
Comunicado 299 Técnico ISSN 0102-0099 Novembro/2006 Campina Grande, PB

Municípios Aptos e Época de Plantio para a Cultura do Amendoim no Estado de Pernambuco, Segundo o Zoneamento de Riscos Climáticos

José Américo Bordini do Amaral¹ Madson Tavares Silva² Ana Cláudia Coutinho de Araújo³

A proximidade da região Nordeste do Brasil com a latitude de 0°, garante uma incidência de insolação durante todo o ano praticamente sem variações, com isso a quantidade de energia que chega sobre a superfície proporciona uma alta demanda de evapotranspiração, em quase todas as localidades a taxa de evaporação é superior a quantidade precipitante de chuva, condição que impossibilita o armazenamento de água no solo, por conseqüência as ocorrências de déficit hídrico é uma constante nas atividades agrícolas durante a maior parte do ano. Portanto, o conhecimento das características ambientais de uma determinada região é pratica imprescindível para o desenvolvimento de ações que buscam o incremento de atividades agrícolas, os fatores ambientais se inseriram como limitantes nas atuais condições de uso racional da terra. Desta forma a busca por ferramentas que potencializem a forma de ocupação e uso de determinada região torna-se um elemento cada vez mais presente. Em regiões onde a distribuição espacial da precipitação ocorre de forma irregular praticamente o ano inteiro, a análise da época de chuva como também as épocas de maior incidência de déficit hídrico devem ser analisados para que possíveis eventualidades não

impossibilitem a prática da agricultura de subsistência ou comercial. Nesse contexto a busca por culturas de ciclos curtos e mais resistentes ao déficit hídrico é uma questão de sobrevivência, tendo em vista as condições impostas pelas propriedades edafoclimáticas da região. A tomada de decisões de como e onde plantar garante ao agricultor a possibilidade de analisar as potencialidades da cultura como também a melhor distribuição para produção, dessa forma percebemos que o sucesso da atividade agrícola em regiões semiáridas está diretamente relacionado ao meio-fisico.

Vários estudos mostram que a definição das épocas de plantio por meio do balanço hídrico do solo para a cultura, pode contribuir para diminuir o risco climático, causado pela diminuição de água, não apenas no amendoim de sequeiro Steinmetz et al. (1985); Silva et al. (1995). A regionalização dos elementos agroclimáticos que definem a produtividade das culturas, como precipitação pluvial, evapotranspiração potencial, entre outros, exige uma análise mais abrangente, tanto no tempo como no espaco.

A identificação de regiões com condições

³Graduanda em Meteorologia, Unidade Acadêmica de Ciências Atmosféricas, UFCG, Campina Grande, PB, E-mail: anacoutinho23@hotmail.com

¹Pesquisador da Embrapa Algodão, Campina Grande, PB, E-mail: bordini@cnpa.embrapa.br

²Graduando em Meteorología, Unidade Acadêmica de Ciências Atmosféricas, UFCG e estagiário da Embrapa Algodão, Campina Grande, PB, E-mail: madson tavares@hotmail.com

edafoclimáticas que permitam a cultura externar o seu potencial genético em termos de produtividade torna-se necessário para o sucesso da agricultura. Através de estudos que relacionam a interação solo - planta - clima, é possível definir áreas que apresentam aptidão, viabilizando a exploração agrícola das plantas, ecologica e economicamente. A criação de um banco de dados, com uso de Geoprocessamento e Sistema de Informação Geográfica (SIG) e diagnóstico da região, assim como a confecção de mapas, armazenamento de dados existentes, formação de técnicos especializados e produção de manuais de aplicação dessa tecnologia, tudo isso aumentará significativamente a capacidade dos produtores na busca pelo aumento da produtividade e diminuição das perdas. A precisão alcançada é fator que permite maior acerto nas previsões e a racionalização do emprego dos recursos necessários para o estabelecimento de uma agricultura rentável e com maiores chances de ser bem sucedida comercial e ecologicamente. Deste modo, com esse trabalho, pretende-se identificar por intermédio de simulações de balanço hídrico os riscos climáticos do cultivo do amendoinzeiro no Estado de Pernambuco.

Material e Métodos

O Estado de Pernambuco esta localizado na porção oriental da Região Nordeste do Brasil, situando-se entre os meridianos de 34°48′15" e 41°21′22" de longitude a oeste de Greenwich e os paralelos de 7° 18′17" e 9°28′43" de latitude sul. Limitando-se ao norte com o Estado da Paraíba e Ceará; ao sul com os Estados de Alagoas e Bahia; ao oeste com o Estado do Piauí; e ao leste com o Oceano Atlântico, a Figura 1 ilustra a área.

A definição do risco climático e da época de plantio foi realizada por intermédio de um modelo de

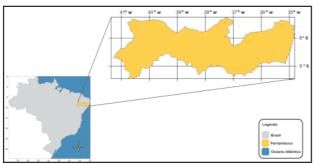


Fig. 1 - Localização da área em estudo

balanço hídrico da cultura, realizado em duas partes. Na primeira, objetivou-se a determinação do balanço hídrico, por intermédio da simulação da época de semeadura, utilizando-se o Sistema de Análise Regional dos Riscos Agroclimáticos, o software SARRAZON (BARON et al., 1996), em seguida, os resultados da simulação foram espacializados pela utilização do software SPRING versão 4.2 (CÂMARA et al., 1996).

Variáveis de entrada do modelo:

- Precipitação pluvial diária Registrados durante 25 anos em estações pluviométricas disponíveis no Estado de Pernambuco. Os dados de precipitação utilizados se originam do Banco de Dados Hidrometeorológico da Superintendência de Desenvolvimento do Nordeste SUDENE, publicados na série "Dados Pluviométricos Mensais do Nordeste Pernambuco" (SUDENE, 1990).
- Solo Levantamentos Exploratórios –
 reconhecimento de solos dos Estados do Nordeste
 (BRASIL, 1972). Foram considerados três tipos de solo com diferentes capacidades de armazenamento de água:
- Tipo 1 baixa capacidade de armazenamento de água
- Tipo 2 média capacidade de armazenamento de água
- Tipo 3 alta capacidade de armazenamento de água
- Evapotranspiração real (ETr) O modelo estima a evapotranspiração real (ETr) por uma equação de terceiro grau, proposta por Eagleman (1971), que descreve a evolução da ETr, em função da evapotranspiração máxima ETm e da umidade do solo HR, expressa como segue na equação (1) :

$$ETr = A + B HR - C HR^2 + D HR^3$$
 (1)

em que,

A = 0.732 - 0.05 ETm, B = 4.97 ETm - 0.66 ETm 2 , C = 8.57 ETm - 1.56 ETm 2 , D = 4.35 ETm - 0.88 ETm 2 e HR = umidade do solo

- Evapotranspiração máxima (Etm) - Foi estimada

pela equação (2), conforme Doorenbos & Kassam (1994):

$$\mathsf{ETm} = \mathsf{ETp} \; \mathsf{x} \; \mathsf{Kc} \tag{2}$$

ETp – evapotranspiração potencial (mm dia⁻¹); Kc – coeficiente de cultura.

- Coeficientes decendiais do cultivo (Kc) -

Corresponde à relação entre a evapotranspiração da cultura (ETc) e a evapotranspiração de referência (ETo); os Kc's são determinados por médias decendiais para cada fase e gerados pela interpolação dos dados para o período semanal e para as fases fenológicas definidas pela Doorenbos & Kassam (1994). Equação (3):

$$Kc = ETc / ETo$$
 (3)

- Evapotranspiração potencial - Foi estimada pela equação de Penman (1963) e calculada para cada dez dias do ano, gerando 36 dados de evapotranspiração, equação(4):

$$ETp = \{[s/(s + y)] Rn + [y/(s + y)] Ea\}$$
 (4)

sendo ETp – evapotranspiração estimada (mm dia⁻¹), Rn – saldo de radiação convertido em (mm dia⁻¹) de evaporação equivalente, Ea – termo aerodinâmica (mm dia⁻¹), y – constante psicométrica = (0,66 mb/ °C) e s – tangente à curva de pressão de saturação de vapor d'água (mb/°C).

- Ciclo das cultivares Considerou-se uma cultivar de ciclo médio (90 dias) em que o período crítico (floração-enchimento dos grãos) é de 40 dias (entre os 21° e 60° dia).
- Capacidade de Água Disponível (CAD) -Determinou-se a CAD, segundo Reichardt (1987), a partir da curva de retenção de água, densidade do solo e profundidade do perfil, pela equação (5):

$$CAD = [(CC-PMP) / (10 Ds h)]$$
 (5)

em que:CAD - Capacidade de água disponível no solo (mm m⁻¹); CC - Capacidade de campo (%); PMP - Ponto de murchamento permanente (%); Ds - Densidade do solo (g cm⁻³) e h - Profundidade da camada do solo (cm). Foram estabelecidas duas classes de CAD:

- Tipo 2 média capacidade de armazenamento de água (CAD = 30 mm)
- Tipo 3 alta capacidade de armazenamento de água (CAD = 40 mm)
- Datas de Simulação Para a simulação, foram estipuladas datas 30 dias antes do plantio e 30 dias após a colheita, para os intervalos de plantio de 10 dias, proporcionando ao modelo de simulação maior confiabilidade. Deu-se preferência à simulação nessas datas por se tratar do período indicado para a semeadura do amendoim de sequeiro no Estado de Pernambuco; os balanços hídricos foram determinados no período compreendido entre 1 de outubro e 30 de junho, considerando-se os primeiro, segundo e terceiro decêndios de cada mês.

Variáveis de saída do modelo:

- Índice de Satisfação da Necessidade de Água para a cultura (ISNA) - Definido como a relação entre a evapotranspiração real e a evapotranspiração máxima (ETr/ETm) ao longo do ciclo, para um determinado ano, numa certa data, num tipo de solo, para a oleaginosa de ciclo médio. Como o ciclo da cultura está dividido em quatro fases fenológicas e a fase de enchimento dos grãos é o período mais determinante da produtividade final, estima-se o valor de ISNA nesta fase. Em seguida, passa-se então para o ano dois, data um, solo um, ciclo médio, e assim, sucessivamente, até o último ano. A partir deste cálculo, estabelece-se a função de fregüência do ISNA e seleciona-se a data onde o valor calculado é maior ou igual ao critério de risco adotado (ISNA > 0,45), em 80 % dos casos. Os ISNA's foram espacializados pela utilização do software SPRING, versão 4.2 (CÂMARA et al., 1996). Para a caracterização do risco climático obtido ao longo dos períodos de simulações foram estabelecidas três classes de ISNA, conforme Steinmetz et al. (1985):
- ISNA ≥0,45 baixo risco climático para cultura do amendoim de sequeiro
- 0,35 ≤ISNA < 0,45 risco climático médio para cultura do amendoim de sequeiro
- ISNA < 0,35 alto risco climático para cultura do amendoim de sequeiro

Para a espacialização dos resultados, foram adotados os seguintes procedimentos: digitação de arquivo de pontos (em formato ASCII) organizados em três colunas, com latitude, longitude e valores de relação ISNA, com 80 % de freqüência de ocorrência; transformação das coordenadas geográficas em coordenadas de projeção cartográfica utilizadas (no caso, projeção policônica); leitura do arquivo de pontos; organização das amostras; e geração de uma grade regular (grade retangular, regularmente espaçada de pontos, em que o valor da cota de cada ponto é estimado a partir da interpolação de um número de vizinhos mais próximos). Por se tratar de uma análise bidimensional, na qual as variações de ISNA foram espacializadas em função do tempo, desconsiderando-se os efeitos orográficos, o interpolador escolhido foi aquele que mais se aproximou de um resultado linear.

Resultados e Discussão

Nas Figuras de 2 a 4, que referem-se ao plantio em fevereiro, observa-se a existência de muitas áreas situadas entre os paralelos 8°S e 9°S e meridianos 38°W e 36°W (Região Leste), em condição de alto risco climático. Localidades como Inajá (Lat. 8°4′S Long. 37°34′W) e Manari (Lat. 8°58′S Long. 38°04′W) apresentam condições de alto risco climático devido, principalmente, ao baixo índice pluviométrico característico da região.

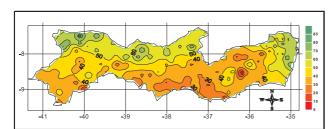


Fig. 2 - Espacialização do ISNA, no Estado de Pernambuco, para plantio do amendoim de sequeiro em 5-fevereiro.

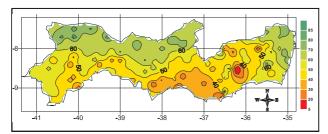


Fig. 3 - Espacialização do ISNA, no Estado de Pernambuco, para plantio do amendoim de sequeiro em 15-fevereiro.

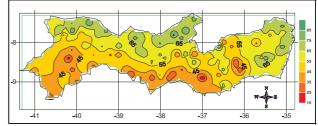


Fig. 4 - Espacialização do ISNA, no Estado de Pernambuco, para plantio do amendoim de sequeiro em 25-fevereiro.

A Figura 4 apresenta duas áreas entre os paralelos 8°S e 9°S e meridianos 38°W e 37°W e 41°W e 40°W (Região Sul) com alto risco climático, porém cerca de 70 % da área apresenta baixo risco climático. Entretanto, essas áreas, onde estão localizados os municípios de Lagoa Grande (Lat. 8°39'S e Long. 40°12'W) e Santa Maria da Boa Vista (Lat. 8°36'S e Long. 39°53'W), apresentam baixo risco climático caso o plantio seja realizado em 15/02 (Figura 3).

Comparando as Figuras 2, 3, 4, 5, 6 e 7 em relação a uma área localizada no paralelo 9°S e meridianos 38°W a 37°W, observa-se que em 5/02 esta região apresenta alto risco climático (Figura 2). Entretanto, na Figura 5 (plantio em 5/03) e Figura 6 (plantio em 15/03), as condições nesta mesma área é de médio risco climático. Logo após dez dias, no entanto, para plantio em 25/03, a mesma área apresenta-se com baixo risco climático (Figura 7). Seqüencialmente, na

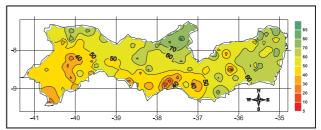


Fig. 5 - Espacialização do ISNA, no Estado de Pernambuco, para plantio do amendoim de sequeiro em 5-março



Fig. 6 - Espacialização do ISNA, no Estado de Pernambuco, para plantio do amendoim de sequeiro em 15-março.

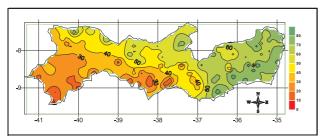


Fig. 7 - Espacialização do ISNA, no Estado de **Pernambuco**, para plantio do amendoim de sequeiro em 25-março.

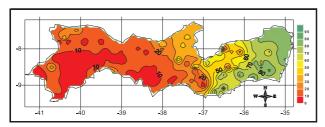


Fig. 8 - Espacialização do ISNA, no Estado de Pernambuco, para plantio do amendoim de sequeiro em 5-abril.

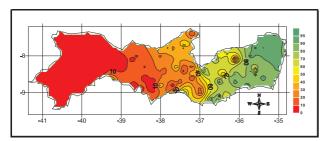


Fig. 9 - Espacialização do ISNA, no Estado de **Pernambuco**, para plantio do amendoim de sequeiro em 15-abril.

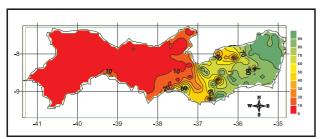


Fig. 10 - Espacialização do ISNA, no Estado de **Pernambuco**, para plantio do amendoim de sequeiro em 25-abril.

Figura 8 (plantio em 5/04), esta área apresenta alto risco climático. Portanto, observa-se que em algumas regiões do Estado de Pernambuco ocorre grande variabilidade na distribuição pluvial.

Nas regiões situadas nos paralelos 7°S a 8°S e meridianos 36°W a 35°W (região norte), as Figuras

8, 9 e 10 retratam algumas áreas que apresentam baixo risco climático pelo fato desta região do Estado de Pernambuco apresentar proximidade com o Oceano Atlântico, fazendo com que o índice pluvial de norte a sul tenha uma pequena variação ao longo do período analisado. O município de Frei Miguelinho (Lat. 7°56'S e Long. 35°53'W) inclui-se nesta região, indica-se que o melhor período para plantio é de 5 de abril a 15 de maio. No plantio no mês de abril (Figuras. de 8 a 10), as situações de risco climático ficam mais comprometidas, apresentando maior número de regiões com alto risco climático, comparando com o meses de fevereiro e março, principalmente para região do sertão do estado. As Figuras 8 a 10 retratam que, em localidades situadas nos paralelos 8°S a 9°S e meridianos 37°W a 41°W, o amendoim de sequeiro está exposto a alto risco climático; a Figura 8 apresenta risco climático médio. Já nas Figuras 9 e 10 observa-se que esta mesma região apresenta alto risco climático para a cultura do amendoim de sequeiro. Os municípios de Parnamirim (Lat. 8°04' S e Long. 39°43'W) e Salgueiro (Lat. 8°9'S e Long. 39°9'W), nesta região, o mês de fevereiro apresenta-se como o mais apropriado, considerando que na fase de maior necessidade para cultura do amendoim de segueiro será satisfeita. Em seguida, para definição do período de semeadura em cada município com aptidão plena, gerou-se um mapa temático de duração e definição do período chuvoso para posterior tabulação cruzada com a malha municipal do Estado. Da mesma forma, para definição do período de semeadura, usou-se o critério do limite de corte de 20 %, quando ocorriam duas ou mais classes em um mesmo município.

Na Tabela 1 estão listados os municípios do Estado de Pernambuco aptos ao cultivo do amendoim, suprimidos todos os outros, onde a cultura não é recomendada, foi calcada em dados disponíveis por ocasião da sua elaboração. Se algum município mudou de nome ou foi criado um novo, em razão de emancipação de um daqueles da listagem abaixo, todas as recomendações são idênticas às do município de origem até que nova relação o inclua formalmente.

Tabela 1 - Municípios e períodos favoráveis ao plantio do amendoim no Estado de Pernambuco, em função dos tipos de solo predominantes nas regiões.

tipos de solo predominantes nas regiões.		
Município	Época de Plantio	
AFOGADOS DA INGAZEIRA	1/jan a 20/fev	
AGRESTINA	1/abr a 20/mai	
AGUAS BELAS	11 a 31/mai	
ALAGOINHA	1/abr a 20/mai	
ALIANÇA	1/abr a 20/mai	
ALTINHO	1/abr a 20/mai	
AMARAJI	1/abr a 20/mai	
ANGELIM	1/abr a 20/mai	
ARARIPINA	1/jan a 20/fev	
ARCOVERDE	1/abr a 20/mai	
BARRA DE GUABIRABA	1/abr a 20/mai	
BELEM DE MARIA	1/abr a 20/mai	
BELEM DE SAO FRANCISCO	21/jan a 20/fev	
BELO JARDIM	1/abr a 20/mai	
BETANIA	21/jan a 20/fev	
BEZERROS	1/abr a 20/mai	
BODOCO	1/jan a 20/fev	
BOM CONSELHO	1/abr a 20/mai	
BOM JARDIM	1/abr a 20/mai	
BONITO	1/abr a 20/mai	
BREJÃO	1/abr a 20/mai	
BREJINHO	1/jan a 20/fev	
BREJO DA MADRE DE DEUS	1/abr a 20/mai	
BUENOS AIRES	1/abr a 20/mai	
CABROBO	21/jan a 20/fev	
CACHOEIRINHA	1/abr a 20/mai	
CAETES	1/abr a 20/mai	
CALCADO	1/abr a 20/mai	
CALUMBI	1/jan a 20/fev	
CAMOCIM DE SAO FELIX	1/abr a 20/mai	
CAMUTANGA	1/abr a 20/mai	
CANHOTINHO	1/abr a 20/mai	
CAPOEIRAS	1/abr a 20/mai	
CARNAIBA	1/jan a 20/fev	
CARNAUBEIRA DA PENHA	21/jan a 20/fev	
CARPINA	1/abr a 20/mai	
CARUARU	1/abr a 20/mai	
CASINHAS	1/abr a 20/mai	
CATENDE	1/abr a 20/mai	
CEDRO	1/jan a 20/fev	
CHA DE ALEGRIA	1/abr a 20/mai	
CHA GRANDE	1/abr a 20/mai	
CORRENTES	1/abr a 20/mai	
CORTES	1/abr a 20/mai	
CUMARU	1/abr a 20/mai	
CUPIRA	1/abr a 20/mai	
CUSTODIA	1/jan a 20/fev	
EXU	1/jan a 20/fev	

Tabela 1. Continuação...

Tabela 1. Continuação	
Município	Época de Plantio
FEIRA NOVA	1/abr a 20/mai
FERREIROS	1/abr a 20/mai
FLORES	1/jan a 20/fev
FLORESTA	21/jan a 20/fev
FREI MIGUELINHO	1/abr a 20/mai
GARANHUNS	1/abr a 20/mai
GLORIA DO GOITA	1/abr a 20/mai
GRANITO	1/jan a 20/fev
GRAVATA	1/abr a 20/mai
IATI	1/abr a 20/mai
IBIRAJUBA	1/abr a 20/mai
IGUARACI	1/jan a 20/fev
INGAZEIRA	1/jan a 20/fev
IPUBI	1/jan a 20/fev
ITAIBA	11 a 31/mai
ITAMBE	1/abr a 20/mai
ITAPETIM	1/jan a 20/fev
JAQUEIRA	1/abr a 20/mai
JATAUBA	1/abr a 20/mai
JOAO ALFREDO	1/abr a 20/mai
JOAQUIM NABUCO	1/abr a 20/mai
JUCATI	1/abr a 20/mai
JUPI	1/abr a 20/mai
JUREMA	1/abr a 20/mai
LAGOA DO CARRO	1/abr a 20/mai
LAGOA DO ITAENGA	1/abr a 20/mai
LAGOA DO OURO	1/abr a 20/mai
LAGOA DOS GATOS	1/abr a 20/mai
LAJEDO	1/abr a 20/mai
LIMOEIRO	1/abr a 20/mai
MACAPARANA	1/abr a 20/mai
MACHADOS	1/abr a 20/mai
MANARI	11 a 31/mai
MARAIAL	1/abr a 20/mai
MIRANDIBA	1/jan a 20/fev
MOREILANDIA	1/jan a 20/fev
MORENO	1/abr a 20/mai
NAZARE DA MATA	1/abr a 20/mai
OROBO	1/abr a 20/mai
OURICURI	1/jan a 20/ffev
PALMARES	1/jair a 20/rev 1/abr a 20/mai
PALMEIRINA	.,
PANELAS	1/abr a 20/mai 1/abr a 20/mai
PARANATAMA	1/abr a 20/mai
PARNAMIRIM	1/jan a 20/fev
PASSIRA	1/abr a 20/mai
PEDRA	1/abr a 20/mai
PESQUEIRA	1/abr a 20/mai
POCÃO	1/abr a 20/mai
POMBOS	1/abr a 20/mai

Continua... Continua...

Tabela 1. Continuação...

Tabela T. Continuação	
Município	Época de Plantio
QUIPAPA	1/abr a 20/mai
QUIXABA	1/jan a 20/fev
RIACHO DAS ALMAS	1/abr a 20/mai
SAIRE	1/abr a 20/mai
SALGADINHO	1/abr a 20/mai
SALGUEIRO	1/jan a 20/fev
SALOA	1/abr a 20/mai
SANHARO	1/abr a 20/mai
SANTA CRUZ	1/jan a 20/fev
SANTA CRUZ DA BAIXA	1/jan a 20/fev
SANTA CRUZ DO CAPIBA	1/abr a 20/mai
SANTA FILOMENA	1/jan a 20/fev
SANTA MARIA DO CAMBU	1/abr a 20/mai
SANTA TEREZINHA	1/jan a 20/fev
SÃO BENEDITO DO SUL	1/abr a 20/mai
SÃO BENTO DO UNA	1/abr a 20/mai
SÃO CAITANO	1/abr a 20/mai
SÃO JOÃO	1/abr a 20/mai
SÃO JOAQUIM DO MONTE	1/abr a 20/mai
SÃO JOSE DO BELMONTE	1/jan a 20/fev
SÃO JOSE DO EGITO	1/jan a 20/fev
SÃO VICENTE FERRER	1/abr a 20/mai
SERRA TALHADA	1/jan a 20/fev
SERRITA	1/jan a 20/fev
SERTANIA	21/jan a 20/fev
SOLIDAO	1/jan a 20/fev
SURUBIM TABIRA	1/abr a 20/mai
TACAIMBO	1/jan a 20/fev 1/abr a 20/mai
TAQUARITINGA DO NORTE	1/abr a 20/mai
TEREZINHA	1/abr a 20/mai
TERRA NOVA	1/jan a 20/fev
TIMBAUBA	1/abr a 20/mai
TORITAMA	1/abr a 20/mai
TRACUNHAEM	1/abr a 20/mai
TRINDADE	1/jan a 20/fev
TRIUNFO	21/jan a 20/fev
TUPARETAMA	1/jan a 20/fev
VENTUROSA	1/abr a 20/mai
VERDEJANTE	1/jan a 20/fev
VERTENTE DO LERIO	1/abr a 20/mai
VERTENTES	1/abr a 20/mai
VICENCIA	1/abr a 20/mai
XEXEU	1/abr a 20/mai

Conclusões

 O cultivo do amendoim no Estado de Pernambuco apresentou risco climático diferenciado em função da época de plantio e do tipo de solo;

- Para os dois tipos de solos, os períodos favoráveis ao plantio esta compreendidos entre 1 de janeiro a 31 de maio, justificado pelo critério de duração do período chuvoso do estado e pelo ciclo médio das cultivares;
- 3) Identificou-se 142 municípios no Estado de Pernambuco que satisfazem todas as necessidades edafoclimáticas e fenológicas da cultura do amendoim, em função da variabilidade espaço temporal da chuva na região do semi-árido nordestino, sugere-se o acompanhamento das informações disponibilizadas por boletins de previsão climática, adequando e garantindo o plantio e a colheita sem interrupção do fornecimento das condições necessárias para o desenvolvimento da cultura.

Referências Bibliográficas

BARON, C.; PEREZ, P.; MARAUX, F. **Sarrazon:** bilan hidrique applique au zonage. Paris: CIRAD, 1996. 26p.

CÂMARA, G.; SOUZA, R.C.M.; FREITAS, U.M.; GARRIDO, J. SPRING: Integrating remote sensing and GIS by object-oriented data modeling.

Computers and Graphies, v. 20, n. 3, p. 395-403, 1996.

DOORENBOS, J.; KASSAM, A. H. **Efeito da água no rendimento das culturas.** Campina Grande: UFPB,1994. 306p. (Estudos de FAO: Irrigação e Drenagem, 33).

EAGLEMAN, A.M. An experimentaly derived model for actual evapotranspiration. **Agricultural Meteorology**, Amsterdam, v.8, n.4/5, p.385-409, 1971.

EMBRAPA. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro,RJ). **Levantamento exploratório**: reconhecimento de solos da margem esquerda do Rio São Francisco, Estado de Pernambuco. Recife, 1976. 404p. (EMBRAPA – SNLCS. Boletim Técnico, 38).

EMBRAPA. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro,RJ). **Levantamento exploratório**: reconhecimento de solos da margem direita do Rio São Francisco, Estado de Pernambuco. Recife, 1977. v. 1, 732p. (EMBRAPA – SNLCS. Boletim Técnico,52).

PENMAN, H. L. Vegetation and hydrology.

Harpenden: Commonwealth Bureau of Soils. 1963. 125p. (Techinical Communication, 53).

REICHARDT, K. O solo como reservatório de água. In: REICHARDT, K. **A água em sistemas agrícola**. [S.l.:s.n.], 1987. p. 27-69.

SILVA, S.C. da; ASSAD, E.D.; LOBATO, E.J.V.; SANO, E.E.; STEINMETZ, S.; BEZERRA, H. da S.; CUNHA, M.A.C. da; SILVA, F.A.M. da. **Zoneamento** agroclimático para o arroz de sequeiro no Estado de Goiás. Brasília: Embrapa-SPI, 1995. 80p. (Embrapa-CNPAF. Documentos, 43).

STEINMETZ, S.; REYNIERS, F.N.; FOREST, F. Evaluation of the climatic risk on upland rice in Brazil. In: **Colloque "resistance a la sécheresse en millieu intertropicale**: quelles recherches our le moyen Terme?" Paris: CIRAD, 1985. 43-54p.

SUDENE.(Recife, PE). Dados pluviométricos mensais do Nordeste: Pernambuco. Recife, 1990. 363p.

Comunicado Técnico, 299 Exemplares desta edição podem ser adquiridos na: Embrapa Algodão

Rua Osvaldo Cruz, 1143 Centenário, CP 174 58107-720 Campina Grande, PB

Fone: (83) 3315 4300 Fax: (83) 3315 4367

e-mail: sac@cnpa.embrapa.br

1ª Edição Tiragem: 500

Ministério da Agricultura, Pecuária e Abastecimento

Comitê de Publicações

Presidente: Napoleão Esberard de Macêdo Beltrão Secretária Executiva: Nivia M.S. Gomes

Membros: Cristina Schetino Bastos Fábio Akiyoshi Suinaga

Fabio Akiyoshi Sunaga
Francisco das Chagas Vidal Neto
José Américo Bordini do Amaral
José Wellington dos Santos
Luiz Paulo de Carvalho
Nair Helena Castro Arriel
Nelson Dias Suassuna

Expedientes: Supervisor Editorial: Nivia M.S. Gomes

Revisão de Texto: Nisia Luciano Leão

Tratamento das ilustrações: Oriel Santana Barbosa Editoração Eletrônica: Oriel Santana Barbosa