ESTUDOS SOBRE A RELAÇÃO DIÂMETRO FREQUÊNCIA DE ONDULAÇÕES DA LÂ DE OVINOS DE DISTINTAS RAÇAS E IDADES, E EM CONDIÇÕES AMBIENTAIS DIVERSAS
ESTUDOS SOBRE A RELAÇÃO DIÂMETRO FREQUÊNCIA DE ONDULAÇÕES DA LÂ DE OVINOS DE DISTINTAS RAÇAS E IDADES, E EM CONDIÇÕES AMBIENTAIS DIVERSAS

Nelson Manzoni de Oliveira
John P. Kennedy

Ministério da Agricultura - MA
Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA
Centro Nacional de Pesquisa de Ovinos – CNPO
Bagé, RS
Exemplares desta publicação podem ser solicitados ao
Centro Nacional de Pesquisa de Ovinos - CNPO
Br 153 Km 141
Caixa Postal 242
Telefone: (0532) 42.4499
96400 - Bagé, RS

Tiragem: 500 exemplares

Comitê de Publicações: Joal José Brazzale Leal
Ana Maria Girardi-Deiro
Ana Mirtes de Sousa Trindade
Carlos Otávio Costa Moraes
Nelson Manzoni de Oliveira
Pedro Alcântara Dias Ávila
Walfredo Macedo

Oliveira, Nelson Manzoni de.

Estudos sobre a relação diâmetro frequência de onda
lações da lã de ovinos de distintas raças e idades, e
em condições ambientais diversas. [por] Nelson Manzoni
de Oliveira e John P. Kennedy. Bagé, EMBRAPA/UEPAE de

28p. (EMBRAPA. UEPAE de Bagé. Boletim de Pesquisa, 8).
1.Ovinos-raça. 2.Ovinos-lã. 3.Ovinos-idade.4.Ovinos
-condições ambientais. I.Kennedy, John P. II.Título.
III.Série.
<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMO</td>
<td>5</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUÇÃO</td>
<td>9</td>
</tr>
<tr>
<td>MATERIAL E MÉTODOS</td>
<td>11</td>
</tr>
<tr>
<td>RESULTADOS E DISCUSSÃO</td>
<td>14</td>
</tr>
<tr>
<td>Idade do Ovino e Ano de Observação</td>
<td>14</td>
</tr>
<tr>
<td>Raça do Ovino</td>
<td>20</td>
</tr>
<tr>
<td>CONCLUSÕES</td>
<td>23</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>26</td>
</tr>
</tbody>
</table>
ESTUDO SOBRE A RELAÇÃO DIÂMETRO FREQUÊNCIA DE ONDULAÇÕES DA LÃ DE OVINOS DE DISTINTAS RAÇAS E IDADES, E EM CONDIÇÕES AMBIENTAIS DIVERSES

Nelson Manzoni de Oliveira
John P. Kennedy

RESUMO

Foram estudados os efeitos da raça (Corriedale e Romney Marsh), idade do ovino (2-7 anos) e ano de amostragem (1978-81), sobre o relacionamento entre diâmetro médio de fibras (método de Airflow) e frequência de ondulações/2,5cm de mecha, em 2878 amostras de lã. Os resultados indicaram que a raça foi o mais importante fator contribuinte na variação da relação diâmetro-ondulação. A um dado número de ondulações na mecha, os dados mostraram que grupos de ovinos de 2 e 3 anos de idade produziram lãs significativamente mais finas que os de mais idade e que as oscilações ambientais entre anos determinaram importantes variações na média ajustada de diâmetro da lã. Os resultados sugerem que, por afetar a correspondência de frequência de ondulações à diâmetro, os fatores examinados neste estudo podem ter uma direta e significante consequência sobre a eficiência de estimar-se subjetivamente o diâmetro da lã através de sua frequência de ondulações.

1 Med.Vet., M.Sc., EMBRAPA/CNPO. Cx.P.242-96400-Bagé, RS.
2 Assoc.Prof., School of Wool and Pastoral Sciences, UNSW, Kensington – NSW – Austrália.
STUDY ON THE DIAMETER-CRIMP FREQUENCY RELATIONSHIP OF WOOL FROM SHEEP OF DIFFERENT BREEDS AND AGE GROUPS, AND IN VARYING ENVIRONMENTAL CONDITIONS

ABSTRACT

In this paper, the effects of breed (Corriedale and Romney), age group (2-7 years old) and sampling year (1978-81) upon the fibre diameter-crump frequency relationship, were examined in 2878 wool samples. Breed was the factor which contributed most to the variation in the overall diameter-crump frequency relationship. At a given crimp number, the results showed that younger sheep (2-3 years old) produced wools significantly finer than the old sheep and that environmental variations among years influenced the adjusted mean fibre diameter. The data suggested that, by affecting the crimp to diameter correspondence, the factors examined here may have a direct and significant consequence on the efficiency of predicting the wool fibre diameter through the staple crIMP frequency.
INTRODUÇÃO

Como qualquer outro produto comercial, a lã deve ser estudada nos seus aspectos tanto quantitativos como qualitativos, visto que estes basicamente determinam a produção industrial (por exemplo, produção de tops) e o destino dado à matéria prima para a obtenção de um produto final mais ou menos valioso. Sob o ponto de vista de qualidade, o diâmetro da lã foi identificado por OLIVEIRA et al. (1980) e TEASDALE (1985) como a mais importante característica determinante do uso do produto final.

De uma maneira geral, o diâmetro médio das lãs tem sido subjetivamente estimado através de uma apreciação visual da frequência de ondulações na mecha, sendo, portanto, usado para predizer subjetivamente a performance de processamento da lã. Embora um bom relacionamento entre diâmetro da fibra e frequência de ondulações seja algumas vezes encontrado, como revisado em COUTINHO (1982), TURPIE (1975) mencionando vários estudos, concluiu que o diâmetro das fibras e a frequência de ondulações são distintamente afetados pelo meio ambiente, raça e idade do ovino e, portanto, esta não pode ser considerada como guia seguro para determinar a finura da lã. AGAR & THOMPSON (1973) também observaram que mudanças na relação diâmetro-ondulações eram mais provavelmente devidas às diferenças raciais e nutricionais. Como se pode verificar, estes fa
tores ocasionam um aumento da variabilidade de diâmetro dentro da mesma classificação por finura subjetiva quando lotes de lã de diferentes origens são combinados.

Adicionalmente a estas observações, alguns estudos feitos por BROWN et al. (1966), MULLANEY et al. (1969), HAWKER (1976), McKINLEY (1977) e ROSE (1982), constataram que efeitos tais como idade do ovino e meio ambiente foram responsáveis por pronunciadas variações em diâmetro de fibra, os quais não eram frequentemente acompanhados por mudanças substanciais da frequência de ondulações na mecha. Estes estudos reportam um consistente aumento em diâmetro da lã com a idade, o qual provavelmente indicaria grande variação de diâmetro médio de lãs com uma pequena diferença na frequência de ondulações.

Em vistas destas considerações, parece que os fatores mencionados anteriormente podem gerar certa discrepância em termos de apreciação do valor da lã, presumidamente afetando negativamente aquele das lãs mais finas.

Não existe nenhum estudo na literatura nacional ou estrangeira objetivando avaliar tais aspectos em lãs produzidas pelas raças Corriedale e Romney Marsh, raças estas importantes no estado do Rio Grande do Sul. Em sua maioria, os trabalhos conduzidos, principalmente na Austrália, destinam-se à raças produtoras de lã fina como a Merino.

Este estudo foi realizado, portanto, com o objetivo de examinar e quantificar, em nosso meio, a influên
cia dos efeitos da idade e raça do ovino e de variações ambientais sobre o relacionamento entre diâmetro médio de fibras e frequência de ondulações da mecha.

MATERIAL E MÉTODOS

As amostras de lã utilizadas neste trabalho foram obtidas de dois experimentos conduzidos na Unidade de Execução de Pesquisa de Âmbito Estadual de Bagé-UEPAE/Bagé-EMBRAPA, localizada em Bagé, estado do Rio Grande do Sul, atual Centro Nacional de Pesquisa de Ovinos - CNPO.

Para o propósito de comparações de grupos de idade e de anos de amostragem, 1960 lãs de ovinos Corriedale foram usadas. A distribuição e número de amostras dentro de idade e ano são apresentados na Tabela 1. Os ovinos amostrados para o estudo dos efeitos da raça são apresentados na Tabela 2. Intencionalmente, a sub-classe idade-ano foi ajustada nas duas raças, visto que amostras de alguns grupos de ovinos Romney Marsh não foram obtidas nos anos 1980 e 1981. Tal ajuste foi para evitar possíveis fontes de erro nas análises, os quais poderiam advir da utilização de diferentes sub-classes de idade-ano, dentro das duas raças.

As amostras de lã para estimativas de diâmetro médio das fibras (DM) e frequência de ondulações na mecha
(FO), foram coletadas individualmente da região do costilhar, uma vez que esta área do ovino foi identificada como representativa do velo para medidas da lã (TURNER et al. 1953; YOUNG & CHAPMAN 1958; SUMNER & REVFEIM 1973).

TABELA 1. Número de ovinos Corriedale amostrados dentro de grupos de idade e ano de observação.

<table>
<thead>
<tr>
<th>Grupo de Idade (anos)</th>
<th>Ano de Observação</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>107</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>252</td>
<td>108</td>
</tr>
<tr>
<td>4</td>
<td>152</td>
<td>155</td>
</tr>
<tr>
<td>5</td>
<td>183</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>130</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>511</td>
<td>323</td>
</tr>
</tbody>
</table>

TABELA 2. Número de ovinos amostrados dentro de raça, grupo de idade e ano de observação.

<table>
<thead>
<tr>
<th>Grupo de Idade (anos)</th>
<th>Corriedale</th>
<th>Romney Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>45</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>104</td>
</tr>
<tr>
<td>4</td>
<td>$</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>183</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>$</td>
<td>125</td>
</tr>
<tr>
<td>TOTAL</td>
<td>705</td>
<td></td>
</tr>
</tbody>
</table>

nd = grupo não disponível

$ = grupo suprimido
Os procedimentos de preparação e acondicionamento das amostras e determinação de DM seguiram método descrito pelo INTERNATIONAL WOOL TEXTILE ORGANIZATION (1975). A mensuração de FO foi realizada de acordo com SHORT & CHAPMAN (1955) e seu valor estimado como a média de três mechas representativas da amostra.

Os efeitos de idade do animal, raça e ano sobre o relacionamento entre DM-FO (variáveis dependente e independente, respectivamente) foram separadamente avaliados por uma análise de covariância combinada. Nesta análise foram, concomitantemente, testadas a homogeneidade dos coeficientes de regressão linear simples de DM sobre FO, dos grupos de idade, raça ou ano e suas médias de DM (Yi) ajustadas a um comum FO (X1...= média da população). Ambos foram testados para significância contra o respectivo Quadrado Médio do Resíduo, ou, variância do erro (STEEL & TORRIE 1981). Semelhante estrutura de análise foi sumarizada por MCKINNON & WHITELEY (1974).

Para alcançar o objetivo inicialmente proposto, dois conjuntos de análises de covariância foram idealizados:

Análise 1. Estudo do Efeito de Idade (EI) e do Ano de Amostragem (EA).
A. entre grupos de idade, dentro de ano (EI)
B. entre anos, combinando grupos de idade (EA)

Análise 2. Estudo do Efeito da Raça do Ovino (ER).
A. entre sub-grupos de idade-ano de amostragem, dentro de raça.
B. entre raças (ER)

A comparação entre raças poderia ser efetuada examinando-se os resultados oriundos da análise planejada no item B, entretanto, uma análise prévia (item A) foi efetuada para verificar se os coeficientes de regressão linear, suas variâncias residuais e a média de DM ajustada para um determinado FO (X1...) dos sub-grupos idade-ano, dentro do efeito principal, poderiam ser considerados como pertencentes a uma população comum.

A homogeneidade da variância residual entre grupos foi testada pelo Teste de Bartlett e suas médias ajustadas foram comparadas pelo Teste de Duncan (STEEL & TORRIE 1981).

RESULTADOS E DISCUSSÃO

Idade do Ovino e Ano de Observação

Um sumário da análise da covariância é apresentado na Tabela 3. A sua primeira parte (A) foi efetuada dentro de ano, enquanto que a segunda (B) foi feita para os diferentes anos, desconsiderando-se grupos de idade. Assumiu-se que a análise, para o efeito de idade sobre a relação entre DM-FO, deveria ser efetuada em cada ano de observação, uma vez que os resultados refletem não somen
As análises efetuadas neste estudo (e.g., 1-A) concentraram-se sobre dois pontos: a) avaliando os coeficientes de regressão de DM sobre FO diferiram entre grupos (e.g. idade), (Legenda a; Tabela 3) e b) comparando suas médias de DM ajustadas a média da população (Legenda b; Tabela 3). Estes, respectivamente, mediram o grau de inclinação e a altura da linha de regressão passando pela média do grupo, entre os grupos. O último, portanto, testou se alguma linha de regressão foi significativamente deslocada em relação às outras.

TABELA 3. Análise da covariância: efeitos da idade do ovinho (EI) e do ano de amostragem (EA) na regressão de diâmetro sobre frequência de ondulações da lã.

<table>
<thead>
<tr>
<th>FONTE DE VARIAÇÃO</th>
<th>EI</th>
<th>EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Médias ajustadas</td>
<td>2 100.15** 2 52.38** 4 33.55** 5 39.03**</td>
<td>3 453.95**</td>
</tr>
<tr>
<td>Resíduo</td>
<td>507 4.31 319 4.60 568 4.61 545 3.54</td>
<td>1955 4.53</td>
</tr>
<tr>
<td>Inclinação b</td>
<td>2 8.01ns 2 1.22ns 4 3.06ns 5 7.86ns</td>
<td>3 9.34ns</td>
</tr>
<tr>
<td>Resíduo</td>
<td>505 4.30 317 4.62 564 4.62 540 3.50</td>
<td>1952 4.53</td>
</tr>
<tr>
<td>(Teste de Bartlett) X^2</td>
<td>0.98ns 5.52ns 2.52ns 3.40ns</td>
<td>11.51**</td>
</tr>
</tbody>
</table>

a- Teste F para as intersecções entre grupos de idade.
b- Teste F para os coeficientes de regressão entre grupos de idade.

ns: (P>0.05)
**: (P<0.01)
Os resultados apresentados na Tabela 3 mostram não ter havido nenhuma diferença em inclinação da linha de regressão ($P>0.05$) entre grupos de idade em ano algum, ao passo que suas alturas (intersecções) foram diferentes em todos os anos ($P<0.01$). Estes resultados indicam que, dentro do intervalo de FO examinado, a média de DM correspondente a um específico FO não foi a mesma nas diferentes idades.

Os coeficientes de regressão derivados da análise 1-A são mostrados na Tabela 4 (colunas) como coeficientes dentro dos grupos, combinado para grupos e total. Este último, referindo-se ao efeito do ano, é discutido posteriormente. Os coeficientes de regressão dentro de grupos de idade e combinado para grupos (média geral) são mostrados graficamente nas Figuras 1.a, 1.b, 1.c e 1.d, representando cada ano de amostragem, respectivamente.

Um exame dos casos, em cada ano, revelou que houve uma tendência consistente de os ovinos com menos idade produzirem lã mais fina a um dado FO. Em geral, estes resultados concordam com os de alguns trabalhos conduzidos sobre outras raças e em outros países por ROBERTS & DUNLOP (1957), CAMPBELL & LANG (1967) e KRUGER (1969).

As médias ajustadas dos tratamentos são apresentadas na Tabela 5 e são expressas como desvios da média geral do grupo.

Em 1978, o diâmetro médio (ajustado para 6,3 ondulações por 2,5cm de mecha) das lãs de ovinos com 2 anos
FIGURA 1. Linhas de regressão do diâmetro médio da lã sobre frequência de ondulação na mecha dentro de diferentes grupos de idade, em diferentes anos de observação.
de idade foi 1,6μ e 2,0μ, respectivamente, menor do que o das lãs de ovinos com 3 e 4 anos (P<0.01). Em 1979, estas diferenças foram de 0,9μ e 1,7μ (P<0.05), a 5,7 ondulações/2,5cm. Nos anos seguintes, ambos os ovinos com 2 e 3 anos de idade produziram lãs significativamente mais finas do que as provenientes de ovinos mais velhos (P<0.05). As diferenças máximas foram de 1,6μ entre grupos de 2 e 5 anos de idade em 1980 (a 5,7 ondulações/2,5 cm) e 2,3μ entre grupos de 2 e 6 anos de idade em 1981 (a 6,0 ondulações/2,5cm).

TABELA 4. Coeficientes de regressão de diâmetro médio da lã sobre frequência de ondulações na mecha em diferentes grupos de idade e anos de amostragem.

<table>
<thead>
<tr>
<th>GRUPO DE IDADE (anos)</th>
<th>COEFICIENTES DE REGRESSÃO (±EP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dentro do Grupo</td>
</tr>
<tr>
<td>2</td>
<td>-0.64</td>
</tr>
<tr>
<td></td>
<td>(±0.179)</td>
</tr>
<tr>
<td>3</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>(±0.098)</td>
</tr>
<tr>
<td>4</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td>(±0.103)</td>
</tr>
<tr>
<td>5</td>
<td>-0.89</td>
</tr>
<tr>
<td></td>
<td>(±0.135)</td>
</tr>
<tr>
<td>6</td>
<td>-1.01</td>
</tr>
<tr>
<td></td>
<td>(±0.135)</td>
</tr>
<tr>
<td>Combinado (média)</td>
<td>-0.79</td>
</tr>
<tr>
<td></td>
<td>(±0.067)</td>
</tr>
<tr>
<td>Total</td>
<td>-0.78</td>
</tr>
<tr>
<td></td>
<td>(±0.069)</td>
</tr>
</tbody>
</table>

Unidades dos coeficientes de regressão são micra por ondulação por 2.5cm.
<table>
<thead>
<tr>
<th>Ano de Amostragem (anos)</th>
<th>Grupo de Idade</th>
<th>Média dentro do grupo</th>
<th>Média do grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$Y_{i.}$</td>
<td>$X_{i.}$</td>
</tr>
<tr>
<td>1978</td>
<td>2</td>
<td>-1.3b</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+0.3a</td>
<td>+0.05</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+0.7a</td>
<td>-0.05</td>
</tr>
<tr>
<td>1979</td>
<td>2</td>
<td>-1.1c</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.2b</td>
<td>+0.02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+0.6a</td>
<td>+0.02</td>
</tr>
<tr>
<td>1980</td>
<td>2</td>
<td>-1.0c</td>
<td>+1.11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.4bc</td>
<td>+0.21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.4bc</td>
<td>+0.11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+0.6a</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>+0.3ab</td>
<td>-0.69</td>
</tr>
<tr>
<td>1981</td>
<td>2</td>
<td>-1.7d</td>
<td>+0.78</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.7c</td>
<td>+0.48</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+0.3ab</td>
<td>+0.38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.1b</td>
<td>+0.18</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>+0.6a</td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>+0.2ab</td>
<td>-0.72</td>
</tr>
</tbody>
</table>

§ - Ajustada para $X_{i..}$.
Entre grupos de idade, dentro de ano, médias seguidas por letras desiguais são significativamente diferentes ($P < 0.05$).

Estes resultados demonstram que a eficiência em estimar DM da lã através de FO pode ser influenciada pela composição de idade de um rebanho. Em outras palavras, os resultados sugerem que classificação de lã por número de ondulações na mecha, com a finalidade de separar linhas de velos com diferentes diâmetros médios das fibras,
ria, entre outros, com a idade do animal.

Os coeficientes de regressão da análise 1-B são apresentados na Tabela 4 e os valores ilustrados na Figura 2. Esta figura também evidencia uma típica relação de inclinações similares das linhas de regressão, porém com significativos deslocamentos das médias de DM ajustadas a um determinado FO, nos diferentes anos. A máxima diferença de DM entre anos (a uma média de FO de 5,9 ondulações/2,5cm) foi de 2,5µ em 1979 e 1981. Esta diferença aumentou para 2,9µ quando os grupos de idade estiveram igualmente representados em ambos os anos (linhas interrompidas), com uma pequena alteração na inclinação da linha de regressão.

Raça do Ovino

Os resultados da análise da covariância 2 (A e B) são sumarizados na Tabela 6. Uma vez que os dados analisados neste estudo foram obtidos de diferentes grupos de idades e anos de observação (Tabela 2), a análise 2-A examinou se os coeficientes de regressão e suas variâncias residuais para os diversos sub-grupos de idade-ano, dentro de raça, poderiam ser considerados como sendo derivados de uma população homogênea. Os resultados desta análise dentro de raça revelaram que os coeficientes de regressão e suas variâncias residuais foram semelhantes (P>0.05) e, portanto, indicam que ambas as raças podem ser comparadas a uma baixa ocorrência de erro de inter...

FIGURA 2. Linhas de regressão total* de diâmetro médio da lã sobre frequência de ondulações na mecha para os diferentes anos de amostragem.
pretação. Devido ao fato de que amostragem entre raças foi efetuada de ovinos com semelhantes idades e sob semelhantes condições ambientais, presume-se que os resultados devem fornecer informações consistentemente em termos da inclinação e altura das linhas de regressão.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>QUADRADO MÉDIO</th>
<th>Entre sub-grupos de idade x anos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GL</td>
<td>Corriedale</td>
</tr>
<tr>
<td>Médias ajustadas</td>
<td>6</td>
<td>112.82**</td>
</tr>
<tr>
<td>Resíduo</td>
<td>697</td>
<td>4.14</td>
</tr>
<tr>
<td>Inclinações</td>
<td>6</td>
<td>2.82ns</td>
</tr>
<tr>
<td>Resíduo</td>
<td>691</td>
<td>4.15</td>
</tr>
<tr>
<td>Teste de Bartlett</td>
<td>X² =</td>
<td>12.22ns</td>
</tr>
</tbody>
</table>

a - Teste F para interseções
b - Teste F para coeficientes de regressão
ns- (P > 0.05)
**- (P < 0.01)

Os coeficientes de regressão de DM sobre FO para as raças Corriedale e Romney Marsh foram, respectivamente, -1.07 e -1.69 (Tabela 6) sendo significativamente diferentes entre si ao nível de 1%. Isto significa...
que variações em uma unidade de FO na raça Corriedale e Romney Marsh, são acompanhadas por distintas oscilações de DM. Portanto, as duas relações devem ser consideradas separadamente, não podendo ser expressas por um coeficiente comum de regressão.

A Figura 3 ilustra as variações de DM dentro do limite real de FO encontrado em ambas as raças, mostrando que a média de DM das lãs Corriedale foi aproximadamente 2,8 mais fina do que a das lãs Romney Marsh, a um mesmo FO. Cabe, portanto ressaltar que, uma vez que as linhas não foram paralelas, as diferenças estimadas entre raças somente são válidas para o limite de FO examinado. ROBERTS & DUNLOP (1957) também encontraram semelhante tendência quando estudaram linhagens da raça Merino sob um determinado meio ambiente. Os autores reportaram uma diferença desprezível na média de diâmetro de fibra quando o número de ondulações por 2,5 cm diferiu por 4,2 unidades. Posteriormente, MCKINNON (1971) também estudando Merinos, concluiu que as linhagens desta raça foram o fator mais relevante na variação do relacionamento entre diâmetro-finura, visual-frequência de ondulações.

CONCLUSÕES

Este estudo indicou que a idade do ovino e as variações estacionais entre anos não tiveram nenhuma in
FIGURA 3. Linhas de regressão total de diâmetro médio da lã sobre frequência de ondulações na mecha nas raças Corriedale e Romney Marsh.
fluência significativa sobre o coeficiente de regressão (inclinação da linha de regressão) de diâmetro médio da lã sobre a frequência de ondulações da mecha. Entretanto, estes efeitos variaram substancialmente as médias de diâmetro ajustadas à uma frequência comum de ondulações. Portanto, ambos, efeitos de idade e ano, influenciam a eficiência de determinação de diâmetro da lã através do uso da frequência de ondulações da mecha.

O presente estudo demonstrou, adicionalmente, a ver um efeito do genótipo sobre o coeficiente de regressão (diâmetro sobre ondulações) e a intersecção desta regressão (altura da linha). Assim, o relacionamento geral das variáveis diâmetro-ondulações para as raças Corriedale e Romney Marsh tendeu a ser de uma diferente ordem de magnitude.

Finalmente, parece que a magnitude das diferenças em diâmetro da lã dentro dos parâmetros estudados poderia não ser importante naquelas lãs com pouca ondulação, visto que, presumidamente, suas variações não são de grande significância sob o ponto de vista de processamento. Por outro lado, acredita-se que nas lãs que apresentam mais ondulações na mecha, o diâmetro de fibra poderia ser estimado com mais precisão se os efeitos examinados neste estudo fossem considerados. Atribuindo-se as diferenças de avaliação subjetiva de diâmetro entre anos às variações de níveis nutricionais a que os rebanhos se submetem, acredita-se serem estas variações um fator li
mitante, uma vez que tal informação é geralmente de difícil estimativa.

REFERÊNCIAS BIBLIOGRÁFICAS

