

Cultivo da Cebola no Nordeste

Sumário

Socioeconomia **Botânica** Composição química Clima Solos e plantio **Cultivares** Nutrição e adubação Irrigação **Plantas daninhas Pragas Doenças** Colheita e pós-colheita **Custos** Referências Glossário **Expediente Autores**

Foto: Embrapa Semi-Árido

Fig.1. Alfa São Francisco no campo.

Foto: Embrapa Semi-Árido

Fig. 2. Alfa São Francisco pronta para o consumo.

Editores

Nivaldo Duarte Costa Geraldo Milanez de Resende

Copyright © 2007, Embrapa

Nutrição e adubação

Nitrogênio (N)

O nitrogênio é constituinte da estrutura de aminoácidos, proteínas, vitaminas, clorofila, enzimas e coenzimas. É ativador enzimático e atua nos processos de absorção iônica, fotossíntese, respiração, sínteses, crescimento vegetativo e herança. A necessidade de N para um ótimo crescimento da cebola é de cerca de 40 g kg⁻¹ da matéria seca da parte vegetativa da planta.

Fósforo (P)

O fósforo participa da estrutura dos ésteres de carboidratos, fosfolipídeos, coenzimas e ácidos nucléicos. Atua nos processos de armazenamento e transferência de energia e fixação simbiótica de nitrogênio. A necessidade de P para um ótimo crescimento da cebola é de cerca de 3 g kg⁻¹ da matéria seca da parte vegetativa da planta.

Potássio (K)

O potássio atua em processos osmóticos, na síntese de proteínas e na manutenção de sua estabilidade, na abertura e fechamento de estômatos, na permeabilidade da membrana e no controle de pH. A necessidade de K para um ótimo crescimento da cebola é de cerca de 40 g kg⁻¹ da matéria seca da parte vegetativa da planta.

Cálcio (Ca)

O cálcio é componente da parede celular, sendo indispensável para manutenção da estrutura das membranas celulares, em particular da plasmalema. É indispensável para a germinação do grão de pólen e para o crescimento do tubo polínico, o que se deve ao fato de estar presente na síntese da parede celular ou no funcionamento da plasmalema. A necessidade de Ca para um ótimo crescimento da cebola é de cerca de 4,0 g kg⁻¹ da matéria seca da parte vegetativa da planta.

Magnésio (Mg)

O magnésio é componente da clorofila, sendo que cerca de 10% do Mg total da folha está na sua estrutura. É ativador de diversas enzimas, participando dos processos de fotossíntese, respiração, síntese de compostos orgânicos, absorção iônica e trabalho mecânico, como aprofundamento e expansão da raiz. A absorção de P (na forma de $\rm H_2PO_4$ -) é máxima na presença de Mg $^{2+}$, tendo o papel de "carregador de fósforo", provavelmente, pela sua participação na ativação de ATPases. A necessidade de Mg para um ótimo crescimento da cebola é de cerca de 4,0 g kg $^{-1}$ da matéria seca da parte vegetativa da planta.

Enxofre (S)

O enxofre é componente importante dos aminoácidos, como a metionina e a cisteína, essencial para a nutrição humana. O suprimento de S pode ser considerado favorável ou desfavorável às plantas, do ponto de vista qualitativo. Em alguns alimentos, ocasiona um sabor mais acentuado e, em outros, diminui sua palatabilidade. A necessidade de S para um ótimo crescimento da cebola é de cerca de 7,0 g kg⁻¹ da matéria seca da parte vegetativa da planta.

Boro (B)

É ativador enzimático e atua nos processos de absorção iônica, transporte de carboidratos, síntese de lignina, celulose, ácidos nucléicos e proteínas. Tem importante função na translocação de açúcares e no metabolismo de carboidratos, no florescimento, no crescimento do tubo polínico, nos processos de frutificação, no metabolismo do N e na atividade de hormônios. Intervém na absorção e no metabolismo dos cátions, principalmente do Ca. As concentrações de boro consideradas adequadas para um crescimento normal das plantas variam entre 12 e 50 mg kg⁻¹.

Zinco (Zn)

É constituinte de diversas enzimas que atuam nos processos de respiração, controle hormonal e síntese de proteínas. Afeta a síntese e conservação de auxinas, hormônios vegetais envolvidos no crescimento. As concentrações de Zn nas plantas variam de 3 a 150 mg kg⁻¹ de matéria seca da planta.

Cobre (Cu)

Faz parte da estrutura de proteínas, sendo constituinte de diversas enzimas que atuam nos processos de fotossíntese, respiração, regulação hormonal, fixação de N e metabolismo de compostos secundários. É essencial no balanço de nutrientes que regulam a transpiração na planta.

Principais sintomas de deficiência

Nitrogênio (N)

Há diminuição do ritmo de crescimento, as folhas mais velhas amarelecem, secam e caem. As poucas folhas novas mostram-se finas e delicadas e os bulbos apresentam-se com tamanho reduzido.

Fósforo (P)

As folhas mais velhas mostram-se amarelecidas e secam facilmente, as intermediárias e as mais novas apresentam coloração verde-escura. Os bulbos apresentam-se com tamanho reduzido.

Potássio (K)

Há murchamento das folhas, as mais velhas apresentam coloração amarelada, progredindo para o secamento nas pontas, reduzindo o desenvolvimento dos bulbos.

Cálcio (Ca)

As folhas novas, de aspecto aparentemente normal, tombam repentinamente sem se fraturarem e após alguns dias secam, a partir do ápice, no sentido da base. Com o progredir da carência, o fenômeno se repete nas folhas intermediárias e nas mais velhas.

Magnésio (Mg)

As folhas mais velhas tornam-se uniformemente amareladas ao longo do seu comprimento, sem evoluir para a morte. Há o secamento do ápice das folhas e os bulbos produzidos são pequenos.

Enxofre (S)

As folhas apresentam-se finas e deformadas, com amarelecimento das folhas novas, ocorrendo reduzido crescimento radicular. Apesar das poucas folhas, há, relativamente, uma boa formação de bulbos.

Boro (B)

Inicialmente, as folhas mais novas adquirem uma tonalidade verde-azulada. As folhas mais novas tornam-se mosqueadas e enrugadas. Surge fendilhamento nas folhas mais velhas, que ficam quebradiças. Há a paralisação do crescimento e morte das folhas, a partir do ápice.

Deficiência de B ocasiona a má formação das cascas externas da cebola, necrose nas escamas do centro e região meristemática, menor consistência e menor poder de conservação póscolheita. Bulbos tratados com B, em pré-colheita, apresentam incremento na coloração, aumento da resistência da casca e menor perda de peso durante o armazenamento.

Zinco (Zn)

Há o aparecimento de clorose e folhas retorcidas.

Cobre (Cu)

As folhas adquirem coloração amarelo-parda, necrosam nas margens, ficam retorcidas ou dobram-se em ângulos direitos ao descanso da planta. O bulbo torna-se amarelo e fino, faltando solidez e firmeza.

Na cebola, a aplicação de Cu intensifica a coloração da casca e os bulbos demonstraram aumento da resistência da casca e menor perda de peso durante o armazenamento.

Manganês (Mn)

Há o aparecimento de clorose nas folhas exteriores, seguido de necrose. O crescimento é severamente reduzido.

Solos para o cultivo de cebola

Para uma adubação correta, é indispensável que se tenha um conhecimento do solo que vai ser cultivado. A cebola desenvolve-se melhor em solos de textura média, ricos em matéria orgânica e de boa drenagem, que favoreçam um bom desenvolvimento das raízes e dos bulbos. Solos muito argilosos dificultam a formação de bulbos, podendo deformá-los. Solos arenosos apresentam o inconveniente de ter baixa retenção de umidade e de nutrientes. Solos de má drenagem, facilmente encharcáveis, devem ser evitados por dificultar o desenvolvimento fisiológico das plantas e favorecer a ocorrência de doenças.

A salinidade afeta o desenvolvimento das plantas, provocando decréscimos na produtividade de 25%, quando a condutividade elétrica for igual a 2,8 dS/m, e de 50%, quando igual a 4,3 dS/m.

Amostragem de solo

De maneira geral, as plantas obtêm do solo os nutrientes de que precisam. Desta forma, a avaliação da disponibilidade de nutrientes no solo é feita, em geral, com base na análise de fertilidade. As áreas a serem amostradas possuem, muitas vezes, grandes extensões e, somando-se a isso, a heterogeneidade horizontal e vertical, naturais do solo, faz com que critérios científicos necessitem ser seguidos com o maior rigor possível. Desta forma, apesar

de parecer simples, a coleta de amostras de solo exige conhecimento e deve ser realizada por técnico devidamente orientado.

Para se avaliar a fertilidade do solo, deve-se, inicialmente, fazer a análise de solo em laboratório, onde é determinado o valor do pH, os teores dos principais nutrientes exigidos pelas plantas e os dos elementos que são tóxicos (alumínio e sódio), informações importantes para que se possa fazer uma adubação adequada, verificar a necessidade de calagem e detectar problemas de salinidade. No entanto, para que a análise do solo represente fielmente as condições reais do solo no campo, é necessário que se faça uma amostragem muito bem feita da área, procedendo-se da seguinte forma:

- inicialmente, procede-se à divisão da área da propriedade em sub-áreas homogêneas, de, no máximo, 10 ha, levando-se em conta a topografia (baixada, plana, encosta ou topo), a vegetação ou cultura, o tipo de solo quanto à cor (amarelo, vermelho, cinza ou preto), textura (argilosa, média ou arenosa), drenagem, ao grau de erosão e, finalmente, ao uso (virgem ou cultivado, adubado ou não);
- para cada sub-área homogênea, coletar em forma de ziguezague, no mínimo, vinte amostras simples a uma profundidade de 0-20 cm, colocando a terra numa vasilha (balde plástico) limpa. Misturar toda a terra coletada e, da mistura, retirar uma amostra composta com aproximadamente 0,5 kg de solo e colocá-la num saco plástico limpo ou numa caixinha de papelão. Identificar essa amostra e enviá-la para um laboratório;
- recomenda-se fazer a amostragem do solo três meses antes do plantio e repeti-la uma vez a cada três anos, no mínimo;
- não coletar amostras em locais de formigueiro, monturo, coivara ou próximos a curral, estrada e veredas. Antes da coleta, limpar a superfície do terreno, caso haja mato ou resto vegetal. A amostragem é facilitada quando o solo está um pouco úmido.

As amostras podem ser coletadas com trado, com cano galvanizado de ¾ ou de 1,0 polegada.

Análise foliar

Do mesmo modo que a amostragem do solo para fins de avaliação da fertilidade, a amostragem do tecido vegetal é uma das etapas mais importantes para aumentar a probabilidade de sucesso no uso da análise foliar. No entanto, em culturas temporárias, como a cebola, a análise foliar é indicada apenas para identificar algum distúrbio nutricional.

A folha a ser coletada é a mais alta, coletando-se uma folha por planta, num total de 40 folhas por gleba homogênea. O período de coleta indicado é no meio do ciclo da cultura, ou seja, 40-50 dias após o transplantio.

Após a coleta, deve-se acondicionar as amostras em sacos de papel, identificando-as e enviando-as, imediatamente, para um laboratório.

Calagem

A cebola é uma cultura sensível à acidez do solo, desenvolvendo-se melhor em solos com pH de 6,0 a 6,5. Em solos ácidos, a utilização da calagem é essencial para promover a neutralização do alumínio trocável, que é um elemento tóxico às plantas, e aumentar a disponibilidade de fósforo, cálcio, magnésio e molibdênio. Mesmo em solos que não apresentem problemas de acidez, mas que contenham teores baixos de cálcio e magnésio, é necessária a aplicação de calcário para correção dos níveis destes nutrientes para que se

obtenha uma maior produtividade e melhor qualidade de bulbos.

O calcário deve ser aplicado a lanço e incorporado ao solo por meio de gradagem, com antecedência mínima de 30 dias do plantio. Deve-se lembrar que a reação do calcário no solo, neutralizando sua acidez, só se processa na presença de umidade, e será mais lenta quanto mais grosseira for a granulometria de suas partículas. Na escolha do calcário, deve-se dar preferência ao calcário dolomítico, porque, além do cálcio, possui, também, teores elevados de magnésio.

É importante, ainda, que o calcário tenha um PRNT (Poder Relativo de Neutralização Total) elevado, igual ou acima de 80%. A quantidade de calcário, assim como a de fertilizante a ser aplicada, deve basear-se nos resultados da análise química do solo. Com base no resultado da análise de solo, o cálculo da quantidade de calcário a ser aplicada poderá ser feito para a elevação da porcentagem de saturação por bases para 70 ou 80%, conforme a equação a seguir:

$$NC = \frac{(V_2 - V_1) * CTC}{100}$$

sendo:

NC= necessidade de calagem;

V2= valor da saturação por bases desejada;

V1= valor da saturação por bases inicial do solo;

CTC= capacidade de troca de cátions.

A necessidade de calcário também poderá ser calculada pelo método do

$$Ca^{2+}+Mg^{2+}$$
 e do AI^{3+}

 $NC = [2 \times AI] + [3 - (Ca + Mg)], sendo:$

NC= necessidade de calagem;

Al= teor de alumínio trocável do solo;

Ca= teor de cálcio trocável do solo;

Mg= teor de magnésio trocável do solo;

A escolha do método deverá ser baseada em critérios técnicos, como textura e capacidade tampão do solo.

A aplicação de calcário ao solo sem considerar os resultados da análise de solo, muito comum entre os agricultores, não é recomendada. Isto porque o pH poderá atingir valores acima de 7,0, o que poderá ocasionar perda de N por volatilização, desequilíbrio entre os nutrientes Ca, Mg e K, reduzindo a absorção do último, e menor disponibilidade de Cu , Fe, Mn e Zn.

Adubação

Assim como a calagem, a adubação da cebola deverá ser baseada nos resultados de análise de solo e no potencial de resposta ao fertilizante.

A cebola, como as demais hortaliças, responde muito bem à adubação orgânica, principalmente em solos arenosos. São recomendados 30 m³ por ha de esterco de curral ou quantidade equivalente de outro produto orgânico.

Com relação à adubação química, recomenda-se a aplicação de 45 kg/ha de N (nitrogênio) e as doses de P_2O_5 (fósforo) e K_2O (potássio) apresentadas na Tabela 1. Independentemente do sistema de plantio, os fertilizantes poderão ser aplicados a lanço e, preferencialmente, incorporados ao solo por ocasião da gradagem.

Tabela 1. Adubação com P_2O_5 (fósforo) e K_2O (potássio) baseada na análise de solo.

Fósforo		Potássio	
P no Solo (mg.dm ⁻³)	Dose de P ₂ O ₅ (kg/ha)	K no solo (cmol _c .dm ⁻³)	Dose de K ₂ O (kg/ha)
< 6	180	< 0,08	180
6 - 10	135	0,08 - 0,15	135
11 - 20	90	0,16 - 0,25	90
> 20	45	> 0,25	45

Fonte: Cavalcanti (1998).

Os adubos minerais mais utilizados são as fórmulas comerciais, como 06-24-12 e 10-10-10, o sulfato de amônio (20% de N), a uréia (45% de N), o superfosfato simples (18% de P_2O_5), o superfosfato triplo (42% de P_2O_5), o cloreto de potássio (60% de K_2O) e o sulfato de potássio (50% de K_2O).

Em cobertura, recomendam-se 90 kg/ha de N 30 dias após o transplante. Caso o solo seja arenoso, a dose de N em cobertura deve ser parcelada em duas aplicações, uma aos 25 e outra aos 45 dias após o transplante. Nesse caso, a dose de potássio recomendada pela análise de solo (Tabela 1), deve ser dividida em duas aplicações, metade em fundação e metade aos 45 dias após o transplante, juntamente com a última aplicação de nitrogênio.

Em solos alcalinos (pH acima de 7,0), deve-se usar o sulfato de amônio em vez da uréia, porque nesses solos, as possibilidades de perdas de N por volatilização da uréia são maiores do que as do sulfato de amônio.

Como o nitrogênio pode se perder para a atmosfera na forma de amônia (NH₃), processo conhecido como volatilização, recomenda-se que os fertilizantes sejam aplicados em pequenos sulcos e cobertos com terra, e que se faça a irrigação logo após a sua aplicação, para facilitar a movimentação de N no perfil do solo e evitar a volatilização. Irrigações pesadas também devem ser evitadas para diminuir as perdas de N por lixiviação.

Recomenda-se usar as combinações sulfato de amônio e superfosfato triplo, ou uréia e superfosfato simples, para garantir o suprimento de enxofre às plantas.

Além dos nutrientes absorvidos em grandes quantidades, conhecidos como macronutrientes (nitrogênio, fósforo, potássio, cálcio, magnésio e enxofre), há os micronutrientes, como boro, cobre, ferro, manganês, molibdênio e zinco, que são absorvidos em pequenas quantidades. Estes micronutrientes são importantes nos processos de crescimento, síntese e translocação de açúcares na planta, possibilitando maior produtividade e melhor qualidade de bulbos. Os fertilizantes orgânicos, geralmente, contêm esses micronutrientes em quantidades suficientes, que podem corrigir alguma deficiência existente no solo.

A recomendação de adubação deve ser baseada em critérios técnicos, visando a produtividade da cultura, mas os aspectos relacionados à qualidade comercial e à conservação pós-colheita também devem ser considerados.