and other environmental effects, should be 

considered through appropriate models of spatial analysis. Additionally, 

competition effects of neighbouring plants can also cause bias in treatment 

comparisons, due to interference of one genotype on phenotypic response of a 

neighbour plant or plot. So competition models should be also employed aiming 

at evaluation of interference effects. 

There are two underlying assumptions in the classical block model. Firstly, that 

the fertility associated with plots in a block is constant (or nearly sol. Secondly, 

that the response on a plot due to a particular treatment does not directly affect 

the response on a neighbouring plot. The first assumption is concerned with an 

environmental or residual effect called spatial trend, whilst the second 

assumption is concerned to treatment effect and is referred to as interference 

(Durban, Hackett and Currie, 1999). The trend effect is of common occurrence 

and correction for it is likely to increase heritability and precision estimates, as it 

is an environmental effect. The interference can occur only in some plant species 

and in determined phase of growth. So it depends on the biology of the species 

and its adjustment is likely to reduce the heritability estimates, as it is concerned 

to treatment effects. Adjustments for both effects are likely to reduce bias. 

Experimenters should know about the competition effects in the species 

subjected to research aiming to choose between models with or without 

competition effects. Such effects has been reported in several important crops 

such as wheat, barley, oat, triticale, field beans, rice, cassava, sugar beet, 
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potatoes, swedes, kale (Talbot et aI., 1995). ln perennial plants, competition has 

also been found in forest trees (Correll and Anderson, 1983). cocoa (Glendinning 

and Vernon, 1965; Lotode and Lachenaud, 1988). oil palm (Nouy et aI., 1990) and 

robusta coffee (Montagnon et aI., 2001). Interference depends also on the size 

and form of the plot and has been reported to be very common in sugarcane trials 

designed in single-furrow plots (Stringer and Cullis, 2002a and b). ln forest trees, 

competition effects depend mainly on age of measurement. Under competition 

effects, the best genotypes tend to exhibit overestimates of their superiority due 

to greater aggressiveness ove r the worst genotypes which exhibit sensitivity to 

competition. Models for evaluating the aggressiveness and sensitivity of 

genotypes were presented by Kempton (1982). 

An important feature of the plant interference and spatial trend effects is their 

influence on the fitted models. Spatial trend generates positive auto-correlation 

between neighbouring plants or plots and plant interference due to competition 

generates negative auto-correlation between them. Firstly fitting of spatial 

models can reveal the need for competition models. High (say > 0.3) positive 

auto-correlation coefficients estimates obtained in spatial analysis reveal that 

spatial trend is predominant over competition and negative or near zero auto­

correlation coefficients estimates reveals strong competition effects probably 

together with spatial trend. Also, firstly fitting a competition model can reveal 

the significance of such effects. ln some circumstances, modelling only one of 

the effects, can be inappropriate. So the two effects should be modelled 

together. Durban, Currie and Kempton (2001) reported stronger fertility trend 

and stronger competition effects estimates in sugar beet when adjusting for 

these two effects simultaneously than when the two effects were modelled 

separated. 

Fertility trend has been well accommodated through the residual autoregressive 

models of Gleeson and Cullis (1987). Cullis and Gleeson (1991) and Gilmour, 

Cullis and Verbyla (1997). Models for competition in plants have been proposed. 

Mead (1967) presented a theory of the original pure-stand competition. Other 

relevant papers are Pierce (1957), Draper and Guttman (1980), Kempton (1982), 

Besag and Kempton (1986), Pithuncharurnlap, Basford and Federer (1993), Talbot 

et aI. (1995). Durban, Hackett and Currie (1999), Durban, Currie and Kempton 

(2001), Stringer and Cullis (2002b). Such models will be considered in details in 

the next section. Pierce (1957), Draper and Guttman (1980). Kempton (1982). 

Besag and Kempton (1986) took into account only competition through 
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autoregressive models at phenotypic and/or also at treatment or genotypic 

leveis. Pithuncharurnlap, Basford and Federer (1993) considered simultaneously 

environmental trend through the residual autoregressive model of Gleeson and 

Cullis (1987) in one direction and competition through the genotypic approach of 

Besag and Kempton (1986). Durban, Hackett and Currie (1999) and Durban, 

Currie and Kempton (2001) considered simultaneously the two effects by 

modelling trend through cubic smoothing splines within blocks and interference 

by the phenotypic model of Kempton (1982). Stringer and Cullis (2002b) 

attempted to the joint modelling of spatial and competition effects through the 

methods of Gilmour, Cullis and Verbyla (1997) and genotypic model of Besag and 

Kempton (1986), respectivamente. 

lhe present paper aims at accounting simultaneously for trend and interference 

in field trials of perennial plants such as forest trees and sugarcane. lhe 

objectives are the comparison and extension of alternative models, the 

quantification of competition leveis in these species and the inference about the 

need for more complex models in routine of data analysis in these crops. 

3.2 Competition Models 

A simple too I to diagnostic the presence of competition effects in a field trial 

consists in performing the scatter plot between the residual of a central plot 

(adjusted for genotype and block effects) and the mean of the adjacent plots 

(adjusted for blocks aiming at the elimination of the positive correlation due to 

fertility). Also, a correlation coefficient between residuais and the performance 

(corrected for blocks) of the neighbours can inform about the presence of 

competition. Spatial analysis through autoregressive models and sample 

variogram can inform about the competition as well. Low positive and negative 

auto-correlation coefficients in spatial analysis show the presence of competition. 

Sample variograms exhibiting spikes and high and low points (alternating ridges) 

reveal negative correlation between residuais and so competition. 

3.2. 1 Phenotypic Interference 

Kempton (1982) presented the following model for competition. 
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Yij=T,+f3X;+Ei;' (1) 

where: 

)',i : observed value of the genotype i in plot j; 

Ti: fixed effect of treatment or genotype i; 

f3 : competition coefficient, common to ali genotypes; 

X; : mean of the neighbouring plots of the genotype i in plot j; 

E i; : errar independently and normally distributed with zero mean and 

variance (J 2 . 

The model assumes observations adjusted for the general mean and ignores the 

block effect. The covariate X is given by X = L Y / p where p is the number of 

neighbouring plots considered. Normally p can be 2 (evaluation at plot levei, 

several plants per plot), 4 (evaluation at plant levei with one or severa I plants per 

plot) or 8 (evaluation at plant levei with one or several plants per plot). 

The 1" i effect represents the genotype effect expected when the variety is 

grown under the competitive stress of the trial. Its performance in monoculture is 

estimated by T ic = Ti /(1 - f3 ) . Since f3 is negative, it can be seen that the 

performances of the best treatments are reduced after the correction for 

competition. This is because under competition the more aggressive varieties 

tend to have their performances overestimated in detriment of the more 

sensitivity varieties. If the experimenter is interested in assessing comparative 

varietal performance in monocultures, this correction should be made. The 

differences observed between performances of genotypes in the trials and in 

commercial plantings arise partially because the allocation of varieties in trials are 

not balanced for neighbouring varieties, but largely because a selected variety is 

likely to be highly competitive in the trial and therefore plants are liable to show 

natural depression in yield when grown as a monoculture. This has been 

observed in sugarcane in Brazil, confirming a need for corrections to be made. 

The parameters can be estimated simultaneously by least square through the 

following set of equations. 
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r3 = f (Yi; - -{ i)X ; /( f X ~ ) . 
;=1 

The summation in equation for "t i extends only over the set of plots j containing 

the genotype i (n/g plots, where n is the total number of plots in the trial and 9 is 

the number of genotypes or treatments). ln the equation for f3 ali plots are 

used, as the competition coefficient is common for ali genotypes. f3 is a 

regression coefficient relating the residuais with the mean value (as a covariate) 

of the neighbouring plants ar plots. 

This least square approach is valid when the covariate is another variate different 

trom the main trait of interest, for example, the main trait being the yield and the 

covariate being the plant height. However, when the covariate is defined to be 

the sam e as the main trait (for example, both being yield), the least square 

approach produces an invalid estimate of f3 (as the competition coefficient 

appears in both the mean and variance of y). An efficient estimation can be 

performed using maximum likelihood. The significance of f3 in the model can be 

tested through the likelihood ratio testo The omission of the competition eftect 

can increase the deviance, f ' of the model. To test for the significance of 

competition, having adjusted for varietal eftects, the statistic 

f(y : â , f) - f(y : â ;t, r3) should be used, which under the null hypothesis 

should approximate to a X 2 distribution with 1 degree of freedom. 

The same model can be re-written by considering only two plants or plots as 

neighbours: 

Yii ='t i + (1/2) P (Yi + l •s + Yi - I ,!) + E i; (2) 

where Yi+l.s and Yi -I.t are the performances (for the same trait) of genotypes s and 

t in plots neighbouring the genotype i. Situations can exist where the 

competition coefficients depend on the particular genotypes grown in the plots. 

ln such cases, specific competition coefficients P is = (5/y s may be demanded, 

where 8 i represents the sensitivity of the genotype i to competition and 

y s represents the aggressiveness of genotype s and may be standardised so 
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that I y s = g. So the model (2) can be re-written as 
s 

Yi ; = 1 I + (I / 2)( Pi., Ys + P ii Y, ) + E i; 

ln matrix notation the model (2) can be re-written as (Besag and Kempton, 1986): 

y=Xb+Zt+f3WY+E (3) 

where: 

W: is a n x n weight or regressor matrix which has the off-diagonal elements (j, j 

± 1) or the principal off-diagonals equal to (1/2), otherwise zero; 

b: is a vector of design features such as blocks, with incidence matrix X. 

lhe vector 1 can be interpreted as centred genotype effects in the absence of 

competition or under the average competitive stress in the trial. But when grown 

in a monoculture, the best varieties would produce a more competitive 

environment than that of the trial average and so will not perform as well as in 

the trial. lhen 1 should be divided by a factor (1- f3) to represent the pure 

stand effects. lhe competition effects increase the range and variability of 

genotype effects as they amplify the values of the more aggressive genotypes. 

lhe correction using the factor (1- f3) causes shrinkage in genotype effects, 

leading to more realistic results. 

According to Kempton (1985), an alternative form for the model (2) is 

~i =1 ir + J3 (Yi +1 + YH - 2 Yi ) + E ii. ln such a case the treatment effect is 

fitted already corrected for the neighbour effects, i.e., represents the pure stand 

productivity. 

3.2.2 Genotypic Interference 

Draper and Guttman (1980) have ignored the errors in Ys and Y, and used the 

model (2) as 
Yi; = 1 i + (1 / 2 ) P (1 s + 1 I ) + E i; (4) 

lhis model considers that the competition have more to do with the genotype 

rather than with the phenotype of the plants. lhis makes sense, since the 

aggressiveness and sensitivity of the genotypes are likely to be due to genetic 

causes and also to depend on another traits like height, canopy size and tillering 
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ability. ln such mode!. the regression coefficient relates the genetic effect of the 

neighbours to the residual value of each central plant. 

Pierce (1957) considered a model of plot interference in which each treatment i 

has a direct effect 't i on the plot to which it is applied and a neighbour effect ~ i 
on each neighbouring plot. Genotype competition can be considered in this way, 

as the causes of competition are often unknown. Following Besag and Kempton 

(1986), the model is of the form: 

y=Xb+Zr +NZ~ +8 (5) 

where: 

~ : is a vector of centred on neighbour treatment effects (indirect effect 

produced on neighbours), which are genotypic and not phenotypic; 

N: is the neighbour incidence matrix of dimension n x n, composed by O and 1. 

It can be seen explicitly trom model (5) that competition effects are concerned 

with treatment effects (depend on Z matrix) and not residual ones. Due to this 

reason the auto-regressive approach for the residuais only, can be inappropriate 

to account for interplant or interplot competition. 

Draper and Guttman (1980) included a special case of (5) in which ~ i = À't i' 

where À is a coefficient of interference, common to ali genotypes. The model is: 

y = Xb + Ht + E 

= Xb + Zt + NZÀ t + E 
(6) 

where H = (1 + /...N)Z , so that the model is non linear in 't and À . The 

treatment effect for pure stand planting is given by t; = (1 + VÀ)t i • 

The component ~ i in (5) can be positive or negative depending on 

aggressiveness of the treatment. If negative (for aggressive varieties), the 

absolute value of ~ i should be subtracted from 't i through t i* = t i + v<J> i giving 

the treatment effect for pure stand planting, where v is the number of neighbours 

considered. If positive (sensitive variety), ~i will be summed in the expression 

for 't: . The neighbouring effect is not always correlated (negatively) to the trait 

being evaluated as it can depend on other traits such height and vigour of the 
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plants. ln cases in which J.. is unrelated to 'T. ,the models (1), (2), (3), (4) and (6) '1', , 
are inadequate as they consider an unique competition coefficient for ali 

genotypes. So, the model (5) tends to be better as it permits the neighbour 

genotypic effects to be individually specified. Also, a ranking based on the 

component ~ i can be performed aiming at the selection of low-competition and 

high-production varieties for high-density planting. 

3.3 Joint Modelling of Competition Effects and Fertility 
Trends 

Pithuncharurnlap, Basford and Federer (1993) attempted to include both trend 

and competition in a spatial model. They put together the uni-dimensional 

autoregressive model of Gleeson and Cullis (1987) for modelling fertility trend in 

one dimension and the genotypic competition model (5) of Besag and Kempton 

(1986) for modelling interference. The model is of the form: 

y=Xb+Z'T +NZ~ +ç +11 (7) 

where: 

ç : random vector of correlated errors; 

11 : random vector of non-correlated errors. 

The competition was modelled as part of the treatment structure and the trend in 

only one dimension was modelled as part of the structure of errors. 

Durban, Currie and Kempton (2001) commented about the problem of 

simultaneously modelling of two types of local correlation. According to them, 

some difficult might be anticipated in the joint modelling of trend and 

competition by the phenotypic model, since both are correlation effects. They 

suggested different mechanisms to specify the two effects, allowing them to be 

separately estimated. 

Durban, Hackett and Currie (1999) and Durban, Currie and Kempton (2001) 

considered simultaneously the two effects by modelling trend through cubic 

smoothing splines within blocks and interference by the phenotypic model of 

Kempton (1982). However, splines might not be the best option for modelling 

spatial trend. Very often, two-dimension separable auto-regressive models 

provide a better fit (Gilmour, Cullis and Verbyla, 1997). 
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Stringer and Cullis (2002b) used the same model as (7), but assumed 1" i and <Pi 
as random effects (model 8). ln this case, there is a covariance between 1" i and 

<P i . The covariance matrix between them is: 

G = (~:: ~:: J ' where gn is the variance component for the direct genotypic 

effects, g",,,, is the variance component for the on neighbour genotypic effects 

and g,,,, is the covariance component between the direct and on neighbour 

genotypic effects. 

According to model (6) of Draper and Guttman (1980), the variance-covariance 

matrix G is given by: 

G = (g" À 1g n
) 

À1g" À~g" . 

This variance-covariance matrix is of reduced rank (rank 

(2003) describe how to deal with models of this sort. 

1 ). Thompson et aI. 

Stringer and Cullis (2002b) advocated a sequential approach, commencing by 

modelling trend, then checking the variograms and auto-correlations, and finally 

undertaking the modelling of the competition. 

3.4. Competition Models in Perennial Crops and Forest 
Trees 

The competition models applied in perennial plants and forest trees have been 

the same (with small modifications) as applied in annual crops, which were 

described in the previous topics. Correll and Anderson (1983) applied the 

competition model of Draper and Guttman (1980) together (but not 

simultaneously) with the spatial analysis of Papadakis to account for interference 

and trend, respectively. Magnussen and Yeatman (1987) used two approaches: 

the competition index of Hegyi (1974) as covariate and a modification of the 

competition model of Kempton (1982). The competition index of Hegyi (1974) 

was proposed in the context of competitive pressure on single individuais in 

natural stands and is given by: 
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8 

C; = (L Y j / ~ ) / Distij , where: 
j=1 

c; : Competition index of the subject tree or plant; 

~ : observed value of the subject tree i; 

Yj : observed value of the competitor tree j; 

Dist,,: distance between tree i and j. 

The use of this index as a covariate produce results similar to that obtained with 

the method of Kempton (1982) when applied to the average of the 8 neighbours 

assumed equally spaced in relation to the subject tree. So, the advantage of the 

Hegyi' s index refers only to the consideration of the different distances between 

the subject tree and the neighbours. Leonardecz-Neto (2002) also applied this 

index in forest trees. 

The modification on Kempton (1982), introduced by Magnussen and Yeatman 

(1987) was the consideration of two competition coefficients ~ ,one for 

individuais of different treatments and other for individuais of the same treatment 

in a plot, i.e., one competition coefficient for related individuais and other for 

unrelated individuais. This sort of model is a first-order auto-normal scheme of a 

two-dimensional Markov process (Besag, 1974) if the experimental design is 

regarded as a regular lattice of point sites with continuous variables having a 

multivariate normal distribution, and assuming stability in both time and space. 

Magnussen (1994) considered the simultaneous adjustment for spatial and 

competition effects by using modifications of the approach used by Correll and 

Anderson (1983), based on the Papadakis method. Kusnandar (2001) extended 

the model of Kempton (1982) to two dimensions, considering competition in the 

row and column directions, under a mixed effects model. Montagnon et aI. 

(2001) reported the first paper dealing with competition in coffee. They used 

specific competition coefficients for each treatment but only at residual leveI. 

They used the multiple linear regression technique to estimate the competition or 

partner effects (Gallais, 1975). 
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The competition models used in forest trees did not consider specific 

competition coefficients for each treatment and the partitioning of treatment 

effect into direct and on neighbour effect. Also, for joint modelling of competition 

and trend, the spatial approach used was the Papadakis method, which can not be 

the best one. Besides, when using the phenotypic model of interference and the 

Hegyi index, in which the covariate is defined to be the sam e as the main trait 

(for example, both being height of the plants), the least square approach 

produces an invalid estimate of 13 . An efficient estimation can be performed 

using profile maximum likelihood, which were not used by the authors 

mentioned before. So, in the next topic we pro pose new modelling for trend and 

competition effects in perennial plants. 

3.5 Proposed Competition and Spatial Models for 
Perennial Plants 

3.5. 1 Competition and Spatial Model for Single Tree Plot 
Design (Four Neighbours) 

The model (8) of Stringer and Cullis (2002b) can be used to account for any 

number of neighbours. ln this case, the neighbour plants or plots belong to 

different treatment (variety), and the spacing between the subject (S) plant and 

the neighbours (N) are the same. 

Layout 

N 

N S N 

N 

The competition effect on four neighbours can be specified individually (when 

the neighbour effect depends on shading) as east, west, north and south 

neighbours or just in one coefficient encompassing ali the horizontally and 

vertically neighbours in ~ HV . Such model is detailed below. 
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Model 

y = Xb + Zt + N HV Zej> HV + S + 11 (8) 

't ; random vector of genotype effects in the absence of competition or under 

the àverage competitive stress in the trial; 

N HV ; incidence matrix for horizontally and vertically neighbours; 

~ HV ; random vector of genotype effects on horizontally and vertically 

neighbours. 

Neighbour Incidence Matrix (N
H

) 

Field Array 

1 5 9 

2 6 10 

3 7 11 

4 8 12 
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O 

Covariance Matrix of Direct and on Neighbour Treatment Effects 

G -( g" 
gt~/" 
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Corrected Treatment Effect 

1: i* = 1: i + V HVi~ !lI', 

V HVi : number of horizontally plus vertically neighbours of the genotype i in the 

trial, i.e., 4. 

3.5.2 Competition Model for Single Tree Plot Design (Eight 
Neighbours) 

Aiming to take into account the different distances between the neighbours and 

the subject tree, the model (8) should be extended to (9). 

Layout 

N 

N 

N 

Model 

N 

S 

N 

N 

N 

N 

(9) 

1: : random vector of genotype effects in the absence of competition or under 

the average competitive stress in the trial; 

N HV : incidence matrix for horizontally and vertically neighbours; 

~ HV : random vector of genotype effects on horizontally and vertically 

neighbours; 

N D : incidence matrix for diagonally neighbours; 

~ D : random vector of genotype effects on diagonally neighbours. 

Neighbour Incidence Matrix (No) 

Field Array 

159 

2 6 10 

3 7 11 

4 8 12 
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2 3 4 5 6 7 8 9 10 11 12 

O O O O O 1 O O O O O O 
O O O 1 O 1 O O O O O 

O O O 1 O 1 O O O O 
O O O 1 O O O O O 

O O O O O 1 O O 
O O O O 1 O 

O O O 1 O 1 
O O O 1 O 

O O O O 
O O O 

O O 
O 

Covariance Matrix of Direct and on Neighbour Treatment Effects 

[g" g'~/" 
G= g~IIV~1/J 

Corrected Treatment Effect 

'i' ='i +VHVi~HV, +VDi~D, 

g,~" 

] g~lIv~" 

g~"~,, 

V HVi : number of horizontally plus vertically neighbours of the genotype i in the 

trial, Le., 4. 

V Di: number of diagonally neighbours of the genotype i in the trial, Le., 4. 

3.5.3 Competition and Spatial Model for Multiple Tree Plot 
Design (Four Neighbours) 

ln this case, the neighbour plants belong to different treatment (variety) in one 

dimension (horizontally: in general) and belong to the sam e variety in the other 

direction (vertically, usually). Also, the spaces between the subject (8) plant and 

the neighbours (N) are the same. We should change model (8) to (10). 
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Layout 

s 

Model 

(10) 

T : random vector of genotype effects in the absence of competition or under 

the average competitive stress in the trial; 

N
Ii 

: incidence matrix for horizontally neighbours; 

~ H : random vector of genotype effects on horizontally neighbours; 

N v: incidence matrix for vertically neighbours; 

~ v : random vector of genotype effects on vertically neighbours. 

Neighbour Incidence Matrix (N
H 

) 

Field Array 

159 

2 6 10 

3 7 11 

4 8 12 
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O O O O 1 O O O 
O O O O O O 

O O O O O 
O O O O 

O O O O 
O O O 

O O 
O 
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Covariance Matrix of Direct and on Neighbour Treatment Effects 

g'~1I g,~, 

1 
gh$1I g~II$, 

g~,~, 

Corrected Treatment Effect 

't ~ = 't + VH'~ H + Vv ~ V I I {, I I 

V Hi : number of horizontally neighbours of the genotype i in the trial, i.e., 2. 

VVi: number of vertically neighbours of the genotype i in the trial, i.e., 2. 

ln this case, the neighbour effect in the own variety is estimated by ~ v, . 

3.5.4 Competition and Spatial Model for Multiple Tree Plot 
Design (Eight Neighbours) 

Aiming to take into account the different distances between the neighbours and 

the subject tree, the model (10) should be extended to (11). 

Layout 

N Ns N 

No S No 
N Ns N 

Model 

(11 ) 

't. random vector of genotype effects in the absence of competition or under 

the average competitive stress in the trial; 

N H : incidence matrix for horizontally neighbours; 

~ H: random vector of genotype effects on horizontally neighbours; 

N v: incidence matrix' for vertically neighbours; 

~ v: random vector of genotype effects on vertically neighbours. 
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N D: incidence matrix for diagonally neighbours; 

<l> D: random vector of genotype effects on diagonally neighbours. 

Covariance Matrix of Direct and on Neighbour Treatment Effects 

gn g,<I>1I g,<I>, g,<I>/l 

G= 
g<l> 11<1> II g<l>lI<1>, g<l>II<1>" 

g<l>,<!>' g<l> ,.<1> n 

g<l>n<l>/l 

Corrected Treatment Effect . 
't i = 't i + V Hi~ H, + VI'i~ V, + V Di~ D, 

V Hi : number of horizontally neighbours of the genotype i in the trial, i.e., 2 .. 

VVi: number of vertically neighbours of the genotype i in the trial, i.e., 2. 

V Di: number of diagonally neighbours of the genotype i in the trial, i.e., 4. 

ln this case, the neighbour effect in the own variety is estimated by <l> v, . 

3.5.5 Generalised Competition and Spa tia I Model 

A more generalised model suitable for any experimental layout (one or several 

plants per plot) and number of neighbours is given by (12): 

Layout 

N 

N 

N 

N 

S 
N 

N 

N 

N 
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Model 

y = Xh + Z'T + N EZ~ E + NIVZ~1I + N\,Z~,\' + NsZ~s + 

N.\'EZ~NE + NSEZ~SE + NNIIZ~NII + NswZ~slV +'; +11 (12) 

'T' random vector of genotype effects in the absence of competition or under 

the average competitive stress in the trial; 

N E : 

<P E: 

N w : 

~w: 
NN: 

<PN: 

incidence matrix for eastern neighbours; 

random vector of genotype effects on eastern neighbours; 

incidence matrix for western neighbours; 

random vector of genotype effects on western neighbours. 

incidence matrix for northern neighbours; 

random vector of genotype effects on northern neighbours. 

N s : incidence matrix for southern neighbours; 

<P s : random vector of genotype effects on southern neighbours; 

N NE : incidence matrix for north-eastern neighbours; 

<P NE: random vector of genotype effects on north-eastern neighbours. 

N SE : incidence matrix for south-eastern neighbours; 

<P SE: random vector of genotype effects on south-eastern neighbours. 

N NW : incidence matrix for north-western neighbours; 

<P NW: random vector of genotype effects on north-western neighbours. 

N sw : incidence matrix for south-western neighbours; 

<P sw: random vector of genotype effects on south-western neighbours. 

This full model and nested models within it can be used to infer about the 

significance of specific neighbour positions. The final model kept must allow for 

the covariance between the random effects remained. 

Corrected Treatment Effect for the Full Model 

This generalised model demands large data sets to be fitted, as many degrees of 

freedom are necessary to fit ali the effects. Trials with great number of treatment 

and limited number of replications are not suitable for the application of this 

model and perhaps neither the model (8) to (11). ln such case, the alternative 

phenotypic approach of Kempton (1982) together with the spatial analysis of 

Cullis and Gleeson (1991) and Gilmour, Cullis and Verbyla (1997) should be used. 
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3.5.6 Phenotypic Competition and Spatial Model 

Apparently, the phenotypic competition approach of Kempton (1982) together 

with the spatial analysis of Cullis and Gleeson (1991) and Gilmour, Cullis and 

Verbyla (1997) was not used simultaneously. Such simultaneous modelling can 

be specified according to the following model. 

y = Xh+ Zt + [3~V+S +11 (13) 

where: 

W: is a n x n weight or regressor matrix which, in conjunction with y, provides the 

average value of the neighbours as a covariate. ln general, the mean of the 

two or of the four neighbours can be used. Diagonally neighbours are 

expected to have non significant effects because of the greater distance trom 

the subject tree and the positive effects produced on growth of the other 

closer neighbours of the subject tree. 

Estimation and prediction concerning this model demands the use of the profile 

likelihood which is detailed in the item 6. 

3.5. 7 Missing Plant Effects 

For inference about treatments or varieties, the effects of missing plants is 

considered by omitting (or fitting as fixed effects) the zeros correspondent to 

missing plots for the purpose of predicting the direct effects and through the 

consideration of the zeros for the purpose of predicting the on neighbours 

effects, according to the models (8) to (12). lhis can be achieved by coding ali 

the zeros neighbour values as belonging to a variety not yet coded in the 

treatment column, i.e. coding them as a new variety. lhe effect of missing 

plants will be reflected on <I> and then on 't i* • However, for individual selection 

of trees, a further correction of the observed value of a tree can be necessary, 

when an individual model is not used, i.e., when using a reduced animal model. 

For individual selection it is common to use the reduced individual model for 

predicting the individual genetic value (a). By this approach, the prediction 

equation is â = Z-{ + Z~ + h,; (y - Xb - Z-{ - Z~), where h,; is the within 
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variety heritability. The observed values in y can be corrected through the use of 

growth traits of the neighbours as covariates. The same matrices N
HV

' NH' Nv and 

No can be used to obtain the numerical values of the covariates. One (model 9), 

two (models 10 and 11) or three regression coefficients may be necessary 

according to the model. Generically, the covariate values can be obtained by 

X = (N' N) -I N' y and the corrected y values to enter in the expression for â 
are given by y c = Y - ~ (X - X) , where p is a competition coefficient at 

phenotypic leveI. 

ln model (13), the zeros as neighbour values are considered in the computation 

process of the average of neighbours as a covariate. 

3.6 Profile Likelihood and Generalisation of REML 
(GREML) 

It is not possible to use ordinary REML for the phenotypic competition model of 

Kempton (1982), as the competition coefficient appears in both the mean and 

variance of y. However, a generalisation of REM L can be applied for estimating 

the parameters of the model. The generalisation (GREML) involves adjusting 

profile likelihood (through the adjusted profile score) for the parameter of interest 

in a general class of models. Such adjustment can be done by using the method 

of McCullagh and Tibshirani (1990), which remove bias from maximum 

likelihood estimates. 

The inference in the presence of nuisance parameters is a difficult problem in 

statistics. From the Iikelihood perspective, the simplest approach is to maximise 

out the nuisance parameters for fixed values of the parameters of interest and to 

construct the so-called profile likelihood. ln other words, sue h solution refers to 

replace the nuisanee parameters in the likelihood function with their maximum 

likelihood estimates for fixed values of the parameters of interest. This gives the 

profile likelihood. The profile likelihood is then treated as an ordinary Iikelihood 

function for estimation and inference about the parameters of interest. 

Unfortunately, with large numbers of nuisance parameters, this procedure can 

produce inefficient or even inconsistent estimates. The inherent problems in the 

use of profile likelihoods are biased parameters estimates and optimistic 

estimates of standard errors. 
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Modifications to the profile likelihood with an aim to alleviate these problems 

were proposed. Barndorff-Nielsen (1983, 1986) proposed the modified profile 

likelihood, which is closely related to conditional profile likelihood proposed by 

Cox and Reid (19871 in which they suggested a likelihood ratio test constructed 

trom the conditional distribution of the observations given maximum likelihood 

estimates for the nuisance parameters. McCullagh and Tibshirani (1990) 

proposed a simpler alternative approach named adjusted profile likelihood. Their 

method depends on the observation that the score function computed trom the 

full log-likelihood function has (i) zero expectation and (ii) variance equal to the 

negative of the expected derivative matrix. A score function that has property (i) 

is said to be unbiased, while if has property (ii) is said to be information 

unbiased. By association, it can be said that a likelihood function is unbiased/ 

information unbiased if its score function is unbiased/information unbiased. ln 

contrast to the score function computed from the fulllog-likelihood, the score 

function computed trom the profile log-likelihood is, in general, neither unbiased 

nor information unbiased. McCullagh and Tibishirani' s idea is that the profile log­

likelihood score function be centred and scaled so that it too is unbiased and 

information unbiased (Durban and Currie, 2000). 

McCullagh and Tibshirani (1990) concentrated on giving asymptotic formulae for 

their corrections in a very general setting. Durban and Currie (2000) gave exact 

expressions for the adjustments for a general non-linear normal regression 

model. ln its more general form, the model allows both the mean and the 

variance of y to depend on the parameter of interest. An example of this general 

form is a regression model with autoregressive terms such as the phenotypic 

model of competition. The exact adjustment for the profile likelihood for such 

model improves the estimation of the variance and competition parameters. 

According to the phenotypic competition model, y = Xb + Zt: + I3Wy + E , we 

can write: 

Dy = Xb + ZT. + E , where D = I - 13 w . 
y = D- ' Xb + D-' ZT. + D-IE , where: 

y ~ N(D- ' Xb, cr 2 D-' VD-" ). 
T. ~ N(O,cr 2G). 
E ~ N(O,cr 2 R). 
V=ZGZ+R. 
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Considering b as a nuisance parameter and e = (~ , T ,<J 2) as parameters of 

interest, the log-likelihood of Dy ~ N(Xb, <J 2V) is given by 

e = e (8 , h; y) = - (II I 2) log 2n - (II I 2) log a 2 

-(l/2)logID- 1VD- 1 '1-(l/2a 2 )(Dy -Xb)'V-'(Dy -Xb) 

Taking the derivative of this log-likelihood with respect to b and equating to zero 

gives the maximum likelihood estimate of b which is given by 

b = (X'V IXr l X'V'Dy 

According to McCullagh and Tibshirani (1990), the profile log-likelihood is 

obtained by replacing the nuisance parameters by their maximum likelihood 

estimates. Substituting b = (X'V-1Xr l X'V-'Dy into e = e(S ,b;y) gives 

the profile log-likelihood e f! ' which ignoring constants is equivalent to 

e fi (8; y) = -(II 12) log a 2 - (11 2) log ID -I V D -I '1- (11 2a 2 )y' D' PVPDy 

= 'OgIDI-(nI2),oga 2 -(1I2)logIVI-(1I2a 2)y'D'PDy 

From this profile log-likelihood, adjusted profile score equations can be obtained. 

The adjusted profile score equations for the variance parameters are equivalent to 

the REML score equations based on DV. 

The residual log-likelihood based on DV is given by 

fi Re = -[(n - p)1 2]log a 2 + loglDI - (112) 

log Ivl- (11 2) log IX' V -I Xl - (1I2a 2 )y' D' PDy 

A key difference between this and the residual log-likelihood on y is the 

additional term loglDI . So, REM L on Dy can be obtained by using the standard 

algorithms used in ASREML and GENSTAT, but loglDI should be also obtained 

and added in the log L. This can be done in an easier way using GENSTAT. 
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The presence of the competition coefficient (parameter of interest) in both the 

mean and variance of y leads to difficulties. However, the McCullagh and 

Tibishirani' s adjustments apply well in this situation and the resulting adjusted 

profile likelihood equals the residual maximum likelihood (REMU of Patterson 

and Thompson (1971). The adjusted profile score equations are equivalent to 

the REML score equations based on the adjusted response Dy . ln practice, D is 

replaced by its estimate. The adjusted score produces both a REML type 

adjustment to the estimates of variance components and an adjustment to the 

estimate of p, removing its bias. Profile log likelihoods and adjusted profile 

scares for the parameters of interest are presented by Durban and Currie (2000) 

for the fixed model case. 

ln the context of the model (13), the competition parameter and variance 

components were estimated as follows: (i) obtaining of REM L on Dy for several 

given values of p ; (ii) obtaining of (Log I DI) for given values of p; (iii) obtaining 

of the profile likelihood (LogL + Log I DI) far a range of p. 

3.7 Estimation/Prediction Procedures and Softwares 

Variance components associated to several models were estimated through the 

REML procedure (Patterson and Thompson, 1971; Searle et aI., 1992; Thompson, 

1973, 1977, 1980,2002; Thompson and Welham, 2003; Cullis et aI. 2004). 

Random effects were predicted by the BLUP procedure (Henderson, 1973; 

Thompson, 1979). 

Ali models were fitted using the software ASREML (Gilmour and Thompson, 

1998, 2002; Gilmour, Cullis, Thompson and Welham, 2002; Gilmour et aI. 

2002) which uses the REM L procedure through the average information 

algorithm and sparse matrix techniques (Gilmour, Thompson and Cullis, 1995; 

Johnson and Thompson, 1995; Thompson, Wray and Crump, 1994; 

Thompson et aI., 2003). The software GENSTAT (Thompson and Welham, 

2003) was also used. 
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3.8 Applications to Experimental Data 

3.8. 1 General Results from Five Different Species 

Five data sets concerning to different crops were used: circumference of the 

trunk in two years old Eucalyptus spp trees, evaluated in a lattice design with 

single tree plots, 240 treatments (clones) and 40 replications; leaf weight in a 

harvest of tea plants evaluated in a complete block design with 141 treatments 

(half sib familiesl, ten replications and six plants per plot; number of stems in 

sugarcane evaluated in a complete block design with 128 treatments (clones) 

and two replications; diameter of the trunk evaluated in 13 years old Pinus 

caribaea var. bahamensis trees evaluated in a lattice design with 121 treatments 

(half sib families), six replications and six plants per plot; circumference of the 

trunk in 18 years old Eucalyptus maculata trees evaluated in a complete block 

design with 25 treatments (half sib families) and 36 replications in single tree 

plots. 

Results concerning to the basic traditional and spatial analysis (AR 1 x AR 1) are 

presented in Table 1. 
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These five data sets provided the three practical situations that can occur in field 

experiments: (i) absence of spatial trends within the leveis of local control and 

absence of competition effects (Eucalyptus spp data set); (ii) presence of spatial 

trends within the leveis of local control and absence of competition effects (tea 

plant data set); (iii) presence of competition effects (sugarcane, Pinus and E. 

maculata data sets). 

The spatial trend is likely to occur in any field trial. However, sometimes it can 

be taken into account by the control local associated with more elaborated 

experimental designs such as lattices and row/column. This happened here for 

the Euca/yptus spp trial experiment established in lattice design, which did not 

show benefits from the spatial analysis. This can be seen trom the high relation 

(0.99) between the two error variances concerning to spatial (including the 

independent error term) and non-spatial analysis and the high auto-correlation 

coefficients. These very high auto-correlation coefficients reveal that the auto­

regressive process is modelling global trend and that there is no competition 

effects acting. The global trend is being taken into account by the blocks in the 

traditionallattice analysis and this is confirmed by the zero value for the block 

variance in spatial analysis and by its significant value in the lattice analysis. 

These results can be seen from Table 2, which compares three models of 

analysis for the Euca/yptus spp data set. The absence of competition was 

expected as the trees were only two years old which is an age not suitable for 

competition in forest trees species. 

'" Table 2. Residual log-likelihoods ILog LI and estimates 01 the genetie varianee among treatments la, ), residual 

"'2 "2" 2 
varianee I a ), eorrelated error varianee I a; ). bloek varianee I a h), proportional errar varianees assoeiated 

to spatial and non-spatial analysis lâ~ /â,~,) and auto-eorrelation eoefficients assoeiated to eolumns IARe) 

and rows IARr). Data set concerning to Euealyptus. 

Model 01 Analysis Log L ,0 " ,o ,o 
â~ lâ~.\ ARe ARr a- a- a" a,7 , ç 

Euealyptus-T raditional -19487.4 15.414 24.827 1.576 1.CXXl 

Euealyptus-Spatial + '1 -19407.2 15.514 24.607 6.686 0.023 0.991 0.81 • 0.99' 

Euealyptus-Spatial -19484.7 15.316 24.732 1.687 0.996 O.OO~ -0.03'· 

It can be seen that when the correlated (spatial) plus the independent errors were 

fitted, the spatial term modelled only the global tendency of blocks, which 

turned zero in â,~ . When the model without the independent error was fitted, 
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the auto-correlation coefficients revealed no correlated erro r and the global 

tendency was modelled by the blocks of the lattice design (Table 2). 

The tea plant trial experiment established in complete block design showed 

significant spatial trend and benefits trom the spatial analysis. This can be seen 

from the low relation (0.67) between the two error variances concerning to spatial 

and non-spatial analysis and the high auto-correlation coefficients. These high 

auto-correlation coefficients reveal that there are no competition effects acting, 

which is also expected as allleaves are collected every year in each plant 

justifying the absence of aboveground competition. The reduced error variance 

and higher adjusted heritability reveal the presence of spatial trend within blocks 

and the benefits of the spatial analysis. ln general, it can be seen trom Table 1 

that when the auto-correlation coefficients tends to 1 or 0, spatial analysis tends 

to give no practical (6; / 6 I~S ) improvement in the fit, despite significant 

changes in Log L. 

The results concerning sugarcane, Pinus and E. maculata showed the presence 

of competition, which is expected in sugarcane (Stringer and Cullis, 2002a and 

b) and in older trees. So such cases demanded extended models of analysis. For 

these data set the independent erro r in spatial models were non significant. This 

is in accordance with Gilmour et aI. (1997) who reported that when the 

autoregressive parameters are near 0, it is often impossible or very difficult to 
. ' 2 

estlmate (J ~ . 

3.8.2 Phenotypic Competition Models via Profile Likelihood in 
Sugarcane 

Competition models for sugarcane (only two replications) could only be applied 

through the phenotypic model of interference as the degrees of freedom were not 

sufficient to fit ali the effects needed in the genotypic models. Results 

concerning to several models in sugarcane are presented in Tables 3, 4 and 5. 
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Table 3. Residual log-likelihoods (Log L) on Dy, determinant component (Log i Di), sum 
of the two components (LogL + Log i Di) giving the profile likelihood, and auto· 
eorrelation eoeffieients assoeiated to eolumns (ARe) and rows (ARr), for 

13 Values 

-0.80 

-0.75 

-0.70 

-0.65 

-0.60 

-0.55 

-0.50 

-0.45 

-0.40 

-0.35 

-0.30 

-0.25 

-0.20 

-0.15 

-0.10 

-0.05 

0.00 

0.05 

0.10 

0.20 

0.40 

different values of the eompetition eoeffieient ( 13 ) in the sugareane data set. 

A model with both eorrelated error (spatial) and phenotypie eompetition effect 
was used. 

Log L LogiDi LogL + Log i ARe ARr 

Di 

-1017.61 -31.07 -1048.68 0.43 * * 0.51 * * 

-1017.06 -26.21 -1043.27 0.42** 0.49** 

-1016.71 -22.05 -1038.76 0.40 * * 0.48 * * 

-1016.56 -18.46 -1035.02 0.38** 0.46 * * 

-1016.59 -15.33 -1031.92 0.36** 0.43 * * 

-1016.80 -12.60 -1029.40 0.34 * * 0.41 * * 

-1017.15 -10.22 -1027.37 0.31 * * 0.38** 

-1017.64 -8.14 -1025.78 0.29** 0.35** 

-1018.24 -6.34 -1024.58 0.25** 0.32*' 

-1018.91 -4.79 -1023.70 0.22 * * 0.29* , 

-1019.62 -3.49 -1023.11 0.18 *' 0.26*' 

-1020.35 -2.40 -1022.75 0.14 ns 0.23** 

-1021.06 -1.53 -1022.59 0.10 ns 0.19* 

-1021.72 -0.85 -1022.57 0.05 ns 0.1 5 ns 

-1022.29 -0.38 -1022.67 0.00 ns 0.12 os 

-1022.74 -0.09 -1022.83 -0.06 ns O.07"s 

-1023.05 0.00 -1023.05 -0.12 ns 0.03 ns 

-1023.21 -0.09 -1023.30 -0.18 " O.OOns 

-1023.21 -0.38 -1023.59 -0.23" 0.05 ns 

-1022.83 -1.53 -1024.36 -0.33 " -0.14 ns 

-1021.98 -6.34 -1028.32 -0.48" -0.29" 
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Table 3 presents the profile likelihood for a range of competition coefficients 

( P ) in a model with both correlated error (spatial) and phenotypic competition 

effects. It can be seen that the maximisation of the likelihood function occurred 

for p = -0.15, with a LogL+LogIDI = - 1022.57. The associated residual 

autocorrelation coefficients were not significant showing that the phenotypic 

competition coefficient encompassed the whole correlation pattern, including the 

genetic competition effect and a balance between residual competition effects 

and environmental trend within blocks. 

Table 4 presents the profile likelihood for a range of competition coefficients 

( P ) in a model with only phenotypic competition effects. It can be seen that the 

maximisation of the likelihood function occurred for p = -0.05, with a 

LogL+LogIDI = - 1023.28. The two LogL+LogIDI values mentioned are 

close to each other and the results confirm that a model with only phenotypic 

competition effects is enough. It can be asserted also that competition effects of 

small magnitude are present in the trial. 

Table 4. Residuallog-likelihoods (Log L) on Dy, determinant eomponent (Log I DI), sum of 
the two eomponents (LogL + Log: DI) giving the profile likelihood, and auto­
eorrelation eoeffieients assoeiated to eolumns (ARe) and rows (ARr), for 

~ 

different values of the eompetition coeffieient ( ~ ) in the sugareane data set. A 

model with only eompetition effeet was used. 

Values 
Log L LoglDI LogL + Log I D : 

-0.40 -1030.34 -6.34 -1036.68 

-0.30 -1026.46 -3.49 -1029.95 

-0.20 -1023.95 -1.53 -1025.48 

-0.15 -1023.28 -0.85 -1024.13 

-0.10 -1023.03 -0.38 -1023.41 

-0_05 -1023.19 -0.09 -1023.28 

0.00 -1023.77 0.00 -1023.77 

Table 5 presents comparative results from a series of models applied to the 

sugarcane data set. 
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Table 5. Residual log-Ilkellhoods (log lJ and estlmates Df the genettc vanance among treatments (a 1- I, residual 

variance (a - ), heritablllty I, competltion eOefflGlent ( ~{ ) and auto-correlation coefflcients assoclated 

to columns (AAc) and rows (ARrl. Sugarcane data seC 

Model Log L 
(J ,- ci' ';,:" ~ ARe AR, 

Tradltlonal ·102377 685.98 228.73 0.7499 

SpatlaJ ·1023.05 684.17 229.26 0.7490 .0.12 "' 0.035"' 

Competition (Prof.le) ·1023.28 667.48 231.43 0.7425 ·0.05 

Competition ... Spatlal (Profilel ·1022.57 660.02 232.96 0.7391 ·0.15 0.05 "' 0.15 "' 

Competltion (Cavariate) ·1025.55 674 03 230.56 0.7451 -0.10" 

Competltmn -+ Spatlal (Cavaria te) ·1018.97 466.27 347.69 0.5728 -0.64" 0.38" 0.45 " 

The traditional, spatial (autoregressive in two dimensions), competition (using 

profile likelihood) and competition + spatial (using profile likelihood) models 

gave basically the sam e results in terms of the residual log-likelihoods, residual 

variance and heritability. This is due to the small magnitudes of the competition 

effects. The competition model (3) taking the average of the four neighbours 

(horizontally and vertically) as a covariate (fixed effect) and treatment effects as 

random, confirmed the presence of the competition effects (f3 = -0.10). Also it 

gave the same heritability as the traditional and the spatial models. However, the 

ordinary REML procedure applied here is not adequate because the competition 

coefficient appears in both the mean and variance of y and so can not be fitted 

as a covariate. The exact procedure of profile likelihood provides an exact 

adjustment and precise fitting for such model which improves the estimation of 

the variance and competition parameters. The competition coefficient estimate 

changed from -0.10 with ordinary REML to -0.05 with the profile REML. 

For the competition + spatial model, the ordinary REML procedure using a 

covariate gave very different results concerning to Log L, residual variance and 

heritability. The competition coefficient and auto-correlation parameters estimates 

were considerable higher than that obtained with the profile REM L. This 

difference reveals the importance of using the more accurate profile REML 

procedure. The competition + spatial model using a covariate (model (13)) gave 

a much higher competition coefficient (-0.64 against -0.15 of the profile REMl) 

and the auto-correlation parameters were positive and high (0.38 and 0.45), 

i.e., they are modelling spatial trend. These results were obtained using positive 

starting values for the auto-correlation parameters. However, using negative 

starting values for such parameters, convergence wi!h different results was 

obtained. The values at convergence were 0.40 for f3 and -0.47 and -0.29 for the 

auto-correlation parameters. Such estimates are non sense because opposite 
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signs are expected. lhese results revealed the inconsistence and 

inadequateness of the covariate approach for modelling competition and trend 

simultaneously. lhe profile likelihood approach should be always used instead. 

lhe variety eff~cts should be corrected by using the expression 

l' c = l' /(1- ~ ) . ln this case, the competition coefficient was -0.05 and so 

the variety effects should be divided by 1.05 or multiplied by 0.95. lhis is 

equivalent to multiply the heritability at clone mean levei by 0.95. 

3.8.3 Genotypic and Phenotypic Competition Models in 
Eucalyptus maculata 

Phenotypic and genetic competition models for E. maculata data set are 

presented in lables 6 to 8. 

labia 6. Residual log-likelihoods (Log LI on Dy, determinant eomponent (Log I DI). sum 
of the two eomponents (LogL + Log I DI) giving the profile likelihood, and auto­
eorrelation eoeffieients assoeiated to eolumns (ARe) and rows (ARr), for 

~ 

different values of the eompetition eoeffieient (~) in the Eucalyptus 

maculata data set. Spatial and eompetition model was used. 

Values 
Log L LoglDI LogL+ Log I ARe ARr 

DI 

-0.60 -2924.59 -47.53 -2972.120 0.25 
.. 

0.25 
.. 

-0.50 -2924.19 -31.71 -2955.900 0.19 
.. 

0.20 
.. 

-0.40 -2925.21 -19.69 -2944.900 0.13 
.. 

0.14 
.. 

-0.30 -2927.10 -10.83 -2937.930 0.07 0.08 

-0.20 -2929.51 -4.742 -2934.250 O.Ol n, 0.02 n, 

-0.15 -2930.83 -2.654 -2933.484 -0.02 n, -0.01 n, 

-0.10 -2932.20 -1.175 -2933.375 _0.05 n5 -O .04n5 

-0.05 -2933.64 -0.293 -2933.933 -0.07 -0.07 

0.00 -2935.12 0.000 -2935.120 -0.10 
.. 

-0.10 
.. 

0.10 -2938.30 -1.175 -2939.480 -0.15" -0.15" 

lable 6 presents the profile likelihood for a range of competition coefficients 

(~ ) in a model with both correlated error (spatial) and phenotypic competition 

effects. It can be seen that the maximisation of the likelihood function occurred 

for ~ = -0.10, with a LogL + Log I D I = -2933.38. lhe associated residual 

autocorrelation coefficients were not significant showing that the phenotypic 

competition coefficient encompassed the whole correlation pattern, including the 
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genetic competition effect and a balance between residual competition effects 

and environmental trend. These results are coincident or analogous with those 

obtained for the sugarcane data set. 

Table 7 presents the profile likelihood for a range of competition coefficients 

(13 ) in a model with only phenotypic competition effects. It can be seen that the 

maximisation of the likelihood function occurred for 13 = -0.10, with a 

LogL + Log I D I = - 2934.30. The two LogL + Log I D I values mentioned are 

close to each other and the results confirm that a model with only phenotypic 

competition effects is enough. It can be asserted also that competition effects are 

present in the trial. 

Table 7. Residuallog-likelihoods (Log L) on Dy, determinant eomponent (Log I O I), sum 01 
the two eomponents (LogL + Log I O I) giving the prolile likelihood, and auto­
eorrelation eoellieients assoeiated to eolumns (ARe) and rows (ARr), for 

B 

different values 01 the eompetition eoeffieient (B ) in the Eucalyptus 

maculata data set. Only eompetition model was used. 

Values 
Log L LoglDI LogL + Log I O I 

-0.40 -2933.55 -19.69 -2953.240 
-0.30 -2929.77 -10.83 -2940.600 
-0.20 -2929.63 -4.742 -2934.370 
-0.10 -2933.13 -1.175 -2934.305 
-0.05 -2936.22 -0.293 -2936.513 
0.00 -2940.18 0.000 -2940.180 
0.10 -2950.59 -1.175 -2951.770 

Table 8 presents comparative results trom a series of models applied to the E. 

maculata data set. 
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Table 8. Residual log-likelihoods ILog LI and estimates of the genetie varianee among treatments 

I â ,2 I. residual varianee I â:), heritability I';,;", I. competition eoefficient I !3 ) and auto­

correlation eoefficients assoeiated to eolumns IARe) and rows IARr). Eucalyptus 
maculata data set with several models. 

Model Log L cj2 ' , " 

!3 ARe ARr , (J iludi 

(a) TradltlOnal -2940.18 37.25 601.44 0.233 

Ibl Spatial -2935.12 35.80 596.61 0.226 
.. .. 

-O. lO -O. lO 

(e) Competition (Profilel -2934.30 36.28 590.72 0.231 -O. lO 

(d) Competition + Spatial (ProfileJ -2933.38 35.83 588.00 0.229 -O. lO -0.05"' -0.04 ns 

(e) Competltlon (Covariate) -2932.19 34.82 585.97 
.. 

0.224 0.25 

(f) Spattal + Competitlon (Cov.) -2927.19 30.34 644.52 0.180 0.52 
.. 

0.21 
.. 

0.21 
.. 

(9) Spatlal + G Competitlon -2935 12 35.80 596.61 0.226 
.. .. 

-O. lO -O. lO 

The spatial model showed to be better than the traditional in terms of the residual 

log-likelihoods. Traditional, spatial, competition (using profile likelihood) and 

competition + spatial (using profile likelihood) models gave basically the sam e 

results in terms of the residual variance and heritability. Adjustment for 

competition did not reduce the heritability estimate. This is because 

competition is only at the residual levei (discussed later) in this data set, i.e., is 

an environmental effect. The competition model (3) taking the average of the 

four neighbours (horizontally and vertically) as a covariate (fixed effect) and 

treatment effects as random, confirmed the significance of the competition 

effects (~' = -0.25). Also it gave the same heritability as the traditional and the 

spatial models. However, the ordinary REML procedure applied here is not 

adequate because the competition coefficient appears in both the mean and 

variance of y and so can not be fitted as a covariate. The exact procedure of 

profile likelihood provides an exact adjustment and precise fitting for such model 

which improves the estimation of the variance and competition parameters. The 

competition coefficient estimate changed from -0.25 with ordinary REM L to -0.10 

with the profile REML. As observed for the sugarcane data set, the ordinary REML 

procedure overestimated the competition effects. 

For the competition + spatial model, the ordinary REM L procedure using a 

covariate gave very different results concerning to Log L, residual variance and 

heritability. The competition coefficient and auto-correlation parameters estimates 

were considerable higher than that obtained with the profile REML. This 

difference reveals the importance of using the more accurate profile REML 

procedure. The competition + spatial model using a covariate (model (13)) gave 

a much higher competition coefficient (-0.52 against -0.10 of the profile REMU 
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and the auto-correlation parameters were positive and high (0.21 and 0.21), i.e., 

they are modelling spatial trend. 

lhe genetic competition + spatial model gave the same results as the spatial 

model, revealing no significance of genetic effects for competition (lable 8). So, 

the plausible competition coefficient is -0.10 and, alternatively, competition 

effects can be accounted for by the spatial mode!. It can be seen that the auto­

correlation parameters estimates with the spatial model were also -0.10. When 

applied on neighbours in rows and columns separately, both estimated 

competition coefficients were about -0.10, i.e., identical to the values obtained 

for the auto-correlation parameters. lhis shows that, with no genetic 

competition, the spatial model and the phenotypic competition model are 

modelling the same effects, named a balance between residual competition and 

residual environmental trend. Residual competition and environmental trends are 

confounded effects and can not be separated. However, there is no practical 

need for such separation. lhe spatial model and the phenotypic competition 

model differ only in the presence of competition at genetic levei (case of the 

Pinus data set, discussed later). 

A comparison involving the traditional, spatial and competition models in terms 

of variety ranking is presented in lable 9. It can be seen that the three models 

produced very similar ranking and predicted treatment or variety effects. lhe 

same varieties can be selected by the three models with selection intensities of 

20% (best 5 selected) or 50% (best 13 selected). lhis result is expected with 

low competition coefficients as that (-0.10) obtained in the present work. Using 

simulations, Kusnandar (2001) reported that competition models did not perform 

any better when the magnitude of competition parameters was small (between 

0.0 and -0.10). According to the author, competition models turned more 

efficient with competition parameters higher than -0.3. 

lhe variety effects should be corrected by using the expression 

te = t /(1- 13 ) . ln this case, the competition coefficient was -0.10 and so the 

variety effects for the competition model (and also for the spatial model) in lable 

9 should be divided by 1.10 or multiplied by 0.91. lhis is equivalent to multiply 

the heritability at treatment mean levei by 0.91. For the traditional analysis such 

heritability is 0.69 and for the competition model is 0.69 as well. Multiplying this 

last value by 0.91 gives 0.63, which is smaller and more realistic than the 0.69 

obtained through the traditional analysis. So, the use of competition and spatial 



Table 9" Companson Involvlng the traditlonal, spatlal and competltlon models in terms of varlety 

ranking and predicted varietv effects Eucalyptus macula ta data set 

Vanety Ranklng \/anety Predlcted Effects 

\/arieties Competltlon Spatial Tradnional Competition Spatial Traditional 

579 1 1 1 10 26 10 12 1078 

565 2 2 2 8104 8.281 8 153 
572 3 3 3 6.854 6.993 6933 

580 4 5 4 5.042 4.522 ~,.263 

577 5 4 5 4.786 4.954 4653 

573 6 7 6 2.384 1 509 2558 

576 7 12 7 2.136 2.453 2.194 

584 8 8 10 1 556 1 858 1 438 
561 9 9 9 1 552 1 620 1 490 
562 10 6 8 1 334 1 27 E, 1 553 
581 11 10 12 1 184 0.975 1 110 
563 12 11 11 1 166 2.407 1 122 
574 13 13 13 0.629 -0.122 0.680 
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The competition models using profile likelihood in both data sets, sugarcane and 

Eucalyptus, gave coherent results in terms of the non-significance of 

autoregressive terms in the joint model spatial + phenotypic competition. This is 

as expected, as the adjustment for competition effects addresses largely the 

same source of variation as the autoregressive parameters, when there is no 

competition at the genetic leveI. ln this situation, the phenotypic competition 

model and the spatial model are likely to give the same results. ln absence of 

genetic competition, the phenotypic competition method turns into the Papadakis 

method and is expected the produce the same results as the approaches of 

Papadakis (1937), Bartelett (1978) and Kempton and Howes (1981) for fertility 

trends. As the two dimensional separable autoregressive model encompasses the 

Papadakis method (Gilmour et aI., 1997), the phenotypic competition model and 

the spatial model are expected to produce the same results in absence of genetic 

competition. Such results were not achieved by using the ordinary REML 

procedure. It is also important to mention that the use of the profile likelihood is 

an improved procedure ove r the Papadakis method. When fitting the Papadakis 

or the two dimensional separable autoregressive methods, a mixture of residual 

competition and local environmental trend is being modelled. Correll and 

Anderson (1983) found that the Papadakis term and the intervarietal competition 

were effectively uncorrelated. This is expected as the residual and genetic 

components of competition are likely to be independent effects. 

ln parametric terms, the competition effect of a plant i is given by c i == <!> i + Y i' 

where <j> i is the genotypic competition effect and Y i is the residual competition 

effect. The parametric model for the total residual effect is given by 

e, = y, + ç, + ll, and so the parametric model for the phenotypes (in terms of 

a vector) can be decomposed into y == Xb + Zt + NZ<j> +Y +ç +Y] . The 

phenotypic competition model treats the elements <j> i ' Y i ' ç i and 

II i altogether in <l>, + Y , + ç, + ll, . The autoregressive spatial model considers 

e, == Y I + ç, + ll,· From these formulas it can be seen that the phenotypic 

competition and autoregressive spatial models are identical in absence of genetic 

competition. ln general, the following models are optimal (in terms of considering 

ali the specified effects in the model for phenotype) in the following situations: 



Multivariate Spatial Statistical Analysis 01 Multiple Experiments and Longitudinal Data 109 

(i) Autoregressive Spatial Model: optimal in absence of competition at the 

genetic levei; 

(ii) Phenotypic Competition Model via Profile Likelihood: optimal in any situation; 

(iii) Phenotypic Competition + Autoregressive Spatial Model via Profile 

Likelihood: optimal in any situation, as it tends to be equivalent to (ii); 

(iv) Genotypic Competition + Autoregressive Spatial Model: optimal in any 

situation; 

(v) Genotypic Competition Model: optimal in absence of residual competition and 

local environmental trend. 

It can also be pointed out that competition models are only needed when such 

competition has a genetic base. Without genetic competition, the traditional andl 

or autoregressive spatial models are sufficient. So, it is recommended to verify 

the significance of genetic competition effects as a first step in the analysis. This 

result will guide the statistician to better model choices for further analysis. 

ln the presence of genetic competition, there are two options: (a) use of a 

simultaneous model for genetic competition and for fertility trends (via 

autoregressive spatial mode!); (b) use of a phenotypic competition model using 

profile likelihood. The phenotypic model in (b) considers implicitly three effects: 

genetic competition, residual competition and environmental trend. The model in 

(a) consider explicitly the genetic competition and also allow for the covariance 

between treatment and competition effects. So, such model tends to be more 

precise and should be the choice for practical applications. 

3.8.4 Genotypic and Phenotypic Competition Models in Pinus 

For Pinus, genotypic and phenotypic competition models were applied. Results 

are presented in Table 10. 
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Table 10. Residual log-likelihoods Ilog l) and estimates 01 the genetic variance among treatments 

,o '2' rl 
I a ,- I. residual variance la I. heritability I h,:di)' competition coeflicient I I-' ) and auto-

correlation coellicients associated to columns (ARe) and rows (ARr). Pinus data set. 

Model Log L ' o ,2 i' 13 
ARe ARr a- a 'aul , 

(a) Traditional -6584.67 1.0403 18.255 0.2156 

Ibl Spatial -6559.19 0.9621 17.891 0.2040 -0.10' -0.13' 

(c)Competition + Spatial (Proflle) -6512.25 1.1174 16.975 0.2470 -0.18' -0.03 n~ -0.05 " 

(dJ Competition (Covariate) -6498.27 1.1795 16.960 0.2600 -0.23' 

lei Spatial +Competition(Cov.) -6496.79 1.1497 16.945 0.2541 -0.22' -0.01 n
;. _0.04ns 

(fi Genotypic Compet.-North -6574.99 1.0515 18.192 0.2186 

(91 Spatial + G North -6547.81 0.9837 17.831 0.2091 -0.10' -0.13' 

(hl Spatial + G North + Cov -6543.87 0.9476 17.779 0.2024 -0.10' -0.13' 

The spatial model gave better fit than the traditional and revealed the presence of 

competition according to the significant negative auto-correlation coefticients for 

columns and rows. The presence of competition was confirmed by the 

significance of the phenotypic competition coefticient in (c) from Table 10, in a 

model which includes also spatial errors. This model, fitted via profile likelihood, 

gave no significance for the spatial autocorrelation parameters. The phenotypic 

competition models were also fitted using the covariate approach (models d and 

e in Table 10). As expected the competition coefficients were overestimated by 

the covariate approach. It can be seen that the phenotypic competition model 

difter from spatial model only in the presence of competition at genetic leveI. 

This occurred in the present data set (autoregressive competition parameter 

higher than the autoregressive spatial parameters) but not in the previous ones. 

Considering competition at both leveis, genotypic and residual, can be a better 

approach. This was done according to the models (g) and (h). Firstly, a model 

without the spatial term but including ali the eight competitors was evaluated. 

This model revealed significance only for the northern neighbours at the 

genotypic leveI. So a genotypic competition model including only the northern 

neighbours was fitted in (f) from the Table 10. This model proved to be 

intermediate between the traditional and the spatial models (a) and (bl. 

respectively, as can be seen from the residuallog-likelihoods. So, the 

competition at the residual levei proved to be higher than that at genotypic leveI. 
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Modelling competition simultaneously at the genotypic (northern neighbours) 

and residual leveis according to the model (g) gave a better fit and showed the 

same values for the auto-correlation coefficients for columns and rows as in the 

spatial model in (b). This confirms that the spatial analysis was modelling 

competition only at residual levei and that this is not sufficient in this case, as 

competition is also due to genetic causes. 

A more complete model allowing for the covariance between direct and on 

neighbours effects was fitted as (h) in Table 10. This model gave a better fit than 

the model (g) without such covariance. Also gave a smaller heritability estimate 

as expected under competition adjustment and proved to be modelling 

competition adequately at both genotypic and residual leveis. The same model 

revealed a negative genetic correlation between direct and on neighbour effects, 

of magnitude -0.68. This reveals the same tendency as observed by the 

phenotypic competition coefficient. The model also showed an adjusted 

heritability of 7.4% for the indirect effect on northern neighbours, i.e., heritability 

of the competition effects. The significant effects of only northern neighbours are 

likely to be due to shading according to the sun position in the region. 

An explicit comparison between the phenotypic spatial (c) and genotypic spatial 

(h) models can not be done as they contain different fixed effects. Theoretically 

and conceptually the genotypic model is more complete. The models in (c) and 

(h) were compared in terms of variety ranking and genetic gain. Taking the model 

(h) as the best or correct one, it was verified the following coincidence (with 

selection by model h) rates with selection of the best 10% varieties: 91.7% for 

model (c), 83.3% for model (b) and 75.0% for model (a). So, the selection 

efticiency of the phenotypic model of competition was elose to that of the 

genotypic model. However, the estimated genetic gains were 5.68% for the 

phenotypic model and 4.37% for the genotypic, which means an overestimation 

of 30% according to model (c), as expected due to the higher heritability 

estimate provided by such model. 

Table 11 shows the negative genetic correlation between direct and on 

neighbour effects obtained with model g. The high and negative on neighbour 

eftects of the best three varieties show that they are very aggressive and had 

their real value overestimated in the models without genetic competition. This 

shows the inefficiency of sim pie spatial and non-spatial models when there is 

genetic competition. 
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Table 11. Predicted random effects for the best varieties by the genotypic competition + 
spatial model. Pinus data set. 

Variety Ranking 

Varieties 
Direct (r i) Indirect (~;) Total (ti +~i) 

98 3.251 -1.238 2.013 
96 2.034 -0.646 1.388 
70 2.018 -0.932 1.086 
20 1.061 -0.203 0.858 
25 1.447 -0.745 0.702 
66 0.839 -0.158 0.681 

106 0.842 -0.186 0.656 
99 1.046 -0.406 0.640 
69 0.735 -0.176 0.558 
21 0.504 0.044 0.547 
45 0.612 -0.060 0.546 
107 1.044 -0.499 0.544 

3.9 Conclusions 

• Results showed that the phenotypic competition coefficient encompassed 

the whole correlation pattern, including the genetic competition effect and a 

balance between residual competition effects and environmental trend. 

• The exact procedure of REML profile likelihood provides an exact adjustment 

and precise fitting of phenotypic competition models and improves the 

estimation of the variance and competition parameters. 

• Results revealed the inconsistence and inadequateness of the covariate 

approach for modelling competition and trend simultaneously. The profile 

likelihood approach should be always used instead. 

• The spatial model and the phenotypic competition model differ only in the 

presence of competition at genetic leveI. 

• ln general, the following models are optimal according to the situations: (i) 

Autoregressive Spatial Model: optimal in absence of competition at the 

genetic levei; (ii) Phenotypic Competition Model via Profile Likelihood: 

optimal in any situation; (iii) Phenotypic Competition + Autoregressive 

Spatial Model via Profile Likelihood: optimal in any situation, as it tends to be 

equivalent to (ii) because the adjustment for competition effects, besides 

considering genetic competition, addresses largely the sam e source of 
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variation as the autoregressive parameters; (iv) Genotypic Competition + 
Autoregressive Spatial Model: optimal in any situation; (v) Genotypic 

Competition Model: optimal in absence of residual competition and local 

environmental trend. 

• Competition models are only needed when such competition has a genetic 

base. Without genetic competition, the traditional and/or autoregressive 

spatial models are sufficient. 

• ln the presence of genetic competition, there are two options: (a) use of a 

simultaneous model for genetic competition and for fertility trends via the 

autoregressive spatial model; (b) use of a phenotypic competition model 

using profile likelihood. lhe phenotypic model in (b) considers implicitly 

three effects: genetic competition, residual competition and environmental 

trend. lhe model in (a) considers explicitly the genetic competition and also 

allow for the covariance between treatment and competition effects. So, 

such model tends to be more precise and should be the choice for practical 

applications. 
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