EFEITOS DE DIFERENTES AÇÚCARES NA GERMINAÇÃO DO PÓLEN DE Araucaria angustifolia

Valderês Aparecida de Sousa-Lang*
José Elidney Pinto Junior*

1. INTRODUÇÃO

O emprego do pólen, principalmente para fins de melhoramento e conservação genética, requer o domínio de técnicas para a preservação da sua qualidade no armazenamento. É imprescindível saber, previamente, se o pólen armazenado será viável e germinará bem. Portanto, é necessário monitorar sua qualidade através de testes de viabilidade. Na escolha de métodos para determinar a viabilidade, deve-se atentar para a sua precisão e facilidade de execução. Meios de cultura com um agente solidificante (ágar ou gelatina) têm sido utilizados com sucesso, na germinação do pólen de muitas espécies. Segundo STANLEY & LINSKENS (1974), o agente solidificante propicia, além da facilidade de incorporação de açúcar ou outros estimulantes de germinação, umidade relativa constante e condições aeróbicas adequadas para uma boa germinação. Os principais componentes do meio de cultura utilizados na maioria dos trabalhos têm sido os carboidratos e substâncias estimulantes de germinação (micronutrientes e hormônios, principalmente). Alguns autores consideram os carboidratos meramente uma fonte de energia para o crescimento do tubo polínico (DORMAN, 1976), enquanto outros o consideram como principal fator de controle da pressão osmótica (BHOJWANI & BHATNAGAR, 1974). De qualquer maneira, evidente

^{*} Eng.-Florestal, Mestre, CREA N° 124217/D., Pesquisador da EMBRAPA - Centro Nacional de Pesquisa de Florestas.

a importância dos açúcares nos meios de cultura para a germinação do pólen. Vários meios de cultura já foram testados para a germinação, desde os mais simples, envolvendo água destilada, até meios mais complexos, contendo diferentes tipos e concentrações de compostos orgânicos e inorgânicos. São raros os relatos em que a água tenha propiciado uma boa germinação. FAULL (1955), por exemplo, obteve índices variando de 50% a 95% para os gêneros *Crinum, Nothoscordum* e *Hymenocallis*, enquanto ECHOLS & MERGEN (1956) obtiveram 76% de germinação de pólen de *Pinus elliottii*, nesse meio. Embora a sacarose seja o açúcar que tem proporcionado melhor germinação de pólen para muitas espécies, MARCHANT et al., (1993) e diversos pesquisadores têm aconselhado outros tipos de açúcares, como a lactose animal, a frutose, a glucose e a dextrose (FAULL, 1955; STANLEY & LINSKENS, 1974). Considerando a inexistência de pesquisas sobre a germinação "in vitro" de pólen de *Araucaria angustifolia* (Bert.) O. Ktze., o presente trabalho objetivou a determinação do efeito de vários tipos e concentrações de açúcares , na germinação do pólen dessa espécie.

2. MATERIAL E MÉTODOS

O material utilizado foi uma mistura de pólen de seis árvores, procedentes de Colombo-PR. Em laboratório, o pólen foi extraído de estróbilos com adiantado estágio de maturação onde, após separação em peneiras especiais, foi seco em estufa, até a umidade de 6,05% [±] 0,45% , armazenado em ampolas de vidro (10 ml) e mantido no congelador a 16 °C negativos. Entre a coleta e o armazenamento, decorreram aproximadamente 12 dias. Após 7 dias de armazenamento, o pólen foi rehidratado durante 20 h, em câmara úmida (100% de umidade relativa e temperatura de 25 °C [±] 0,3 °C) e, em seguida, disperso sobre o meio de cultura.

Os melhores índices de germinação de pólen, observados em testes de viabilidade para diversos gêneros, tais como *Eucalyptus* spp. (VAN WYK ,1981), *Pinus* spp. (RENZONI et al., 1990), *Betula* spp. (KLAEHN & NEU, 1960), *Picea* spp. (SMIRNOV, 1977), *Abies* spp. (SMIRNOV, 1977), *Podocarpus* spp. (SAITO et al., 1986), *Populus* spp. (KLAEHN & NEU, 1960 e RAJORA & ZSUFFA, 1986), *Prunus* spp. (FARMER & HALL, 1975), *Larix* spp. (MAURINJ & KAUROV, 1956), *Pseudotsuga* spp. (MAURINJ & KAUROV, 1956), *Juglans* spp. (LUZA & POLITO, 1985), *Alnus* spp (KLAEHN & NEU, 1960), *Cryptomeria* spp. (FUKUHARA & SAITO, 1971), vêm sendo obtidos com o emprego de meios

Nº 7, abr./96, p.3-7

contendo ágar e acúcares. Com base nesses resultados positivos de germinação e, também, naqueles ensaios com araucária obtidos pela EMBRAPA, decidiu-se usar meios contendo 0,8% de ágar e açúcares em diferentes concentrações. Também, face à inexistência de trabalhos sobre determinação de concentrações ideais de açúcar para a germinação de pólen de araucária, optou-se pela exploração da amplitude máxima. Assim, sacarose, frutose, glucose e lactose animal foram empregadas nas concentrações de 25%, 50% e 100%, acompanhadas de um tratamento sem acúcar (testemunha). A lactose animal foi escolhida para teste, seguindo a sugestão de STANLEY & LINSKENS(1974), para permitir a metabolização mais rápida e proporcionar pressão osmótica adequada ao crescimento do tubo polínico. Para efeito de análise estatística, empregou-se o delineamento em blocos ao acaso, com 4 repetições. Os tratamentos foram submetidos à umidade próxima de 100% e temperatura de 25 °C ± 0,3 °C, sob luz fluorescente constante. A germinação foi avaliada após 72 h, com a contagem de amostras contendo 200 grãos por repetição (GODDARD & MATTHEWS, 1981). Para melhor visualização dos grãos de pólen, utilizou-se o corante safranina. Foram considerados germinados os grãos de pólen cujo tubo polínico atingiu um comprimento maior que a máxima extensão do grão (Cook & Stanley, citados por SPRAGUE, 1977).

Os dados foram submetidos aos testes de homogeneidade das variâncias conforme Bartelett e Cochran (STEEL & TORRIE, 1980), verificando-se a necessidade de sua transformação. O melhor resultado foi obtido com a expressão log(x + 10) (SNEDECOR & COCHRAN, 1967). O efeito de açúcares foi testado, empregado-se o teste de Tukey. O efeito da concentração dentro de açúcar foi analisado por meio de regressão polinomial. As equações polinomiais foram obtidas a partir de contrastes ortogonais.

3. RESULTADOS E DISCUSSÃO

A análise de variância mostrou boa eficiência experimental (CV = 5,26%), não havendo diferenças estatisticamente significativas entre os açúcares testados, incluindo todas as concentrações (prob.> F = 0.38625), para a germinação do pólen de *A.angustifolia*. Os resultados de médias originais e transformadas das porcentagens de germinação de pólen de araucária, em meios com diferentes tipos e concentração de açúcares são mostrados na Tabela 1.

TABELA 1. Médias originais e transformadas das porcentagens de germinação de pólen de *A.angustifolia*, em meios com diferentes tipos e concentrações de açúcares.

Concentração (%)	Tipos de	Médias	Médias	
	Açúcares	Transformadas (%)	Originais (%)	
Testemunha	Sem açúcar	2,6887	4,7128	
25	Sacarose	2,3148	0,1227	
	Glucose	2,3149	0,1242	
	Frutose	2,3088	0,0619	
	Lactose	2,3026	0,0000	
		· 	· 	
50	Sacarose	2,3088	0,0619	
	Glucose	2,3026	0,0000	
	Frutose	2,3026	0,0000	
	Lactose	2,3026	0,0000	
100	Sacarose	2,3320	0,2988	
	Glucose	2,3026	0,0000	
	Frutose Lactose	2,3026 2,3026 2,3026	0,0000 0,0000 0,0000	
Média	Sacarose	2,4107	1,1421	
	Glucose	2,4045	1,0726	
	Frutose	2,3937	1,0090	
	Lactose	2,3414	0,3962	

Entre os tratamentos aplicados, as maiores porcentagens de germinação de pólen foram observadas nos meios contendo ágar (0,8%), sem qualquer um dos açúcares. As concentrações utilizadas podem não ter surtido efeito , provavelmente em função do desequilíbrio osmótico produzido entre pólen e meio de

Nº 7, abr./96, p.5-7

cultura. Novos testes envolvendo açúcares com concentrações inferiores a 25% poderiam esclarecer melhor se concentrações mais baixas provocariam um efeito estimulante na germinação.

A análise de variância da regressão polinomial (Tabela 2), para os diferentes níveis de concentração de açúcares, mostrou valores de F significativos, ao nível α =0,01 de probabilidade, para as regressões linear e quadrática, com exceção da lactose, indicando que os dados de germinação se ajustaram melhor à regressão quadrática.

TABELA 2. Testes F da regressão polinomial dos níveis de concentração de açúcares, na germinação de pólen de araucária.

Causa de variação	G.L.	V a	lores	d e	f
		Glucose	Lactose	Sacarose	Frutose
Regressão linear	1	14,2153 ** (0,49)	2,1411 n.s. (0,47)	10,9343 ** (0,42)	12,8626 ** (0,48)
Regressão quadrática	1	12,1385 ** (0,91)	1,9465 n.s. (0,89)	12,3659 ** (0,90)	11,3174 ** (0,90)
Desvios da regressão	1	2,7192 n.s.	0,5005 n.s.	2,6075 n.s.	2,7128 n.s.
Resíduo	48				

^{**=} significativo ao nível α =0,01 de probabilidade.

Nas concentrações de lactose iguais e superiores a 25%, não foi possível visualizar os grãos de pólen de araucária, devido à opacidade do meio, o que prejudicou a avaliação do seu estado de germinação.

4. CONCLUSÕES

A germinação do pólen de araucária não foi influenciada pelos tipos de açúcares e concentrações empregados, indicando a necessidade de testá-las em níveis inferiores. Nº 7, abr./96, p.6-7

5. AGRADECIMENTOS

n.s. = não significativo.

 $R^2 > =$ coeficiente de determinação (indicado entre parêntesis).

Agradecemos aos técnicos Harry Albino Hoffmann e Roberto Carletto pela realização dos trabalhos de campo; à Elci Batistella Favretto pelos trabalhos de laboratório; e ao Estatístico Osmir José Lavoranti pelas sugestões oferecidas.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- BHOJWANI, S.S.; BHATNAGAR, S.P. **The embryology of angiosperms**. New Delhi: Skylark Printers, 1974. 264 p.
- DORMAN, K.W. **The genetics and breeding of southern pines**. Washington: USDA. Forest Service, 1976. 407 p.
- ECHOLS, R.M.; MERGEN, F. Germination of slash pine pollen in vitro. **Forest Science**, Washington, v.2, n.4, p.321-327, 1956.
- FARMER JR.; R.E.; HALL, G.C. In vitro testing and long term storage of black cherry pollen. In: NORTHEASTERN FOREST TREE IMPROVEMENT CONFERENCE, 22.,1974, Syracuse. **Proceedings**. Upper Darby: USDA. Forest Service, 1975. p.19-23.
- FAULL, A.F. Some factors in pollen germination on calcium salts, dextrose, drying. **Journal of The Arnold Arboretum,** Cambridge, v.36, p.171-188, 1955.
- FUKUHARA, N.; SAITO, M. Some investigations on pollen of *Cryptomeria* and Hinoki Cypress. **Journal of the Japanese Forestry Society**, v. 53, n.4, p. 98-102, 1971.
- GODDARD, R.E.; MATTHEWS, F.R. Pollen testing. In: FRANKLIN, E.C. **Pollen management handbook**. Washington: USDA. Forest Service, 1981. p.40-43.
- GUZINA, V. Results of study of certain properties of pollen of poplars in Yugoslavia. **Topola**, v.18, n. 102, p.13-18, 1974.
- KORMUTAK, A.; SALAJ, J.; VOOKOVA, B. Pollen viability and seed set of silver fir (*Abies alba* Mill.) in polluted areas of Slovakia. **Silvae Genetica**, Frankfurt, v.43, n..2/3, p.68-72, 1994.

- LUZA, J. G.; POLITO, V.S. In vitro germination and storage of english walnut pollen. **Scientia Horticulturae**, Amsterdam, v.27, n. 3/4, p. 303-316, 1985.
- MARCHANT, R.; POWER, J.B.; DAVEY, N. R.; CHARTIER-HOLLIS, J.M.; LYNCH, P.T. Cryopreservation of pollen from two rose cultivars. **Euphytica**, Wageningen, v.66, p.235-241, 1993.
- RAJORA, O. P.; ZSUFFA, L. Pollen viability of some *Populus* species as indicated by in vitro pollen germination and tetrazolium chloride staining. **Canadian Journal of Botany**, Ottawa, v. 64, n. 6, p 1086-1088, 1986.
- RENZONI, G.C.; VIEGI, L.; STEFANI, A.; ONNIS, A. Different in vitro germination responses in *Pinus pinea* pollen from two localities with different levels of pollution. **Annales Botanici Fennici,** Helsinki, v. 27, n. 1, p. 85-90, 1990.
- SAITO, M.; ITOO, S.; ITOO, M. Germination test of *Abies veitchii* pollen. **Journal of the Japanese Forestry Society**, v. 65, n. 9, p 339-341, 1983.
- SAITO, M.; KANAZASHI, T.; ITOO, M. Germination tests of *Picea koyamae* [*P. koyamai*] and *P. shirasawae* pollen. **Journal of the Japanese Forestry Society**, v. 66, n. 9, p.393-395, 1984.
- SMIRNOV, I.A. Pollen viability in some introduced conifer species. **Byulleten-Glavnogo-Botanicheskogo-Sada**, Moskva. n. 106, p. 32-38, 1977. **Tree CD**, 1939-jul. 1995. Resumo.
- SNEDECOR, G.W.; COCHRAM, W.G. **Statistical methods.** Ames: The lowa State University Press, 1967. 593p.
- SPRAGUE, J. Seed and pollen handling. In: TREE IMPROVEMENT SHORT COURSE, 1977, Raleigh. **Tree**... Raleigh: North Carolina State University, 1977. p.90-102.
- STANLEY, R.G.; LINSKENS, H.F. **Pollen:** biology, biochemistry and management. Berlin: Springer-Verlag, 1974. 307 p.
- STEEL, R. G. D.; TORRIE, J. H. **Principles and procedures of statistics.** New York: McGraw-Hill,I 1980. 629 p.
- VAN WYK, G. Pollen management for eucalypts. In: FRANKLIN, E.C. **Pollen management handbook**. Washington: USDA. Forest Service, 1981. p. 84-88.