ISSN 1415-5095

Instruções Técnicas da Embrapa Semi-Árido

16

Petrolina-PE, janeiro de 1999

APLICAÇÃO DE CO₂ VIA ÁGUA DE IRRIGAÇÃO EM MELOEIRO

José Maria Pinto Tarlei Arriel Botrel Eduardo Caruso Machado José Crispiniano Feitosa Filho

José Maria Pinto - Engº Agrícola, Pesquisador da Embrapa Semi-Árido Tarlei Arriel Botrel - Prof. Depto. de Engenharia Rural, ESALQ/USP, Piracicaba-SP. Eduardo Caruso Machado - Pesquisador IAC, Campinas-SP, Bolsista CNPq José Crispiniano Feitosa Filho - Prof. UFPB, Areia-PB.

INTRODUÇÃO

O ciclo de carbono na biosfera tem sido alterado pela atividade do homem nos últimos 150 anos. A queima de combustíveis fósseis fez com que a concentração do CO₂ na atmosfera, que era de 250 μmolCO₂.mol⁻¹ antes da revolução industrial, atingisse a 315 μmolCO₂.mol⁻¹ em 1958, chegando a cerca de 350 μmolCO₂.mol⁻¹ em 1989, estando, hoje, próximo de 365 μmolCO₂.mol⁻¹ em 1989, estando, hoje, próximo de 365 μmolCO₂.mol⁻¹, com tendência a aumentar ainda mais.

Atualmente, o CO_2 emitido através da atividade humana é da ordem de 8,5 bilhões de toneladas anuais, sendo que apenas metade desse total permanece na atmosfera. A outra metade, acredita-se que seja incorporada pelo solo, florestas e oceanos, cujos mecanismos não são completamente esclarecidos.

A aplicação de CO₂ melhora o metabolismo e o equilíbrio hormonal nas plantas e aumenta a fotossíntese e absorção de nutrientes, resultando em plantas mais produtivas, mais resistentes a doenças e ao ataque de pragas e produtos de melhor qualidade.

A aplicação de gás carbônico já é feita por agricultores europeus há mais de cem anos. Inicialmente, eles costumavam queimar querosene e propano nas estufas para aumentar a concentração de dióxido de carbono, mas as impurezas produzidas no processo contaminavam as plantas. Atualmente, o dióxido de carbono é ainda obtido

por combustão, mas é purificado e engarrafado por indústrias. Além disso, foram desenvolvidos equipamentos e técnicas adequadas para sua aplicação em diversas condições climáticas e de plantio. Na Europa, o gás carbônico é aplicado dentro de estufas. Nos países tropicais, onde esse tipo de cultivo é menos utilizado, o gás carbônico é dissolvido na água e levado às plantas por irrigação.

Todavia, no Brasil, a aplicação de dióxido de carbono via água de irrigação é de uso recente. Existem, ainda, muitos aspectos a esclarecer em termos de efeitos sobre as plantas, influência na produtividade e na melhoria da qualidade de frutos, doses a serem usadas e períodos de aplicação mais adequados para os diferentes tipos de cultivos, para alcançar uma relação custo benefício máxima.

Os objetivos deste trabalho foram avaliar a produtividade e as características químicas (pH, acidez total e teor de sólidos solúveis) dos frutos de melão com aplicação de dióxido de carbono via água de irrigação.

METODOLOGIA

As mudas foram preparadas em bandejas de isopor preenchidas com substrato comercial. Colocou-se duas sementes por célula. Três dias após a germinação foi feito o desbaste, deixando-se uma planta por célula. Durante a formação das mudas, as irrigações foram realizadas

quatro vezes ao dia, por um período de dez minutos, através de nebulizadores, visando satisfazer às necessidades hídricas da cultura e a refrigeração do viveiro.

Para o transplantio, o solo do local do experimento foi arado e gradeado. Incorporou-se ao solo 2,4 t/ha de calcário, 45 dias antes do transplantio, através de gradagem. A adubação com fósforo (150 kg/ha) na forma de superfosfato simples e aplicação de esterco de curral curtido (5 t/ha) foram realizadas em sulcos, uma semana antes do transplantio.

As adubações de nitrogênio e potássio foram feitas via água de irrigação três vezes por semana, utilizando um tanque de fertilizantes. A dose de nitrogênio foi de 90 kg/ha e a de potássio foi 180 kg/ha; como fonte de N e K utilizou-se o de nitrato de potássio. Após o transplantio foi iniciada a fertirrigação, que estendeu-se por 60 dias. Adotou-se o método de irrigação localizada, utilizando-se tubo gotejador Rain-Tape TPC.

O sistema de aplicação de CO₂ foi composto de container (cilindro de dióxido de carbono de alta pressão) para armazenar dióxido de carbono, equipado com uma válvula de solda para especificar a dose de dióxido de carbono a ser liberada do cilindro e um manômetro e um injetor para introduzir o CO₂ na água de irrigação.

A aplicação de dióxido de carbono foi iniciada no dia seguinte ao transplantio, estendendo-se até a primeira colheita. O tempo de cada aplicação foi de 30 minutos e a dose aplicada foi de 50 kg/ha do transplantio à colheita.

A aplicação de CO₂ foi realizada diariamente, três vezes por semana,

havendo uma testemunha (sem aplicação de CO_2) em três maneiras de condução da cultura (1: quebra vento; 2: solo coberto com plástico (mulch) e 3: solo nu — solo sem nenhuma proteção), com os seguintes tratamentos:

- T1 quebra vento com aplicação diária de CO;;
- T2 quebra vento com aplicação de CO₂ três vezes por semana;
- T3 quebra vento sem aplicação de CO₂;
- T4 solo coberto com plástico com aplicação diária de CO₂;
- T5 solo coberto com plástico com aplicação de CO₂ três vezes por semana;
- T6 solo coberto com plástico sem aplicação de CO_s;
- T7 solo nu com aplicação diária de CO,
- T8 solo nu com aplicação de CO₂ três vezes por semana;
- T9 solo nu sem aplicação de CO₂.

Avaliou-se a produtividade, as características químicas dos frutos (teor de sólidos solúveis, acidez total e pH) na colheita e durante o armazenamento, por um período de 30 dias.

RESULTADOS

A aplicação de CO₂ via água de irrigação não modificou o ciclo da cultura. As maiores produções de melão foram obtidas nos tratamentos com aplicação de dióxido de carbono via água de irrigação. A aplicação de CO₂ através da irrigação não alterou a qualidade o fruto de melão (Tabela 1).

Tabela 1. Produtividade total (Pt), produtividade comercial (Pc), produtividade não comercial (Pnc), peso médio de frutos comerciais (Pemf), número total de frutos (Ntf) e número de frutos comerciais (Nfc) em meloeiro cultivado em condições de campo. Piracicaba-SP. 1996.

Trat.	Pt* (t/ha*)	PC* (t/ha*)	Pnc*(t/ha*)	Pemt*(kg)	Ntf.ha-1*	Nfc.ha-1*
T,	38,59A	34,77A	3,82AB	1,11A	37000A	34765A
T ₂	37,08AB	32,69AB	4,39AB	1,04AB	33500AB	32685AB
			21		С	
T_3	31,39CD	28,42BCD	2,97AB	0,89C	35500AB	28417AB
						С
$T_{_{4}}$	34,03BC	31,78AB	2,24B	1,00ABC	32500AB	31777AB
					С	
T_{5}	32,67CD	29,56ABC	3,11AB	1,02AB	33250AB	29560AB
			×-		C	С
T_{6}	29,67DE	23,36DE	6,31A	0,97B	30500BC	23558DC
T_7	32,17CD	28,35CD	3,82AB	1,01ABC	31750BC	28352AB
			- A			C
$T_{_{B}}$	29,69DE	25,92CDE	3,77AB	0,93BC	32250AB	25917BC
	2				C	D
T_g	25,64E	20,40E	5,24AB	0,88C	29000C	20400D
ČV(%)	5,52	8,53	39,72	5,35	6,93	7,09

^{*}Para cada coluna, as médias seguidas pela mesma letra não diferiram entre si, a 5% de probabilidade, pelo teste de Tukey

Instruções Técnicas da Embrapa Semi-Árido são publicações com o objetivo de divulgar as tecnologias apropriadas para as áreas irrigadas e de sequeiro de interesse econômico para a região semi-árida brasileira.

Planejamento e editoração: Francisco Lopes Filho: Enga Agra, M.Sc., Pesquisador em Fitotecnia – Área de Comunicação e Difusão de Tecnologia - Diagramação: Nivaldo torres dos santos - Digitação: Auxiliadora Viana - Fotos: Cícero Barbosa.

