Comunicado 86 Técnico ISSN 1679-0472 Agosto, 2004 Dourados, MS

Características da Fibra de Algodão Produzida nas Regiões Norte e Nordeste de Mato Grosso do Sul

Fernando Mendes Lamas¹

O êxito do cultivo do algodoeiro depende da produtividade obtida, do custo de produção e da qualidade do produto.

Um dos grandes desafios da cotonicultura brasileira é a produção de fibra de elevada qualidade. Esta é dependente da cultivar, de fatores ambientais, de práticas de manejo e do processo de beneficiamento.

Em função da modernização da indústria têxtil, o fator qualidade da fibra vem tendo a sua importância aumentada. Assim, a coloração do algodão, a quantidade de impurezas e as características intrínsecas da fibra são fundamentais (Santana & Wanderley, 1995).

A qualidade da fibra é definida em função das características intrínsecas e extrínsecas, que são avaliadas no HVI (High Volume Instruments).

Quando o algodão vem do campo com grande quantidade de impurezas, nas máquinas de beneficiamento são acoplados equipamentos visando reduzir essas impurezas. À medida que aumenta o número de limpadores da fibra no processo de beneficiamento, ocorre aumento do número de "neps" (Beltrão et al., 1999), que são

minúsculos nós de fibras, que depreciam a qualidade da fibra.

Os trabalhos de pesquisa com a cultura do algodoeiro objetivam a obtenção de cultivares com elevado potencial produtivo, resistentes a pragas, doenças e nematóides e práticas de manejo que otimizem a produtividade e os custos de produção. Todas as ações executadas pela pesquisa são no sentido de se produzir fibra, com características que atendam à demanda da indústria têxtil.

O presente trabalho teve como objetivo avaliar a presença de contaminantes e as características intrínsecas da fibra de algodão produzida nos Municípios de Costa Rica, Chapadão do Sul, São Gabriel do Oeste e Rio Verde de Mato Grosso, em Mato Grosso do Sul.

Em usinas de beneficiamento localizadas em Costa Rica (3), Chapadão do Sul (5) e São Gabriel do Oeste (2) foram coletadas amostras de algodão produzido na safra 2002/2003, antes e após o beneficiamento. Antes, em cada fardo, foram coletadas quatro amostras de aproximadamente 0,2 kg, que foram acondicionadas em sacos de papel e, posteriormente, beneficiadas em máquina de rolo, na Embrapa Agropecuária Oeste, em

²Eng. Agr., Dr., Embrapa Agropecuária Oeste, Caixa Postal 661, 79804-970 Dourados, MS. E-mail: lamas@cpao.embrapa.br

¹Trabalho financiado pelo Programa de Desenvolvimento do Algodão de Mato Grosso do Sul.

Dourados, MS. Após o beneficiamento, na usina, foram amostrados quatro fardos, sendo que, de cada um, coletou-se uma amostra de aproximadamente 0,2 kg.

As amostras obtidas foram analisadas no Laboratório de Fios e Fibras da *Embrapa Algodão* em Campina Grande, PB.

Os resultados foram submetidos à análise de variância e para comparação das médias dos

tratamentos (usinas) utilizou-se o teste de Scott-Knott.

A porcentagem da amostra representada por impurezas (AREA), antes do beneficiamento, variou significativamente entre as usinas apenas para a cultivar DeltaOpal (Tabela 1). O algodão da usina 3 foi o que apresentou maior valor em termos de percentual de impurezas, diferindo significativamente das demais.

Tabela 1. Porcentagem de impurezas (AREA) e quantidade de partículas interpretadas com impurezas, em amostras coletadas antes do beneficiamento.

	Cultivares							
Usinas	Delt	aOpal	CNPA ITA 90					
	AREA ⁽¹⁾	CNT ⁽²⁾	AREA ⁽¹⁾	CNT ⁽²⁾				
1	1,52 b	88,58 a						
2	1,54 b	88,33 a						
3	1,90 a	92,00 a	1,31 a	82,12 a				
4	1,27 c	79,00 a						
5	1,15 c	88,42 a						
6	1,22 c	85,08 a	1,07 a	76,66 a				
7								
8			1,48 a	85,92 a				
9			1,33 a	94,66 a				
10			1,39 a	88,25 a				
F	6,24**	0,93 ^{ns}	3,55*	2,46 ^{ns}				
C.V. (%)	21	16	21	17				

Obs.: (1)% da amostra representada por impureza; (2)Quantidade de partículas interpretadas como impurezas.

Médias seguidas pela mesma letra, na coluna, não diferem entre si, pelo teste de Scott-Knott, a 5%.

Em todas as amostras, os valores de AREA podem ser considerados como altos (> 1,0), o que é interpretado como alto percentual de impurezas nas amostras.

A quantidade *de partículas interpretadas como impurezas* (CNT) *pelo instrumento HVI*, para as duas cultivares, não variou significativamente entre as usinas (P > 0.05) (Tabela 1).

Na Tabela 2 são apresentados os resultados das análises referentes a impurezas das amostras obtidas após o beneficiamento.

Os valores de L (grau de folha) variaram entre 2,67 a 5,50 (Tabela 2). Valores inferiores a oito são considerados como ideais.

A porcentagem da amostra representada por impurezas (AREA), para ambas as cultivares, variou significativamente entre as usinas (Tabela 2). As amostras obtidas nas usinas 1 e 5, para a cultivar DeltaOpal, apresentaram os menores valores, não havendo diferença significativa entre estes. Antes

do beneficiamento, o algodão da usina 3 foi o que apresentou maior AREA, o que se manteve no algodão beneficiado na usina. Os maiores valores de AREA para a cultivar CNPA ITA 90 foram das amostras oriundas das usinas 3 e 10 (Tabela 2). Em todos os casos estudados, o valor de AREA foi menor que a unidade, o que indica baixa porcentagem da amostra representada por impurezas.

Quando se comparam os valores de AREA (Tabelas 1 e 2), verifica-se que as máquinas utilizadas para o beneficiamento são eficientes para procederem à limpeza da pluma, deixando-a em condições satisfatórias, no que se refere às impurezas.

A menor quantidade de impurezas (CNT) entre as usinas estudadas, para a cultivar DeltaOpal, foi obtida da usina 1 (Tabela 2). O algodão da usina 3, para a cultivar CNPA ITA 90, continha a maior quantidade de partículas interpretadas como impurezas (Tabela 2).

^{**, * -} Significativo a 1% e 5% de probabilidade F;

Tabela 2. Valores de grau de folha (L), porcentagem de impurezas (AREA) e quantidade de partículas interpretadas como impurezas (CNT), em amostras coletadas após o beneficiamento.

			Cul	tivares		
Usinas		DeltaOpal			CNPA ITA 90	
	L ⁽¹⁾	AREA ⁽²⁾	CNT ⁽³⁾	L ⁽¹⁾	AREA ⁽¹⁾	CNT ⁽¹⁾
1	2,92 c	0,29 c	30,50 c			
2	5,08 a	0,51 a	42,75 a			
3	5,50 a	0,55 a	47,25 a	5,25 a	0,52 a	48,62 a
4	5,00 a	0,50 a	45,08 a			
5	2,91 c	0,29 c	35,42 b			
6	4,00 b	4,00 b 0,40 b		2,83b	0,28 b	35,17 b
7						
8				2,67b	0,27 b	33,75 b
9				2,66b	0,27 b	32,00 b
10				$4,50^{a}$	0,45 a	39,25 b
F	11,44**	11,43**	11,12**	16,73**	16,73**	10,66**
C.V. (%)	25	25	15	27	27	16

Obs.: (1) Grau de folha; (1)% da amostra representada por impureza; (3) Quantidade de partículas interpretadas como impurezas. ** - Significativo a 1% de probabilidade F;

Médias seguidas pela mesma letra, na coluna, não diferem entre si, pelo teste de Scott-Knott, a 5%.

Embora tenha havido diferença significativa entre usinas, os valores obtidos para as duas cultivares estão na categoria de fibra de comprimento médio (Tabelas 3 e 4), de acordo com Santana & Wanderley (1995).

A uniformidade do comprimento de fibra (UNF) da cultivar DeltaOpal variou significativamente entre usinas, sendo o valor obtido na usina 3 o maior. Para a cultivar CNPA ITA 90, não se verificou diferença significativa entre usinas (Tabelas 3 e 4). Independente da cultivar, os valores encontrados estão dentro da categoria média uniformidade.

O índice de fibras curtas (SFI), apenas para o caso da usina 3, cultivar DeltaOpal, foi classificado como

muito baixo; os demais valores se enquadram na categoria baixa (Tabelas 3 e 4).

Embora o teste de Scott-Knott tenha detectado diferença significativa entre as usinas, considerando a variável resistência (g/tex), esta é média, exceto para a cultivar CNPA ITA 90 da usina 3, que foi fraca, de acordo com Santana & Wanderley (1995), conforme Tabelas 3 e 4.

A fibra obtida na usina 3, tanto para a cultivar DeltaOpal como para a CNPA ITA 90, apresentou elevado alongamento à ruptura; o mesmo verificou-se com a cultivar CNPA ITA 90 na usina 10, se enquadrando na categoria muito alto. Nos demais casos, a porcentagem de elongação esteve dentro da categoria alta (Tabelas 3 e 4).

Tabela 3. Características intrínsecas da fibra da cultivar DeltaOpal de amostras coletadas após o beneficiamento.

USINAS	UHM ⁽¹⁾ (mm)	UNF ⁽²⁾ (%)	SFI ⁽³⁾	STR ⁽⁴⁾ (g/tex)	ELG ⁽⁵⁾ (%)	MIC ⁽⁶⁾	MAT ⁽⁷⁾	REFL ⁽⁸⁾ (%)	+ b ⁽⁹⁾	CSP ⁽¹⁰⁾
1	27,25 b	80,78 b	8,16 a	30,22ª	7,45 b	3,98 b	87,33 a	76,43 b	9,24 b	2121,25 b
2	27,38 b	80,66 b	8,38 a	28,59 b	7,17 b	3,79 d	86,92 b	74,23 d	8,33 c	2110,80 b
3	28,02ª	82,25 a	5,85 b	26,35 d	8,57 a	3,92 c	86,25 c	73,95 d	11,72 a	2024,25 c
4	27,19 b	80,70 b	8,55 a	29,22 b	7,45 b	3,87 c	87,00 b	75,52 c	8,30 c	2122,56 b
5	27,29 b	80,55 b	8,75 a	27,92 c	7,45 b	4,12 a	87,66 a	77,59 a	9,49 b	2096,44 b
6	27,58 b	80,53 b	8,06 a	27,57 c	7,31 b	3,62 e	86,25 c	77,29 a	8,58 c	2168,29 a
F	2,73*	3,43**	5,39**	18,36**	5,39**	49,82**	13,77**	33,09**	64,37**	19,93**
C.V. (%)	1,68	0,95	12,36	3,12	6,69	2,18	0,55	1,07	4,24	1,27

^{(&}quot;Comprimento (mm); (2)Uniformidade (%); (3)Índice de fibras curtas; (4)Resistência (g/tex); (5)Alongamento à ruptura (%); (6)Índice micronaire; (7)Maturidade; (8)Reflectância (%); (9)Grau de amarelo; (10)Índice de fiabilidade.

Médias seguidas pela mesma letra, na coluna, não diferem entre si, pelo teste de Scott-Knott, a 5%.

^{**, * -} Significativo a 1% e 5% de probabilidade F.

Tabela 4. Características intrínsecas da fibra da cultivar CNPA ITA 90 de amostras coletadas após o beneficiamento.

USINAS	UHM ⁽¹⁾ (mm)	UNF ⁽²⁾ (%)	SF/ ³⁾	STR ⁽⁴⁾ (g/tex)	ELG ⁽⁵⁾ (%)	MIC ⁽⁶⁾	MAT ⁽⁷⁾	REFL ⁽⁸⁾ (%)	+ b ⁽⁹⁾	CSP ⁽¹⁰⁾
3	28,25 a	80,50 a	7,85 a	23,50 c	8,22 a	3,72 c	85,62 c	73,19 e	11,04 a	2010,36 d
6	27,11 b	80,76 a	8,33 a	28,84 a	7,23 b	4,14 a	87,83 a	77,56 b	10,04 b	2084,33 c
8	27,27 b	80,28 a	8,52 a	26,93 b	7,36 b	3,57 e	86,08 c	78,36 a	9,55 c	2148,37 a
9	27,13 b	80,04 a	9,45 a	28,57 a	7,15 b	3,82 b	86,83 b	76,65 c	9,15 d	2115,80 b
10	27,08 b	80,58 a	8,08 a	26,46 b	7,80 a	3,67 d	85,92 c	74,02 d	9,07 d	2073,52 c
F C.V.(%)	9,21** 1,76	1,40 ^{ns} 1,00	2,31 ^{ns} 15,81	49,45** 3,43	5,34** 8,04	115,44** 1,85	40,35** 0,54	98,38** 0,96	40,36** 4,00	27,85** 1,45

Obs.: (1)Comprimento (mm); (2)Uniformidade (%); (3)Índice de fibras curtas; (4)Resistência (g/tex); (5)Alongamento à ruptura (%); (6)Índice micronaire; (7)Maturidade; (8)Reflectância (%); (9)Grau de amarelo; (10)Índice de fiabilidade.

Médias seguidas pela mesma letra, na coluna, não diferem entre si, pelo teste de Scott-Knott, a 5%.

O índice Micronaire para a cultivar DeltaOpal variou significativamente entre as usinas (Tabela 3). Exceto para a usina 5, onde a fibra se enquadrou na categoria média, as demais foram classificadas como fina. Para a cultivar CNPA ITA 90, a fibra obtida na usina 6 foi média, as demais foram finas (Tabela 4).

Em relação à maturidade, a fibra de ambas as cultivares e usinas foi classificada como madura (Tabelas 3 e 4), exceto para a cultivar CNPA ITA 90, beneficiada nas usinas 3 e 10 (Tabela 4), que pode ser interpretada como imatura.

A reflectância (Rd), expressa em porcentagem, variou significativamente entre as usinas para as duas cultivares (Tabelas 3 e 4).

O grau de amarelecimento (+ b) variou significativamente entre as usinas e cultivares, sendo que na usina 3 foram encontrados os maiores valores para a duas cultivares (Tabelas 3 e 4).

O índice de fiabilidade (CSP) das cultivares DeltaOpal e CNPA ITA 90, das amostras oriundas das diferentes usinas, esteve dentro da categoria média (Tabelas 3 e 4). De acordo com Santana & Wanderley (1995), valores entre 2000 a 2250 são considerados médios.

De acordo com os resultados obtidos, o algodão amostrado estava vindo do campo com elevado grau de contaminantes (resíduos de folhas e brácteas).

Para que o algodão colhido contenha a menor quantidade possível de impurezas (folhas, casca do caule e brácteas) é fundamental a adoção de práticas culturais adequadas para se obter plantas com altura inferior a 1,30 m, com o mínimo de

folhas quando da colheita (não se recomenda o uso de dessecantes), espaçamento entre fileiras adequado e controle de pragas.

O processo de beneficiamento utilizado nas usinas amostradas é adequado para proceder-se a uma boa limpeza da fibra, tendo-se em vista os resultados obtidos nas amostras após o beneficiamento.

As características analisadas permitem concluir que o algodão amostrado está dentro dos padrões exigidos pela indústria têxtil. Comparando-se o algodão produzido em Mato Grosso do Sul com o da Austrália (Fig. 1), verifica-se que o algodão de Mato Grosso do Sul é de excelente qualidade.

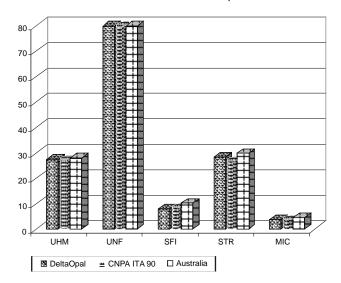


Fig. 1. Comparação entre o algodão produzido em Mato Grosso do Sul, cultivares DeltaOpal e CNPA ITA 90, em relação ao produzido na Austrália (Fundação..., 2004), para as características comprimento mm (UHM), uniformidade de comprimento -% (UNF), índice de fibras curtas - % (SFI), - g/tex (STR) e micronaire - índice (MIC).

^{** -} Significativo a 1% de probabilidade F.

^{ns}- Não significativo a 5% de probabilidade pelo teste F.

Agradecimentos

O autor expressa seus agradecimentos ao Técnico Agrícola Cláudio Ribeiro dos Anjos, da Embrapa Agropecuária Oeste, pelo apoio durante a coleta das amostras, e ao Engenheiro Têxtil Ruben Guilherme da Fonsec, do Laboratório de Tecnologia de Fibras e Fios da Embrapa Algodão, pelo apoio na realização das análises laboratoriais.

Referências Bibliográficas

BELTRÃO, N. E. de M.; SOUZA, J. G. de; AZEVÊDO, D. M. P. de; NÓBREGA, L. B. da; VIEIRA, D. J. Qualidade extrínseca do algodão brasileiro e, em especial do nordestino: situação atual e como melhorá-la. In: BELTRÃO, N.E. de M. (Org.). O agronegócio do algodão no Brasil. Brasília: Embrapa Comunicação para Transferência de Tecnologia; Campina Grande: Embrapa Algodão, 1999. v. 2, p. 935-992.

FUNDAÇÃO BLUMENAUENSE DE ESTUDOS TÊXTEIS. Relatório de 2003. Disponível em: < http://www.fbet.com.br>. Acesso: em 17 maio 2004.

SANTANA, J. C. de F; WANDERLEY, M. J. R. Interpretação de resultados de análises de fibras efetuadas pelo instrumento de alto volume (HVI) e pelo finurímetro maturímetro (FMT2). Campina Grande: EMBRAPA-CNPA, 1995. 9 p. (EMBRAPA-CNPA. Comunicado Técnico, 41).

USTER HVI spectrum: application handbook. [S. I.] Zellweger Uster, 1999. p. 1.2-1.6.

Comunicado Técnico, 86

Ministério da Agricultura. Pecuária e Abastecimento

Federal

Exemplares desta edição podem ser adquiridos na: Embrapa Agropecuária Oeste

Endereço: BR 163, km 253,6 - Caixa Postal 661

79804-970 Dourados, MS Fone: (67) 425-5122 Fax: (67) 425-0811

E-mail: sac@cpao.embrapa.br

1ª impressão (2004):1.000 exemplares

Comitê de Presidente: Renato Roscoe

Publicações Secretário-Executivo: Rômulo Penna Scorza Júnior Membros: Amoacy Carvalho Fabricio, Clarice Zanoni Fontes, Eli de Lourdes Vasconcelos, Fernando de Assis Paiva, Fernando Mendes Lamas e Gessi Ceccon.

Expediente Supervisão editorial: Eliete do Nascimento Ferreira Revisão de texto: Eliete do Nascimento Ferreira Editoração eletrônica: Eliete do Nascimento Ferreira. Normalização bibliográfica: Eli de Lourdes Vasconcelos. Porte Pago Contrato ECT/EMBRAPA n° 029/2000 Empresa Brasileira de Pesquisa Agropecuária Centro de Pesquisa Agropecuária do Oeste Ministério da Agricultura, Pecuária e Abastecimento BR 163, km 253,6 - Trecho Dourados, MS Caixa Postal 661 - 79804-970 Dourados, MS Telefone (67) 425-5122 Fax (67) 425-0811 www.cpao.embrapa.br sac@cpao.embrapa.br

Ministério da Agricultura, Pecuária e Abastecimento Governo Federal

IMPRESSO