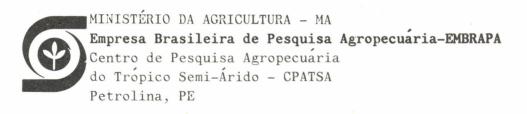
Boletim de Pesquisa

Número 32

REGISTRADO

PRODUTOS QUÍMICOS E PRÁTICAS CULTURAIS NA QUEBRA DE DORMÊNCIA DA VIDEIRA


MINISTÉRIO DA AGRICULTURA — MA
Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA
Centro de Pesquisa Agropecuária
do Trópico Semi-Árido - CPATSA
Petrolina, PE

BOLETIM DE PESQUISA Nº 32

novembro, 1986

PRODUTOS QUÍMICOS E PRÁTICAS CULTURAIS NA QUEBRA DE DORMÊNCIA DA VIDEIRA

João Antônio Silva de Albuquerque Selma Maria do Nascimento Sobral

Exemplares desta publicação podem ser solicitados à EMBRAPA-CPATSA

BR 428, km 152

Telefone: (081) 961-4411

Telex: (081) 1878 Caixa Postal 23 56300 Petrolina, PE

Tiragem: 3.000 exemplares

Assessoria técnico-científica deste trabalho:

José Moacir Pinheiro Lima Filho Teresinha Costa Silveira de Albuquerque

Albuquerque, João Antônio Silva de

Produtos químicos e práticas culturais na quebra de dormência da videira, por João Antônio Silva de Albuquerque e Selma Maria do Nascimento Sobral. Petrolina, PE. EMBRAPA-CPATSA. 1986.

30p. (EMBRAPA-CPATSA. Boletim de Pesquisa, 32).

1. Videira-Dormência-Quebra-Produto químico. I. Sobral, Selma Maria do Nascimento, colab. II. Empresa Brasileira de Pesquisa Agropecuária. Centro de Pesquisa Agropecuária do Trópico Semi-Árido, Petrolina, PE. III. Título. IV. Série.

CDD - 634.8

APRESENTAÇÃO

O cultivo de uva tipo mesa na região Nordeste é uma realidade. Bem sucedida agrícola e economicamente, técnicos e produtores já exploram mais de 1.000 hectares, a sua maioria na região do submédio São Francisco.

Desde sua implantação na década de 50, as técnicas de manejo dos parreirais vêm sendo aperfeiçoadas, como uma das formas de adaptá-los ao meio ambiente.

Apesar do sucesso alcançado, em função das condições climáticas do Semi-Árido, a maioria das variedades cultivadas apresentam o mesmo e principal problema: acentuada dormência das gemas e conseqüente produção de cachos abaixo do potencial.

Através deste trabalho, o CPATSA estuda a ação de vários produtos químicos associados a diversas práticas culturais em diferentes épocas de cultivo. Seus resultados esclarecem uma série de dúvidas sobre o assunto, além de contribuir significativamente para se encontrar um método efetivo de melhorar a brotação das gemas e conseqüente aumento da produtividade.

RENIVAL ALVES DE SOUZA Chefe do Centro de Pesquisa Agropecuária do Trópico Semi-Árido.

SUMÁRIO

RESUMO/ABSTRACT	7
INTRODUÇÃO	9
MATERIAL E MÉTODOS	11
Efeito do desfolhamento artificial na brotação da videira	11
Efeito do SADH na brotação da gema após a poda	15
Efeito do glifosate na brotação da gema após a poda.	16
Efeito da eliminação parcial e total da brotação apical e remoção das escamas das gemas no rompimen to da gema.	17
RESULTADOS E DISCUSSÃO	19
Efeito do desfolhamento artificial na brotação da videira	19
Efeito do SADH na brotação da gema após a poda	21
Efeito do glifosate na brotação da gema após a poda.	21
Efeito da eliminação parcial e total da brotação apical e remoção das escamas das gemas no rompimen to da gema	24
CONCLUSÕES	26
REFERÊNCIAS BIBLIOGRÁFICAS	28

PRODUTOS QUÍMICOS E PRÁTICAS CULTURAIS NA QUEBRA DE DORMÊNCIA DA VIDEIRA

João Antônio Silva de Albuquerque¹ Selma Maria do Nascimento Sobral²

RESUMO - Realizaram-se quatro estudos em videiras da cultivar Itália para a quebra de dor mência da gema na região tropical semi-árida do submédio São Francisco: efeito do desfolha mento artificial da videira na brotação da gema em diferentes épocas antes da poda; efeito do SADH na brotação da gema após a poda; efeito do glifosate na brotação da gema após a 'poda; efeito da eliminação parcial e total da brotação apical e remoção da escama da gema na brotação da gema. Entre os quatro estudos realizados, somente a emorgação do ramo associada à remoção da escama da gema obteve resultados satisfatórios em induzir a quebra da gema da videira e, como conseqüência, um aumento na produção. Com relação ao mosto da uva não houve diferenças estatísticas nos quatro estudos realizados nos parâmetros determinados.

Termos para indexação: videira, dormência, produtos químicos.

CHEMICAL PRODUCTS AND CULTURAL PRACTICES ON BREAKING BUD DORMANCY OF GRAPEVINES

ABSTRACT - Four studies were made on grapevines of cultivar Italia to terminate bud dormancy in Semi-Arid Tropical Region of San Francisco sub-medium: effect of grapevine artificial defoliation on bud burst at different times before pruning; effect of SADH on bud burst after pruning; effect of glyphosate on bud burst after pruning; effect of partial and total elimination of apical sprouting and the removal of bud scale on bud burst. Among the four studies made, only the branch bending associated with bud scale removal treatment obtained satisfactory results in inducing grapevine bud break and as a consequence increased the production. In relation to grape must there were no statistical differences in the four studies made with the determined parameters.

Index terms: grape, dormancy, chemical products.

¹ Eng. Agr., M.Sc., EMBRAPA-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA), Caixa Postal 23, 56300 Petrolina, PE.

² Enga. Agra., EMBRAPA-CPATSA.

PRODUTOS QUÍMICOS E PRÁTICAS CULTURAIS NA QUEBRA DE DORMÊNCIA DA VIDEIRA

João Antônio Silva de Albuquerque¹ Selma Maria do Nascimento Sobral²

INTRODUÇÃO

A região do submédio São Francisco é atualmente a maior produtora de uvas do Nordeste brasileiro. Esta região ca racteriza-se como tropical semi-árida e, em consequência, o comportamento fisiológico da videira é totalmente diver so daquele apresentado nas regiões tradicionais de culti vo. As alterações no comportamento fisiológico da videira, decorrentes das condições climáticas, provocam uma acentuada dormência de gemas na maioria das cultivares introduzidas nesta região. Tal dormência varia em intensidade conforme a época do ano (Albuquerque & Albuquerque 1982) tornando-se um problema por acarretar uma limitação do potencial produtivo da cultura.

Weaver et al. (1974), trabalhando com videiras da cultivar St. Emilion, obtiveram o rompimento de gemas utilizando o SADH (ac. succinico - 2.2- dimetilhidracida) nas concentrações de 20 a 200 ppm.

Antcliff & May (1961) conseguiram acelerar a quebra de dormência de gemas de videira com a remoção das escamas das gemas; Iwasaki & Weaver (1977), Emmerson &

¹ Eng. Agr., M.Sc., EMBRAPA-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA), Caixa Postal 23, 56300 Petrolina, PE.

² Enga. Agra., EMBRAPA-CPATSA.

Powell (1978) e Iwasaki (1980) obtiveram resultados sem<u>e</u>lhantes.

Bhujbal (1975) observou que o encurvamento dos ramos melhorou o rompimento das gemas, número de cachos e produção da cv. Thompson Seedless.

De acordo com Addicott & Lyon (1969), Galston & Davies (1972), Walker & Seeley (1973), em árvores decíduas é bem conhecida a mobilidade do ABA (ác. abscisico) e outras substâncias que deslocam-se das folhas para induzir dor mência nas gemas. Segundo esses autores os níveis dos inibidores continuam aumentando até a queda das folhas. O desfolhamento de macieiras na região tropical montanhosa de Java estimula a floração proporcionando nessa região a realização de duas colheitas anuais (Janick 1974).

Nigond, citado por Galet (1976), afirma que a influên cia das folhas maduras em videira provoca uma ação positiva em favor da instalação da dormência. A eliminação das folhas faz desaparecer esta ação inibitória.

O objetivo do presente trabalho é determinar, para a cultivar de videira Itália, o método mais efetivo de melhorar a brotação e como consequência o aumento de produtividade através dos seguintes estudos:

- Efeito do desfolhamento artificial na brotação da videira;
 - 2. Efeito do SADH na brotação da gema após a poda:
 - 3. Efeito do glifosate na brotação da gema após a poda:
- 4. Efeito da eliminação parcial e total da brotação apical e remoção das escamas das gemas no rompimento da gema.

MATERIAL E MÉTODOS

Os experimentos foram realizados no campo experimental de Mandacaru, CPATSA-EMBRAPA, localizado no município de Juazeiro, BA, com as seguintes coordenadas geográficas: 9°24' de latitude S, 40°26' de longitude W e 375 m de altitude. Segundo Hargreaves (1974), o clima da região é classificado como muito árido. Os dados climáticos registrados durante a condução dos experimentos encontram-se nas Tabelas 1, 2 e 3.

EFEITO DO DESFOLHAMENTO ARTIFICIAL NA BROTAÇÃO DA VIDEIRA

1º Ensaio:

Realizado durante o período de 22 de junho a 9 de de zembro de 1982 com a cultivar Itália conduzida em siste ma de latada. O delineamento experimental foi de blocos ao acaso, com quatro tratamentos e cinco repetições. Os tratamentos testados foram os seguintes:

- 1. Desfolhamento 30 dias antes da poda;
- 2. Desfolhamento 20 dias antes da poda;
- 3. Desfolhamento 10 dias antes da poda;
- 4. Desfolhamento no dia da poda.

O intervalo da última irrigação para o primeiro trata mento de desfolhamento foi de 25 dias. O desfolhamento foi realizado manualmente. Cada parcela foi formada por duas plantas; em cada planta foram selecionadas quatro varas contendo dez gemas cada, dando um total por parcela de 80 gemas. A irrigação da área foi feita através de sulcos.

TABELA 1. Dados climatológicos registrados no Campo Experimental de Mandacaru durante o ano de 1982.

^		Temperatura			Insolação	Evaporação	Precipitação	Velocidade
Mês	Média °C	Máxima °C	Mínima °C	Relativa (%)	(h/dia)	(mm/dia)	(mm)	do vento (km/h)
Janeiro	28.5	32.5	22.5	59	6.9	9.1	1.3	9.41
Fevereiro	28.4	32.4	22.3	60	6.2	9.8	. 24.0	11.47
Março	28.8	33.3	22.8	59	8.4	9.1	106.6	7.10
Abril	27.2	31.1	22.0	66	5.9	7.7	57.7	10.46
Maio	26.7	30.8	20.2	62	7.0	8.0	5.6	12.13
Junho	25.8	30.0	19.3	66	7.2	7.3	2.3	11.79
Julho	25.5	29.1	18.7	62	7.5	7.4	0.8	12.65
Agosto	26.6	31.1	19.5	73	8.2	9.2	_	13.25
Setembro	27.6	31.5	20.8	56	6.3	9.9		7.85
Outubro	29.4	33.8	21.6	50	8.4	11.2	_	6.59
Novembro	30.7	34.8	22.4	44	9.8	12.3	_	6.76
Dezembro	30.0	34.4	23.0	51	8.4	11.2	79.2	6.50

TABELA 2. Dados climatológicos registrados no Campo Experimental de Mandacaru durante o ano de 1983.

^		Temperatura			Insolação	Evaporação	Precipitação	Velocidade
Mês	Média °C	Máxima °C	Mínima °C	Relativa (%)	(h/dia)	(mm/dia)	(mm)	do vento (km/h)
Janeiro	28.3	32.8	23.2	61	6.3	7.9	46.6	3.81
Fevereiro	27.6	30.9	22.1	68	6.3	6.6	177.9	3.75
Março	28.3	30.3	22.1	66	7.2	7.5	72.3	4.29
Abril	28.6	32.5	21.4	59	8.8	8.4	0.7	9.37
Maio	29.0	33.1	20.9	56	9.6	9.1	-	9.63
Junho	25.7	30.9	18.6	62	8.5	7.8	0.3	8.75
Julho	26.2	30.9	19.3	59	8.5	8.5	8.9	9:56
Agosto	27.0	31.3	18.9	55	9.2	9.7	2.6	10.79
Setembro	28.9	33.4	20.6	48	9.3	10.8	-	10.33
Outubro	29.6	33.7	21.5	48	8.9	12.0	-	9.85
Novembro	30.6	34.6	22.9	48	8.7	10.7	63.5	7.91
Dezembro	29.8	33.9	22.6	51	8.2	10.3	21.8	8.21

TABELA 3. Dados climatológicos registrados no Campo Experimental de Mandacaru durante o período de Janeiro/Abril de 1984.

Mês	Temperatura			Umidade	Insolação	Evaporação	Precipitação	Velocidade
	Média °C	Máxima °C	Mínima °C	Relativa (%)	(h/dia)	(mm/dia)	(mm)	do vento (km/h)
Janeiro	29.8	33.2	22.7	53	8.4	10.6	19.9	8.19
Fevereiro	30.9	34.9	23.4	49	8.8	12.2	4.5	9.21
Março	28.4	32.5	22.6	* 66	7.8	7.3	363.3	5.86
Abril	26.1	29.7	21.3	76	6.8	5.6	124.0	6.33

A eficiência dos tratamentos foi avaliada através dos seguintes parâmetros:

- . Percentagem de gemas brotadas;
- . Produtividade;
- . Percentagem dos sólidos solúveis, acidez total e acidez real.

2º Ensaio

Realizado durante o período de 21 de dezembro de 1982 a 20 de maio de 1983, seguindo a mesma metodologia do pr \underline{i} meiro experimento.

EFEITO DO SADH NA BROTAÇÃO DA GEMA APÓS A PODA

1º Ensaio

Realizado durante o período de 6 de agosto a 21 de de zembro de 1982 com a cultivar Itália conduzida em siste ma de espaldeira com três fios de arame e o sistema de irrigação através de bacias. O delineamento experimental foi de blocos ao acaso com cinco tratamentos e quatro re petições. Os tratamentos testados foram os seguintes:

- 1. SADH a 100 ppm/PA;
- 2. SADH a 1000 ppm/PA;
- 3. SADH a 2000 ppm/PA;
- 4. SADH a 3000 ppm/PA;
- 5. Testemunha.

Os tratamentos foram testados em pulverizações sobre toda a planta, logo após a poda.

As plantas do experimento, em número de duas por parcela, receberam uma poda longa, sendo utilizadas quatro varas por planta com aproximadamente sete gemas cada.

A eficiência do produto químico aplicado foi avaliada de acordo com os seguintes parâmetros:

- . Percentagem de gemas brotadas;
- . Produtividade;
- . Percentagem dos sólidos solúveis, acidez total eacidez real.

2º Ensaio

Realizado durante o período de 7 de novembro de 1983 a 14 de março de 1984, seguindo-se a mesma metodologia do primeiro ensaio.

EFEITO DO GLIFOSATE NA BROTAÇÃO DA GEMA APÓS A PODA

Este experimento foi realizado durante o período de 16 de novembro de 1982 a 29 de março de 1983. A cultivar utilizada foi a Itália, conduzida em sistema de espaldei ra com três fios de arame e o sistema de irrigação atra vés de bacias. O delineamento experimental foi de blocos ao acaso com cinco tratamentos e cinco repetições. Os tra tamentos testados foram os seguintes:

- 1. Glifosate a 0,1% PA;
- 2. Glifosate a 0,075% PA;
- 3. Glifosate a 0,05% PA;
- 4. Glifosate a 0,025% PA;
- 5. Testemunha.

Os tratamentos foram testados em pulverizações sobre toda a planta, logo após a poda.

As plantas do experimento, em número de duas por parcela, receberam uma poda longa, utilizando-se um número de varas que completasse um total de 50 gemas por parcela.

A eficiência do produto químico aplicado foi avaliada de acordo com os seguintes parâmetros:

- . Percentagem de gemas brotadas;
- . Produtividade;
- . Percentagem dos sólidos solúveis, acidez total eacidez real.

EFEITO DA ELIMINAÇÃO PARCIAL E TOTAL DA BROTAÇÃO APICAL E REMOÇÃO DAS ESCAMAS DAS GEMAS NO ROMPIMENTO DA GEMA

1º Ensaio

Realizado durante o período de 21 de maio a 6 de outubro de 1982. O ensaio foi instalado em um parreiral da cultivar Itália constituído por plantas não enxertadas, conduzidas em espaldeira com três fios de arame, sendo podadas segundo sistema Cazenave e irrigado por inundação. O delineamento experimental foi de blocos ao acaso com oito tratamentos e três repetições. Os tratamentos testa dos foram os seguintes:

- 1A. Testemunha com ramos na posição vertical (R.V.);
- 1B. Testemunha com ramos emorgados (R.E.);
- 2A. Remoção total da primeira brotação (R.V.);
- 2B. Remoção total da primeira brotação (R.V.);

- 3A. Desfolhamento da primeira brotação (R.V.);
- 3B. Desfolhamento da primeira brotação (R.E.);
- 4A. Remoção das escamas das gemas (R.V.);
- 4B. Remoção das escamas das gemas (R.E.);

Cada parcela foi formada por duas plantas, nas quais foram marcadas varas com número mínimo de sete gemas cada, sendo 50 o total de gemas por parcela.

A eficiência dos tratamentos foi avaliada de acordo com os seguintes parâmetros:

- . Percentagem de gemas brotadas;
- . Produtividade;
- . Percentagem dos sólidos solúveis, acidez total e acidez real.

2º Ensaio

Realizado durante o período de 13 de maio a 28 de se tembro de 1983. As plantas utilizadas foram as mesmas do primeiro ensaio em delineamento experimental de blocos ao acaso com quatro tratamentos e cinco repetições.

Os tratamentos testados foram os seguintes:

- 1. Remoção total da primeira brotação (apical);
- 2. Desfolhamento da primeira brotação;
- 3. Remoção das escamas das gemas;
- 4. Testemunha.

Cada parcela foi formada por duas plantas, utilizan do-se varas com número mínimo de dez gemas cada. Todas as varas das plantas do ensaio foram emorgadas (R.E.).

A eficiência dos tratamentos foi avaliada conforme en saios anteriores.

RESULTADOS E DISCUSSÃO

EFEITO DO DESFOLHAMENTO ARTIFICIAL NA BROTAÇÃO DA VIDEIRA

Percentagem de gemas brotadas

Conforme é mostrado na Tabela 4 (ensaios de nº 1 e 2), não houve diferença estatística entre os tratamentos. Su poe-se que a videira em clima tropical semi-árido compor ta-se diferentemente da macieira em clima tropical, cuja brotação é estimulada pelo desfolhamento após a colheita, conforme observações *feitas por Janick (1974) e Notodimedjo et al. (1981).

Produção

A Tabela 4 (ensaios de nº 1 e 2) mostra que o tratamen to testemunha, desfolhamento realizado no dia da poda, foi estatisticamente superior aos demais no ensaio núme ro 1. Embora não tenha havido diferença estatística, hou ve uma tendência dos tratamentos desfolhados, mais próximos da poda inclusive, a apresentarem produções superio res ao tratamento de desfolhamento mais cedo no ensaio número 2. Provavelmente a permanência das folhas por mais tempo na planta tenha induzido o processo de diferencia ção das gemas, conforme Khanduja & Balasubra-Hmanyam (1972).

Percentagem de sólidos solúveis, acidez total e acidez real

Não houve diferença significativa para os parâmetros determinados no mosto da uva, conforme pode ser observa do na Tabela 4 dos ensaios de n° 1 e 2.

TABELA 4. Ensaios nº 1 e 2: Influência do desfolhamento na percentagem de gemas brotadas, produção, percentagem de sólidos sol<u>u</u> veis, acidez real e acidez total.

Ensaios	Tratamentos	Percentagem de gemas brotadas	Produção (kg)	Percentagem de sólidos solúveis (^O BRIX)	Acidez real (pH)	Acidez total (mgHT/1)
	1 (Desfolhamento 30 dias)	12,0	8,65 в	17,16	3,44	4,74
1	2 (Desfolhamento 20 dias)	17,5	8,85 b	17,28	3,40	5,14
•	3 (Desfolhamento 10 dias)	16,3	11,20 b	18,08	3,56	4,61
	4 (Desfolhamento no dia/poda)	17,5	16,05 a	17,32	3,56	4,98
	1 (Desfolhamento 30 dias)	37,86	12,58	16,80	3,30	5,82
2	2 (Desfolhamento 20 dias)	40,86	18,12	16,04	3,26	5,96
~	3 (Desfolhamento 10 dias)	30,58	18,12	16,64	3,34	5,34
	4 (Desfolhamento no dia/poda)	31,96	18,28	16,40	3,26	5,92

Valores com a mesma letra, dentro de cada coluna, não diferem estatisticamente pelo teste de Duncan ao nível de 5% de probabil<u>i</u> dade.

EFEITO DO SADH NA BROTAÇÃO DA GEMA APÓS A PODA

Percentagem de gemas brotadas

Não houve diferença significativa entre os tratamen tos, conforme mostra a Tabela 5 dos ensaios de nº 1 e 2 respectivamente. Esses resultados vão de encontro aos ob tidos por Weaver et al. (1968) & Weaver et al. (1974) que obtiveram resultados satisfatórios utilizando concentra ções do SADH de 2000 ppm. Provavelmente, nas condições climáticas (tropical semi-árida) em que foi realizado es te trabalho, a videira responda de forma diferente a de terminados produtos químicos.

Produção, percentagem de sólidos solúveis, acidez total e acidez real

A Tabela 5 (ensaios de n° 1 e 2) mostram que nao houve diferença estatística entre os tratamentos. Estes resultados estão de acordo com os obtidos por Haeseler (1976).

EFEITO DO GLIFOSATE NA BROTAÇÃO DA GEMA APÓS A PODA

Percentagem de gemas brotadas

Não houve diferenças estatísticas entre os tratamen tos conforme mostra a Tabela 6. O Glifosate utilizado co mo herbicida de efeito sistêmico, quando aplicado na par te aérea da planta, tende a migrar para o sistema radicu lar (Weaver 1976).

Produção, percentagem de sólidos solúveis, acidez total e acidez real

Não houve diferenças significativas entre os tratamentos para produção e os parâmetros determinados no mosto

TABELA 5. Ensaios nº 1 e 2: Influência do SADH na percentagem de gemas brotadas, produção, percentagem de sólidos solúveis, ac<u>i</u> dez real e acidez total.

Ensaios	Tratamentos	Percentagem de gemas brotadas	Produção (kg)	Percentagem de sólidos solúveis ([°] BRIX)	Acidez real	Acidez total (mgHT/1)
	1 (100 ppm/PA)	15,69	13,875	17,52	3,45	7,49
	2 (1000 ppm/PA)	15,41	14,625	15,7	3,0	6,67
1	3 (2000 ppm/PA)	11,97	12,75	16,72	3,27	6,71
	4 (3000 ppm/PA)	20,05	11,375	16,72	3,12	7,67
	5 (Controle)	19,49	18,625	16,72	3,3	7,15
	1 (100 ppm/PA)	29,12	1 f ,925	17,37	3,27	7,34
	2 (1000 ppm/PA)	27,87	9,55	16,87	3,35	9,15
2	3 (2000 ppm/PA)	27,12	10,875	17,05	3,3	8,81
	4 (3000 ppm/PA)	30,75	14,3	17,35	3,12	7,86
	5 (Controle)	27,37	14,55	16,85	3,3	9,10

Os tratamentos não diferiram estatisticamente pelo teste de Duncan, ao nível de 5% de probabilidade.

TABELA 6. Influência do Glifosate na percentagem de gemas brotadas, produção, percentagem de sólidos solúveis, acidez real e ac<u>i</u> dez total.

Tratamentos	Percentagem de gemas	Produção	Percentagem de sólidos solúveis	Acidez real	Acidez total	
Tracamericos	brotadas	(kg)	(°BRIX)	(Hq)	(mgHT/1)	
1 (0,1% PA)	9	3,85	15,76	3,1	3,954	
2 (0,075% PA)	11,4	3,97	15,4	3,2	3,54	
3 (0,05% PA)	10	3,45	16,56	3,26	3,8	
4 (0,025% PA)	10	3,15	16	3,18	3,682	
5 (Controle)	11	4,39	16,04	3,18	3,682	

Os tratamentos $ilde{nao}$ diferiram estatisticamente pelo teste de Duncan ao $ilde{nivel}$ de $ilde{5\%}$ de probabilidade.

da uva, conforme pode ser observado na Tabela 6.

EFEITO DA ELIMINAÇÃO PARCIAL E TOTAL DA BROTAÇÃO APICAL E REMOÇÃO DAS ESCAMAS DAS GEMAS NO ROMPIMENTO DA GEMA

Percentagem de gemas brotadas

Conforme é mostrado na Tabela 7 (ensaio nº 1), o tra tamento de número 4B (remoção das escamas das gemas em ramos emorgados) foi estatisticamente superior aos de mais, sendo que estes não diferiram entre si. Todos os tratamentos com ramos emorgados, embora sem diferenciarem estatisticamente, apresentaram brotações superiores ao seu correspondente com ramos na vertical. Observou-se nos tratamentos 2A e 2B que a remoção total da primeira brotação não induziu a quebra de dormência das gemas inferiores, transferindo dessa forma a dominância apical da brotação removida para a gema imediatamente inferior. Nos tratamentos 3A e 3B, o desfolhamento do ramo brotado provocou uma brotação das gemas axilares deste ramo, enquan to que as demais gemas da vara permaneceram dormentes.

O ensaio de nº 2 (Tabela 7), onde todos os tratamen tos tiveram suas plantas com ramos emorgados, mostra resultados semelhantes aos obtidos no ensaio nº 1, com o tratamento remoção das escamas das gemas estatisticamen te superior aos demais.

O efeito da emorgação dos ramos na melhoria da brota ção está de acordo com o obtido por Bhujbal (1975) na cv. Thompson Seedless.

O aumento de brotação das gemas, através da remoção das escamas, está de acordo com os resultados obtidos por Iwasaki & Weaver (1977), Emmerson & Powell (1978) e Iwasaki (1980), em cvs. de *Vitis vinifera*, *Vitis riparia*.

TABELA 7. Ensaios nº 1 e 2: Influência dos tratamentos na percentagem de gemas brotadas, produção, percentagem de sólidos solúveis, acidez real e acidez total.

Ensaios	Tratamentos	Percentagem de gemas brotadas	Produção (kg)	Percentagem de sólidos solúveis (^O BRIX)	Acidez real (ph)	Acidez total (mgHT/1)
	1A	12 b	10,0	19,1	3,5	4,55
	1B	26 b	9,0	18,9	3,3	4,55
	2A	14 b	5,3	19,0	3,4	5,20
	2B	20 b	9,5	18,7	3,5	5,00
1 .	3A	11 b	5,5	19,2	3,4	5,45
	3B	24 b	7,0	19,6	3,3	5,47
	4A	22 b	6,2	19,6	3,3	5,30
	4B	44 a	12,0	19,0	3,3	5,20
	1	15,4 c	9,7 b	20,36	3,2	5,2
2	2	16,2 c	9,5 b	21,00	3,3	5,4
-	3	25,2 a	15,4 a	20,72	3,1	5,4
	4	19,0 b	10,8 b	21,64	3,2	5,3

Valores com a mesma letra, dentro de cada coluna, não diferem estatisticamente pelo teste de Duncan ao nível de 5% de probabil<u>i</u> dade.

Produção

Os resultados do ensaio n° 1 (Tabela 7) foram parcial mente prejudicados, pois algumas parcelas sofreram ata ques de pássaros, próximo à colheita do experimento.

A Tabela 7 (ensaio n° 2) mostra que o tratamento remo ção das escamas das gemas obteve uma produção estatisticamente superior a dos demais, decorrente da melhor brotação.

Percentagem de sólidos solúveis, acidez total e acidez real

Não houve diferença estatística para os parâmetros de terminados no mosto da uva, conforme pode ser observado na Tabela 7, ensaios $n^{\underline{o}}$ 1 e 2.

CONCLUSÕES

Os resultados dos ensaios aqui apresentados, tendo-se em conta o comportamento da videira na região tropical semi-árida do submédio São Francisco, permitem concluir:

- 1. O desfolhamento em diferentes épocas antes da poda e remoção total da brotação apical, desfolhamento da primeira brotação, pulverizações com diferentes concentrações de SADH e pulverizações com diferentes concentrações de glifosate após a poda não influenciam na melhoria da brotação da cv. Itália, nem nos parâmetros determinados no mosto da uva.
- 2. A emorgação dos ramos, associada à eliminação das escamas das gemas, induzem significativamente a uma melhor brotação e, como conseqüência, a um aumento na produção. Conclui-se que a dormência das gemas não está relacionada com fatores biológicos como o não desenvolvimento

completo das mesmas por ocasião da poda. Talvez as escamas das gemas induzam a uma dormência física ou fisiol $\underline{\acute{o}}$ gica através de elevadas concentrações de substâncias in $\underline{\acute{u}}$ bidoras.

REFERÊNCIAS BIBLIOGRÁFICAS

- ADDICOTT, F.T. & LYON, J.L. Physiology of abscisic acid and related substances. Ann. Rev. Plant Physiol. 20:139-64, 1969.
- ALBUQUERQUE, T.C.S. de & ALBUQUERQUE, J.A.S. de.

 Comportamentos de dez cultivares de videira na região
 do Submédio São Francisco. Petrolina, PE, EMBRAPACPATSA, 1982. 20p. (EMBRAPA-CPATSA. Documentos, 12).
- ANTCLIFF, A.J. & MAY, P. Dormancy and bud burst in Sultana vines. Vitis, 3:1-14, 1961.
- BHUJBAL, B.G. Effect of various treatments on bud-burst and yield in Thompson Seedless grape. Res. J. Mahatma Phule Agric. Univ., 6(2):134-8, 1975.
- EMMERSON, J.G. & POWELL, L.E. Endogenous abscisic acid in relation to rest and bud burst in three vitis species. J. Am. Soc. Hortic. Sci., 103(5):677-80, 1978.
- GALET, P. Précis de viticulture. Montpellier, Impremie Dehan, 1976. p.90-113.
- GALSTON, A.W. & DAVIES, P.J. Mecanismo de controle no desenvolvimento vegetal. São Paulo, E. Bluchen, 1972. 171p.
- HAESELER, C.W. Responses of mature concord grapevines to SADH in Pennsylvania. Hortscience, 11(3):265-7, 1976.

- HARGREAVES, G.H. Climatic zoning for agricultural production in Northeast Brasil. Logan, Utah State University, 1974. 6p.
- IWASAKI, K. Effects of bud scale removal, calcium cyanamide, GA3, and ethephon on bud break of Muscat of Alexandria grape (Vitis vinifera L.). J. Japan Soc. Hortic. Sci., 48(4):395-8, 1980.
- IWASAKI, K. & WEAVER, R.J. Effects of chilling, calcium cyanamide, and bud scale removal on bud break, rooting, and inhibitor content of buds of 'Zinfandel' grape (Vitis vinifera L.). J. Am. Soc. Hortic. Sci., 102(5):584-7, 1977.
- JANICK, J. The apple in Java. Hortscience, 9(1):13-5, 1974.
- KHANDUJA, S.D. & BALASUBRAHMANYAM, V.R. Fruitfulness of grape vine buds. Econ. Bot., 26(3):280-94, 1972.
- NOTODIMEDJO, S.; DANOESASTRO, H.; SASTROSUMARTO, S. & EDWARDS, G.R. Shoot growth, flower initiation and dormancy of apple in the tropics. Acta Hortic., (120):179-86, 1981.
- WALKER, D.R. & SEELEY, S.D. The rest mechanism in deciduous tree fruits as influenced by plant growth substances. Acta Hortic., (34):235-9, 1973.
- WEAVER, R.J.; DER-YEOU, K. & POOL, R.M. Relation of plant regulators to bud rest in Vitis vinifera grapes. Vitis, 7:202-12, 1968.

- WEAVER, R.J.; MANIVEL, L. & JENSEN, F.L. The effects of growth regulators, temperature, and drying on Vitis vinifera buds. Vitis, 13:23-9, 1974.
- WEAVER, R.J. Reguladores del crecimiento de las plantas en la agricultura. s.l. Trillas, 1976. 622p. il.

Editoração: Elisabet Gonçalves Moreira

Composição: Margarida Maria Lima do Nascimento Santiago

Normatização bibliográfica: SID/CPATSA