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Introdução
O desafio constante do aumento de produtivida-

de aliado a práticas sustentáveis de produção impõe 
a necessidade de monitoramento, análise, planeja-
mento e execução de ações que promovam o cres-
cimento do setor agropecuário (Vieira Filho et al., 
2019). A existência de dados em diferentes escalas 
espaciais e temporais é essencial para a realização 
destas atividades, e subsidia a gestão desde o nível 
de propriedade rural até o nível nacional para apoio 
na definição de políticas públicas. 

O tema da agricultura de precisão (AP) descre-
ve métodos e ferramentas para coleta de dados em 
alta resolução espacial em nível de talhão de pro-
dução. Em AP são utilizados sensores embarcados 
em maquinários agrícolas, equipamentos proximais 
ou de contato capazes de medir em alta resolução 
espacial grandezas que caracterizam os solos e as 
culturas. (Grego et al., 2023; Hegedus et al., 2023). 
De forma complementar, a identificação e caracte-
rização da infraestrutura existente na propriedade 
rural possibilitam avaliar aspectos qualitativos e 
quantitativos na sua produção. Galpões, áreas de 
secagem de grãos, pivôs de irrigação, maquiná-
rios, painéis de energia solar, áreas de pastagem 
exemplificam itens de recursos e de infraestrutura 
físicos de uma propriedade rural que indicam a sua 

capacidade produtiva. (Fogle; Kime, 2024; Llanto, 
2012; Yu et al., 2025)

A identificação e caracterização destas infraes-
truturas podem ser realizadas com maior acurácia 
através de seu mapeamento local, por técnicos es-
pecializados com ferramentas específicas ou de for-
ma voluntária por usuários utilizando aplicativos mó-
veis. No entanto, o deslocamento de técnicos eleva 
os custos da coleta de dados de campo e a delega-
ção desta atividade de coleta para usuários volun-
tários requer algum mecanismo de validação para 
confirmação dos dados fornecidos. Os gastos para 
esta coleta de dados aumentam consideravelmente 
quando consideramos o levantamento de dados de 
uma região, município ou estado, podendo invia-
bilizar a realização desta atividade. (Branthomme, 
2012; Koenig et al., 2000). O uso de satélites para 
sensoriamento remoto representa uma alternativa 
para levantamento desses dados com capacidade 
de abranger grandes áreas de cobertura de superfí-
cie com alta precisão. O número cada vez maior de 
satélites tem aumentado a oferta de dados obtidos 
por sensoriamento remoto. Cada coleção de dados 
desses satélites possui características específicas 
de resolução espacial, temporal, espectral e radio-
métrica (Dritsas; Trigka, 2025; Macário et al., 2020) 
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áreas selecionadas pela primeira etapa é utilizado 
como entrada em procedimentos para detecção de 
objetos baseado em algoritmos de aprendizagem 
de máquina. A pré-filtragem realizada pela primeira 
etapa reduz o volume de imagens necessárias para 
processamento na segunda etapa, tornando mais 
eficiente o processamento global para identificação 
e caracterização da infraestrutura.

Dados de sensoriamento remoto
Atualmente existem inúmeros dispositivos de 

sensoriamento remoto desenvolvidos para as mais 
diferentes aplicações, com diferentes característi-
cas. Esses dispositivos para observação da super-
fície terrestre estão embarcados em satélites, que 
possuem diferentes órbitas para imageamento.  
Um dispositivo de sensoriamento remoto é um ins-
trumento que mede a energia, em diferentes com-
primentos de onda, refletida e emitida pela superfí-
cie terrestre e que permite inferir as características 
desta superfície. A resolução de um sensor é uma 
das características fundamentais na determinação 
de quais tipos de dados ele pode coletar e em quais 
aplicações podem ser utilizados (Dritsas; Trigka, 
2025, Estados Unidos, 2025), como ilustrado na Fi-
gura 1. A resolução de um sensor remoto pode ser 
de quatro tipos.

•	 Resolução radiométrica: determina como o 
valor da medida captada pelo sensor é repre-
sentado numericamente. Em uma represen-
tação binária, quanto maior o número de bits 
para representação melhor é a discriminação 
dos valores das medidas.

•	 Resolução espacial: indica as dimensões da 
área da superfície terrestre representada por 
cada pixel. Esta característica é um fator im-
portante na determinação da escala da apli-
cação em que os dados podem ser utilizados.

•	 Resolução espectral: indica a capacidade 
do sensor em discernir a medida de energia 
em diferentes comprimentos de onda. Quan-
to maior a resolução espectral de um sensor, 
maior é a sua capacidade de descrever em 
detalhes os tipos de materiais sobre a super-
fície terrestre.

•	 Resolução temporal: corresponde ao tempo 
que o dispositivo demora para dar uma volta 
em sua órbita e revisitar uma mesma área.

Devido a suas características de projeto, dis-
positivos individuais de sensoriamento remoto 

e possibilita a cobertura de grandes áreas da super-
fície terrestre chegando ao nível global. No entan-
to, a utilização direta de imagens de sensoriamento 
remoto na identificação e caracterização de alvos 
na superfície terrestre se mostra ineficiente quan-
do verificamos a escala e distribuição dispersa de 
alguns itens de infraestrutura de uma propriedade 
rural e os requisitos de acurácia necessários para 
descrevê-los.

A aplicação direta de métodos baseados em 
algoritmos de inteligência artificial (IA), comumen-
te utilizados para identificação de objetos em fotos, 
apresenta algumas limitações quando empregados 
na identificação de itens de infraestrutura com dis-
tribuição espacial esparsa em imagens de satélite 
de alta resolução. Alvos isolados e com distribuição 
espacial esparsa demandam um alto custo compu-
tacional de processamento e armazenamento, prin-
cipalmente para análise de grandes áreas, uma vez 
que a imagem de satélite precisará ser dividida em 
um grande número de pedaços de tamanho com-
patível com os modelos de identificação de objetos 
(Sirko et al., 2021).

Se considerarmos um levantamento em escala 
de município, com dados de sensoriamento remoto 
de altíssima resolução espacial, no nível submétri-
co por exemplo, seria possível identificar de forma 
detalhada alguns itens de infraestrutura de uma pro-
priedade rural, mas em contrapartida seria gerado 
um grande volume de dados que requer uma alta 
capacidade de recursos computacionais para pro-
cessamento e análise. Além disso, existe um alto 
custo associado à aquisição de imagens de senso-
riamento remoto em alta resolução. Por outro lado, 
se os dados de sensoriamento remoto são captu-
rados em resoluções espaciais menores, os custos 
de aquisição se tornam menores, as áreas de co-
bertura serão maiores para um mesmo volume de 
dados, mas a caracterização detalhada de itens de 
infraestrutura torna-se inviável.

Neste trabalho propomos uma abordagem mis-
ta no uso de dados de sensoriamento remoto para 
caracterização de infraestrutura em propriedades 
rurais. Nessa abordagem, a análise de dados é rea-
lizada em duas etapas com o objetivo de explorar da 
melhor forma as características de resolução espa-
ço-temporais das imagens de sensoriamento remoto 
de baixa e alta resolução e dos algoritmos utilizados 
para processá-las. Na primeira etapa são utilizadas 
imagens de sensoriamento remoto de menor resolu-
ção, porém de resolução suficiente para prospectar 
áreas com maior probabilidade de ocorrência das 
infraestruturas de interesse. Em uma segunda eta-
pa, um conjunto de imagens de alta resolução das 
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Figura 1. Resolução espacial e tipos de aplicação indicados.

Fonte: Adaptado de Estados Unidos (2025).

baseados em princípios ópticos possuem um conflito 
entre resolução espacial e resolução temporal (Xiao 
et al., 2023). Sensores com maior resolução espacial 
geralmente possuem uma menor resolução temporal. 
Isto permite a captura mais detalhada da superfície 
terrestre, porém com uma menor frequência. Como 
exemplo podemos citar a missão Sentinel-2, formada 
por 2 satélites que imageiam individualmente a su-
perfície terrestre a cada dez dias, fornecendo dados 
de resolução espacial de 10x10 m por pixel. A com-
binação dos dois satélites possibilita o imageamento 
de cinco em cinco dias. Por outro lado, a missão Mo-
derate-resolution Imaging Spectroradiometer (MO-
DIS) fornece dados diários na resolução de 250x250 
m e 1x1 km. A solução de sensoriamento remoto da 
PlanetScope consegue obter dados quase diários em 
alta resolução espacial de três a quatro metros por 
pixel utilizando uma constelação de cerca de 180 sa-
télites individuais (Planet, 2025). A Tabela 1 descreve 
alguns satélites e suas características de resolução. 
Nessa tabela podemos ver o aumento do volume de 
pixels gerados e, consequentemente, a demanda 
para processamento que seria necessário para pro-
cessá-los.  Além do número de pixels, a demanda por 
processamento será maior quanto maior o número de 
bandas por pixel. Praticamente não existem opções 
de dados de satélite públicos com resolução espa-
cial submétrica e, desta forma, a obtenção de dados 
com essa resolução representa um custo adicional 

para análise. A coluna “Pixels x 1 km²“, da Tabela 1, 
dá uma indicação do aumento do volume de pixels a 
serem processados de acordo com a resolução espa-
cial do satélite. Neste caso, para identificar alvos de 
interesse de infraestrutura em uma área de 1 km² se-
riam necessários processar 10.000 pixels (100x100 
pixels) do Sentinel-2 e 11.111x10³ pixels (3.333x3.333 
pixels) do WorldView 3, ou seja, um número mais de 
1.000 vezes maior de pixels.

Ferramentas para identificação 
de objetos em imagens

A seguir são apresentados exemplos de ferra-
mentas utilizadas na identificação de objetos em 
imagens. Ambas são baseadas em aprendizagem de 
máquina e redes neurais.

TorchGeo
A ferramenta TorchGeo (The Open Source Ge-

ospatial Foundation, 2025) é uma biblioteca que cor-
responde a uma especialização da ferramenta Py-
Torch (PyTorch, 2025), muito utilizada em aplicações 
envolvendo redes neurais. Na biblioteca TorchGeo, 
dados e funcionalidades estão adaptados para uso 
e integração de dados geoespaciais para constru-
ção de aplicações utilizando redes neurais profundas 



4 Comunicado Técnico 142

Farhadi, 2017; Ultralytics, 2025b). Essa ferramenta 
é baseada em técnicas de Machine Learning (ML) 
utilizando Deep Neural Network (DNN). Para reali-
zação dessas tarefas, o Yolo conta com um modelo 
de rede neural previamente treinado para identifi-
cação de uma série de objetos. Para identificar um 
objeto em uma imagem de entrada, o Yolo a divide 
em uma grade e, para cada célula, gera múltiplas 
caixas delimitadoras (bounding boxes) candidatas, 
atribuindo a cada uma delas uma pontuação de 
confiança que indica a probabilidade de conter um 
objeto. As caixas delimitadoras são selecionadas 
e redimensionadas de forma a manter as que pos-
suem o maior grau de confiança no algoritmo de-
nominado Non Max Suppression (NMS). Ao final do 
processamento, o Yolo indica caixas delimitadoras 
finais demarcando os objetos identificados, junta-
mente com o grau de confiança sobre a detecção. 
Normalmente, nesse algoritmo são utilizadas ima-
gens de tamanho de 640x640 pixels. Imagens maio-
res fornecidas ao Yolo são redimensionadas com 
manutenção da proporção de sua largura e altura 
de modo que a maior dimensão possua 640 pixels. 
(Redmon; Farhadi, 2017; Ultralytics, 2025a). A uti-
lização do Yolo está baseada em uma interface de 
mais alto nível, que pode ser utilizada programatica-
mente ou por linha de comando. Para o treinamento 
de um novo modelo de identificação de objetos, é 
necessário indicar um modelo base do Yolo, forne-
cer um conjunto de imagens de amostra rotuladas 
com a localização dos objetos de interesse e definir 
os parâmetros de treinamento. 

especializadas no tratamento de dados de senso-
riamento remoto. Ela inclui um conjunto de modelos 
pré-treinados de rede neurais específicos para este 
tipo de dado, e fornece mecanismos para tratamen-
to adequado dos valores das bandas de dados de 
imagem, possibilitando a integração de diferentes 
fontes de sensoriamento remoto. O processamento 
de grandes imagens para identificação de alvos de 
interesse requer a divisão da imagem em um con-
junto de células tratadas individualmente. Cada cé-
lula, normalmente definida no tamanho de 256x256 
pixels, deve ter seu tamanho adaptado, dependen-
do das dimensões do alvo e da compatibilidade com 
o tamanho das células utilizadas durante o treina-
mento do modelo de detecção de alvos (Stewart 
et al., 2022). A construção de uma aplicação para 
identificação de alvos envolve o desenvolvimento 
de um programa em Python combinando funciona-
lidades para carregamento e preparação de dados 
de treinamento, configuração da arquitetura da rede 
neural, configuração de parâmetros do treinamento 
e execução do treinamento. Para esse desenvol-
vimento é necessário um conhecimento mais pro-
fundo sobre as características dos dados de sen-
soriamento remoto a serem processados e sobre 
a parametrização necessária para obtenção de um 
modelo de rede neural treinado efetivo.

Yolo
O Yolo é uma ferramenta de visão computacional 

que possibilita a realização de tarefas de detecção, 
segmentação e classificação de objetos (Redmon; 

Tabela 1. Características de resolução de alguns satélites/sensores.

Missão Acesso aos
dados Sensor

Resolução
Bandas Pixels x 1 km² 

(1.000.000 m²)Espacial (m) Temporal

MODIS público/ gratuito TERRA, 
AQUA

250, 500 e 1000* 2 dias 36 1 (1000 m) 
4 (500 m) 
8 (250 m)

Landsat-8 público/ gratuito OLI 30 16 dias 8 1111

Sentinel-2/MSI público/ gratuito A, B 10, 20 e 60 5 dias 
(combina-
dos)

13 10000 (10 m)
2500 (20 m)
277 (60 m)

CBERS 4A público/ gratuito WPM 2 e 8 31 dias 6 250000 (2 m)
15625 (8 m)

PlanetScope comercial/pago PSB.SD 
SuperDove

3.7 ~1 dia 8 73046

WordView 3(1) comercial/pago WV110 0,3 (pancromática) < 1 dia 36 11.111x10³ (0,3 m)
(1) Satélite comercial, além da banda pancromática são coletadas outras bandas em diferentes resoluções espaciais.

Fonte: Brazil Data Cube (2020), Instituto Nacional de Pesquisas Espaciais (2025), Planet (2025), WorldView […] (2023).
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foram utilizadas por serem de acesso público e por 
apresentarem as melhores resoluções espaciais, 
temporais e espectrais disponíveis na plataforma 
do GEE (Google Earth Engine). O sensor CBER-
S-4A WPM foi utilizado por apresentar a maior re-
solução espacial disponível, com acesso público 
e gratuito, sem restrições para uso em aplicações 
baseadas em aprendizagem de máquina. Para fins 
de comparação, a Tabela 2 também apresenta as 
características da imagem ESRI Satélite Base, refe-
rente à mesma área do município de Santa Helena.  

Na primeira etapa de processamento, foi gerado 
um conjunto de dados a partir do sensor Sentinel-2, 
com resolução espacial de 10x10 m. Esse conjunto 
é formado por médias de bandas originais do Senti-
nel-2, por índices e estatísticas de séries temporais 
que evidenciam características espectrais e tempo-
rais de um galpão. Amostras de galpões, juntamente 
com esse conjunto foram utilizados para construção 
de um modelo de classificação baseado no algorit-
mo Random Forest, o qual foi usado para identificar 
subáreas de ocorrências possíveis de galpões no 
município de Santa Helena. Na segunda etapa de 
processamento, estas subáreas selecionadas foram 
utilizadas para recortar imagens CBERS-4A WPM 
de resolução espacial de 2x2 m.  Essas imagens de 
mais alta resolução recortadas possuem dimensões 
mais adequadas para os algoritmos utilizados pelas 
ferramentas de aprendizagem de máquina com rede 
neural utilizada na identificação de objetos. Amos-
tras de imagens de galpões foram também utilizadas 
nessa etapa para treinar o modelo de rede neural. 
A ferramenta Yolo foi utilizada nessa segunda etapa 
em razão de sua simplicidade na construção de mo-
delos para identificação de objetos, sem a necessi-
dade de implementação envolvendo tratamento de 
dados georreferenciados. Os galpões, usados como 
amostras de treinamento do Yolo, foram anotados 
em imagens em tons de cinza obtidas diretamente 
das imagens da banda 0 do CBERS-4A WPM.

O mapeamento das subáreas possibilitou a re-
dução da área para caracterização de galpões na 
imagem CBERS-4A de aproximadamente 1233,72 
km² para cerca de 5 km². Nesse estudo de caso 
ocorreu uma redução significativa da área, superior 
a 95%.

A Figura 2 apresenta um esquema ilustrativo do 
funcionamento de um procedimento para identifica-
ção e caracterização de galpões utilizando direta-
mente ferramentas de detecção de objetos basea-
dos em IA sobre imagens de alta resolução. Nesse 
esquema, toda a imagem original é dividida em 
pequenos pedaços, os quais são utilizados como 
dado de entrada para o Yolo. Akyon et al. (2022) 

As imagens utilizadas pelo Yolo podem ser colo-
ridas ou até em preto e branco, e dados de georre-
ferenciamento são ignorados.

Pode ser notado nestas duas ferramentas que 
a demanda por processamento é diretamente pro-
porcional às dimensões da área em análise. A ocor-
rência esparsa de alvos implica que a maior parte 
do processamento será realizado em áreas onde 
eles estão ausentes. Uma otimização no uso dos 
recursos computacionais pode ser obtida se o pro-
cessamento for realizado em áreas com indícios da 
presença do alvo.

Identificação e caracterização 
de infraestruturas em 
propriedades rurais

Neste trabalho é proposto o uso de imagens de 
resolução não submétrica para construção de pro-
xies (Ghaffarian et al., 2018) para indicação de lo-
cais com maior probabilidade de ocorrência do alvo 
de interesse. Imagens de menor resolução propi-
ciam uma maior área de cobertura de análise para 
um mesmo volume de dados e ampliam a possibili-
dade de construção de proxies baseados em com-
portamento espacial, temporal e espectral dos alvos 
de interesse. Proxies podem também ser utilizados 
para construção de máscaras para exclusão de re-
giões com baixa probabilidade de ocorrência dos 
alvos. Utilizando esta filtragem prévia, o uso de fer-
ramentas para identificação de objetos como o Yolo 
ou o TorchGeo pode ser direcionado para áreas 
menores, compatíveis com os requisitos de imagem 
dessas ferramentas, e onde existe maior chance de 
ocorrência do alvo. Com a redução da necessidade 
de uso de imagens de alta resolução espacial, prin-
cipalmente para trabalhos abrangendo grandes áre-
as de análise, os custos para aquisição desse tipo 
de imagem podem ser reduzidos juntamente com o 
esforço computacional para seu processamento.

Estudo de caso
Como prova de conceito, a abordagem proposta 

foi utilizada na identificação e caracterização de gal-
pões de granja no município de Santa Helena (PR). 
As dimensões de um galpão são muito pequenas 
quando comparadas com a área de análise e sua 
distribuição espacial é dispersa sobre a área rural 
do município. A Tabela 2 resume as características 
de imagens Sentinel-2 e CBERS-4A WPM utiliza-
das nesse processamento. As imagens Sentinel-2 
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Tabela 2. Comparação entre processamento de alta resolução x média resolução.

Dataset não submétrico (Base 
Sentinel-2)

Máscara sobre data-
set não submétrico 
(Base Sentinel-2)

Dataset
CBERS-4A WPM

Dataset submétrico 
(Base ESRI Satélite)
Exemplo

Bandas

Band 1: B3_mean
Band 2: B2_mean
Band 3: B4_mean
Band 4: NDVI_mean
Band 5: NDBI_mean
Band 6: LST_Galpoes_mean
Band 7: SAVI_mean

− Band 1

Band 1: Red
Band 2: Green
Band 3: Blue
Band 4: Alpha

Dimensões X: 3476 Y: 3863 Bands: 7 −
X: 16164
Y: 19539
Bands: 1

X: 69502
Y: 85148
Bands: 4

Tamanho 308,48 MB ... 602,51 MB 22,05 GB

Tamanho 
do Pixel 
(m)

8,98x8,98 − 2x2 0,5x0,5 

Tipo do 
dado Float32 − Int16 Byte unsigned integer

Área (km²) +-1233,72 5,04 +-1233,72 +-1233,72 

Figura 2. Identificação e caracterização de galpões usando fatiamento de imagem de alta resolução.

Traço (−): informação identica à do dataset não submétrico.

Três-pontos (...): informação não calculada.
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visual para identificar galpões omitidos pelo classifi-
cador e incorporá-los como novas amostras no pro-
cesso de refinamento do modelo. Erros de comissão 
nessa primeira etapa podem indicar indícios de pre-
sença de galpões em locais onde eles não existem, 
implicando em processamento desnecessário do 
Yolo, porém não afetam o resultado do número de 
galpões identificados. A existência de erros de comis-
são não teria um grande impacto neste caso, uma vez 
que a área de análise tratada pelo Yolo já foi reduzida 
consideravelmente.

Nesse estudo de caso, o modelo de classificação 
Random Forest utilizado nessa primeira etapa foi trei-
nado com um conjunto de cerca de 2.500 amostras 
de pixels na região Oeste do Paraná, considerando 
as classes de galpões com cobertura metálica e ce-
râmica, estradas, áreas com vegetação rasteira, solo 
exposto e água. As classes adicionais além dos gal-
pões foram incluídas com o objetivo de reduzir confu-
sões na classificação.

Considerando 300 amostras de teste no municí-
pio de Santa Helena, foi obtida a seguinte matriz de 
confusão agregada, apresentada na Tabela 3, consi-
derando galpões de cobertura metálica, cerâmica e 
outras classes.

propuseram uma abordagem semelhante a essa, 
utilizando o recurso de fatiamento da imagem origi-
nal para detecção de pequenos objetos.

A Figura 3 apresenta o esquema proposto nesse 
trabalho, formado por duas etapas para identificação 
e caracterização de infraestruturas em áreas rurais. 
Nessa proposta, as ferramentas para detecção de 
objetos baseados em IA tem um uso otimizado para 
regiões da imagem com maior probabilidade de ocor-
rência dos galpões. As características desse alvo pro-
piciaram que fossem criados critérios para a exclusão 
de grande parte das áreas para a segunda etapa.

A taxa de erro na detecção de objetos pela fer-
ramenta baseada em IA é conhecida, resultado da 
qualidade e quantidade de amostras de treinamento 
utilizadas, ajustes de parâmetros de treinamento, es-
colha inicial do modelo base e da qualidade das ima-
gens. A inclusão da etapa de pré-filtragem baseada 
em imagens de média resolução, que neste estudo 
de caso correspondem às imagens Sentinel-2, tem 
impacto importante se existirem erros de omissão. 
Nesse caso, nenhuma imagem de uma área con-
tendo galpões será fornecida para a segunda etapa 
de análise e consequentemente esses galpões não 
serão identificados e caracterizados. A fim de reduzir 
esse tipo de erro, é possível realizar uma inspeção 

Figura 3. Identificação e caracterização de galpões em duas etapas, utilizando imagens de média resolução e recortes 
selecionados de imagens de alta resolução.
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A acurácia do produtor (AP), indicativo de quan-
tos pixels foram classificados corretamente como 
galpões cerâmicos e metálicos, é apresentada na Ta-
bela 4, juntamente com a acurácia do usuário (AU) e 
erros de omissão e comissão correspondentes.

Nesse estudo de caso, para o município de Santa 
Helena o classificador apresentou o erro de omissão 
de 2% para galpões cerâmicos e 10% para galpões 
metálicos, porém como existe confusão entre essas 
duas classes, a classificação como galpão apresenta 
alta acurácia, com baixo erro de omissão para gal-
pões, no valor de 4%. A acurácia global da classifi-
cação ficou em 98%. A alta acurácia associada ao 
baixo valor do erro de omissão sugere que o total de 
galpões identificados está ligeiramente abaixo do nú-
mero real. Isto considerando um resultado ótimo do 
processamento do Yolo. Deve-se considerar também 
que essa análise estatística se baseia em pixels in-
dividuais, e não em objetos completos identificados.

Para identificação e caracterização dos galpões 
no município de Santa Helena, a área final filtrada 
corresponde aproximadamente a 5 km². Essa área 
resultou em 574 imagens recortadas e enviadas para 
identificação de objetos pelo Yolo, formando um vo-
lume total de 7,7 MB, e que foram processadas em 
28,4 segundos. Este processamento foi realizado em 
um notebook i7-9750, com 32 GB de RAM e placa 
gráfica NVIDIA GeForce GTX 1660 Ti. O processa-
mento dos dados do Sentinel-2 foi realizado na infra-
estrutura do Google Earth Engine, por meio de um 
script em Python executado em 134,88 segundos.

Considerações finais
A combinação de imagens de sensoriamento 

remoto de resolução espacial não submétrica e de 
alta resolução em duas etapas de processamento 
possibilita o uso racional de recursos computacio-
nais na identificação e caracterização de infraestru-
turas de propriedades rurais, podendo ser utilizado 
em diferentes aplicações em que seja necessária a 
análise de grandes áreas com alvos com dimensões 
reduzidas e espacialmente dispersos.

Na primeira etapa, o uso de dados de sensoria-
mento remoto de baixa resolução para construção de 
proxies indicativos de ocorrência de alvos de interesse 
propicia uma pré-filtragem e redução de áreas a serem 
analisadas na segunda etapa, em que são utilizados 
mecanismos baseados em aprendizagem de máquina 
sobre imagens de alta resolução. O uso de imagens 
não submétricas na primeira etapa possibilita:

•	 Menor custo de aquisição de imagens: existem 
muitos sensores de até 10 m de resolução, com 
custo zero ou baixo custo. A varredura de uma 
área mais abrangente pode ser realizada a um 
menor custo.

•	 Maior resolução temporal: normalmente, senso-
res de menor resolução espacial possuem maior 
resolução temporal. Isso possibilita um menor 
custo para análises envolvendo séries temporais.

•	 Menor custo de processamento: a menor reso-
lução espacial está associada a um menor de-
talhamento espacial e consequentemente uma 
menor quantidade de dados por área de cober-
tura, exigindo uma menor demanda de proces-
samento por área de análise.

Tabela 3. Matriz de confusão agregada para classificação de galpões.

Classe Galpão cerâmico Galpão metálico Outras classes

Galpão cerâmico 49 1 0

Galpão metálico 1 45 4

Outras classes 1 1 198

Tabela 4. Acurácia e erros na classificação de galpões.

Classe Verdadeiro
positivo

Total
real

Total 
previsto AP (%) AU

(%)
Erro de Omis-
são (1-AP) (%)

Erro de Comis-
são (1-AU) (%)

Galpão cerâmico 49 50 51 98 96,1 2 3,9

Galpão metálico 45 50 47 90 95,7 10 4,3

Galpão agregado 96 100 98 96 98,0 4 2,0
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Na segunda etapa de processamento o volume 
de dados a ser processado é reduzido após a filtra-
gem e, consequentemente, os gastos com recursos 
computacionais de armazenamento e processa-
mento também são reduzidos.

Uma extensão deste trabalho pode ser a cons-
trução de proxies a partir da existência de determi-
nados recursos de infraestrutura ou características 
de uma propriedade rural. Por meio dessas evidên-
cias, podem ser traçados e classificados perfis de 
uma propriedade rural ou região de análise. Outra 
possibilidade seria o uso inverso das ocorrências de 
alvos encontrados na etapa de alta resolução. Esses 
alvos podem ser utilizados como amostras parciais 
e, juntamente com as imagens não submétricas cor-
respondentes, alimentar um mecanismo de apren-
dizagem de máquina para localização de áreas se-
melhantes às áreas do alvo encontrado, porém sob 
diferentes regiões. Dada a identificação e caracteri-
zação de uma cultura em um talhão, por exemplo, 
talhões com características semelhantes poderiam 
ser localizadas em outras áreas da propriedade, ou 
mesmo em uma região de análise maior, sendo um 
indicativo de presença da mesma cultura.
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