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ABSTRACT: This study aimed to manipulate databases from the Landsat-8 
project to select orbital scenes with minimal cloud coverage aligned with the 
growth periods of cotton, corn, and soybean crops in the Cerrado biome. 
Employing an Extract, Transform, Load (ETL) approach, the research focused on 
extracting and transforming large datasets by integrating georeferenced 
information from IBGE and data from the Agricultural Risk Zoning (ZARC). The 
planting windows for the 2014 to 2019 harvests were identified with a 20% or 
lower climate risk, considering variables such as soil and climate conditions. The 
results indicated that the availability of images with low cloud coverage is 
inversely related to the planting windows, especially during critical periods. To 
streamline the processing, algorithms were developed in R and Python, and a 
script for automatic image downloading was implemented. Despite data 
standardization challenges, applying big data techniques proved essential for the 
analysis. This study enhances efficiency in agricultural planning and emphasizes 
the importance of further exploring remote sensing technologies in response to 
current food security and sustainability demands. 
 
KEYWORDS: mapping, classification, spatial data, agricultural sustainability. 
 
RESUMO: Este trabalho teve como objetivo a manipulação de grandes bases de 
dados do projeto Landsat-8 para selecionar cenas orbitais com menor cobertura 
de nuvens, correspondendo ao período de desenvolvimento das culturas de 
algodão, milho e soja no bioma do Cerrado. Utilizando uma abordagem de 
Extração, Transformação e Carregamento (ETL), o estudo focou na extração e 
transformação de grandes bases de dados, integrando informações 
georreferenciadas do IBGE e dados do Zoneamento Agrícola de Risco Climático 
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(ZARC). As janelas de plantio para as safras de 2014 a 2019 foram identificadas 
com um risco climático de 20% ou menos, considerando variáveis como solo e 
clima. Os resultados mostraram que a disponibilidade de imagens com baixa 
cobertura de nuvens é inversamente proporcional às janelas de cultivo, 
especialmente durante períodos críticos. Para facilitar o processamento, foram 
desenvolvidos algoritmos em R e Python, e um script para download automático 
de imagens com baixa cobertura de nuvens foi implementado. Apesar dos 
desafios na padronização dos dados, este estudo teve como objetivo contribuir 
para a eficiência do planejamento agrícola e destacar a importância de continuar 
a explorar tecnologias de sensoriamento remoto diante das demandas atuais por 
segurança alimentar e sustentabilidade. 
 
PALAVRAS-CHAVE: mapeamento, classificação, dados espaciais, 
sustentabilidade agrícola. 
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1. INTRODUCTION 

 

The evolution of Earth observation sensors, installed on space and aerial 

platforms, has generated an immense amount of data that is revolutionizing 

agricultural monitoring. Daily, this information feeds various applications in 

remote sensing, especially in precision agriculture, which benefits from the 

increased availability and diversity of sensors. This transformation is vital as it 

enables more efficient management of crops, promotes sustainable agricultural 

practices, and maximizes productivity. 

The applications of remote sensing in agriculture are vast and varied. 

Monitoring techniques have proven effective in distinguishing crops, tracking 

plant growth, and estimating soil moisture. Additionally, the ability to obtain real-

time information about crop conditions provides a solid foundation for strategic 

decisions related to food security and economic management. Early detection of 

stress in crops, for example, is crucial for farmers to react quickly and implement 

corrective actions that minimize losses. 

However, challenges persist in the field of remote sensing, such as 

limitations in the spatial and temporal resolution of images and cloud interference. 

To address these barriers, various innovative approaches are being explored. 

Data fusion from multiple sources and the use of deep learning techniques have 

emerged as promising strategies to enhance the quality of the information 

obtained. Furthermore, integrating data from different sensors with local 

knowledge is essential for a more comprehensive and effective analysis. 

In this context, this work aims to manipulate and analyze large databases 

from the Landsat-8 project, focusing on selecting orbital scenes with minimal 

cloud coverage during critical development periods for cotton, corn, and soybean 

crops in the Cerrado biome. The research seeks to implement a structured 

Extraction, Transformation, and Loading (ETL) approach to integrate and process 

georeferenced information, alongside data from the Agricultural Zoning of 

Climate Risk (ZARC) and metadata from IBGE, in order to identify planting 

windows with a climate risk of less than 20% between the harvests of 2014 to 

2019. Additionally, the study aims to develop algorithms in R and Python to 

automate the download of images, allowing for a more efficient process for 
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monitoring crops and improving agricultural management practices in light of 

contemporary demands for food security and sustainability. 

 

2. THEORETICAL FRAMEWORK 

 

A range of Earth observation sensors embedded in space and aerial 

platforms generates vast databases every day, enabling applications in various 

research fields. Among these areas, agricultural remote sensing stands out, 

benefiting from the increasing launch of new sensors that expand observation 

possibilities and promote the success of precision agriculture (Huang et al., 

2018). This technological evolution is crucial as it allows for a more efficient 

approach to crop monitoring. 

In this context, Kingra et al. (2016) analyzed the various applications of 

remote sensing techniques in agriculture, including crop discrimination, growth 

monitoring, and soil moisture estimation, among others. Obtaining timely and 

reliable information about cultivated areas and their growth conditions can be 

extremely beneficial for producers and planners, facilitating strategic decisions 

regarding food security and economic management. 

Additionally, Hazaymeh et al. (2016) addressed the methods used to 

monitor agricultural drought, highlighting the importance of remote sensing as a 

powerful tool for capturing spatial dynamics over large areas. They identified 

methods such as optical and thermal remote sensing, which have proven 

effective compared to in-situ approaches that, while accurate, do not offer the 

same spatial coverage. 

Complementing these perspectives, Huang et al. (2016) discussed low-

altitude remote sensing systems, focusing on detecting stress in crops, which is 

vital for precision agriculture. Early detection of stress allows for a quicker and 

more effective response from farmers, contributing to maximized productivity. 

The review by Bégué et al. (2018) on remote sensing for mapping 

cultivation practices reinforces this idea, revealing that many investigations still 

rely on limited local data. This suggests a growing need for research that 

combines data from multiple sensors with expert knowledge for a more 

comprehensive and effective analysis. 
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Sanches et al. (2018) contributed a multi-temporal and multi-sensor 

reference database, which can be a valuable tool for mapping agricultural land 

use. With in-situ data collection and images from orbital sensors, it was possible 

to create a solid foundation for analyzing key annual crops, such as those 

occurring in Luís Eduardo Magalhães (LEM), a crucial agricultural area in Brazil. 

Building on such advancements, Feyisaa et al. (2020) highlighted the 

limitations of accuracy in mapping agro-ecosystem complexes, particularly in 

small agricultural properties. They suggested that participatory classification and 

the use of vegetation indices could be effective strategies for addressing the 

diversity of cropping systems, emphasizing the importance of local community 

participation. 

However, challenges such as spatial and temporal resolution and cloud 

coverage continue to be significant barriers. To address these limitations, 

scholars like Shen et al. (2021) tested space-time fusion models to improve the 

quality of NDVI data, demonstrating a continued commitment to innovation in 

remote sensing techniques. 

Qin et al. (2021) explored the use of optical and thermal remote sensing 

for monitoring droughts, pointing out chlorophyll fluorescence as a promising 

indicator for early detection. Analysis of future directions, including the integration 

of multi-source data and deep learning techniques with knowledge transfer, 

suggests an evolutionary path for research in this area. 

Ali et al. (2023) advanced further by employing a hyperspectral imaging 

system to identify different agricultural species. The use of advanced classifiers 

and dimensionality reduction shows promise for achieving high levels of accuracy 

in crop classification. 

To conclude this chapter, it is essential to recognize that the integration of 

advanced remote sensing technologies not only enhances our understanding of 

agricultural dynamics but also significantly supports sustainable farming 

practices. By leveraging diverse datasets and innovative methodologies, 

researchers and practitioners can make informed decisions that ultimately 

contribute to food security and efficient resource management in agriculture. 
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3. METHODOLOGY 

 

For planning, management, and monitoring projects at a regional scale 

that require medium spatial resolution images, the Landsat product portfolio is 

widely used. The launch of the Landsat-8 satellite not only continued the historical 

series of 40 years but also expanded data collection by including new spectral 

bands (443 nm, 1370 nm, 10895 nm, and 12000 nm) and improving the sensor's 

signal-to-noise performance and radiometric resolution (Roy et al., 2014; 

Vermote et al., 2016). This vast amount of data generated by the Landsat-8 

sensors results in a large volume of metadata, essential for research and scene 

selection, reflecting the so-called "4Vs" (volume, velocity, variety, and veracity) 

that characterize the manipulation of large databases. This study focuses on the 

first stage of this process, addressing the extraction and transformation of 

massive datasets, both georeferenced and non-georeferenced, through 

automation in R and Python. 

The study area was defined using the vector database of municipal 

boundaries provided by IBGE, encompassing all Brazilian municipalities within 

the Cerrado. For these municipalities, the planting windows for soybean, corn, 

and cotton crops from 2014 to 2019 were identified, with associated climate risk 

lower than 20%, using the Agricultural Zoning of Climate Risk (ZARC) (Assad et 

al., 2018) provided by MAPA (2018), whose analysis considered different soil 

types, climatological normals, and cultivar cycles to estimate crop development 

in each harvest. 

Additionally, the vector database of Landsat-8 paths (Worldwide 

Reference System – WRS2) and the metadata of images associated with the 

selected tiles (USGS, 2018) were used to filter orbital scenes, taking into account 

atmospheric interference for the mosaic coverage of the area of interest and the 

time series. The compatibility between political-administrative boundaries and the 

boundaries of the Cerrado biome presented challenges, resulting in information 

gaps, especially in municipalities without intersections. To ensure the contiguity 

of the layer, it was necessary to select and incorporate these polygons. 

The first product was a vector file containing the municipalities of interest, 

from which the municipal geocode from IBGE was extracted, serving as a primary 

key for subsequent joins with other databases (ZARC and the Landsat-8 
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metadata catalog). The ZARC database underwent filtering, selection, field 

standardization, and data completion through coding in R (RStudio). The 

selection of soybean, corn, and cotton cultivars for the 2014 to 2019 harvests was 

based on the planting windows defined by planting dates and climate risk, as 

illustrated in Figure 1. 

 

Figure 1 – Schematic diagram used for calculating the planting window for herbaceous cotton, 
corn, and soybean

 
Source: created by the authors. 

 

To determine the crop cycles, the average number of days based on the 

literature was considered: 125 days for soybean (Carneiro et al., 2014; Zito et al., 

2017), 130 days for corn (Cruz et al., 2014), and 150 days for herbaceous cotton 

(Marur et al., 2003). Data processing followed the ETL (Extraction, 

Transformation, and Loading) method, using algorithms developed in R and 

Python through the R Studio and Eclipse IDEs, as well as ArcGIS software (Esri, 

2018), along with specific libraries and functions. 
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4. RESULTS AND DISCUSSIONS 

 

The main database manipulated was that of the orbital scenes related to 

the OLI/TIRS sensor. The mosaic of various scenes for a predefined area allows 

for representation of large expanses (Guimarães, 2015). After meeting the 

requirements regarding the time intervals (01/01/2014 – 20/09/2018), spatial 

coverage (municipal base within the Cerrado biome), and cloud coverage (10%), 

a database with the metadata of the scenes was generated, which underwent 

adjustment and filtering operations.  

As an initial result, Figure 2 shows the composition of information 

regarding the recommended time interval for each crop based on latitude. 

Subsequently, Figure 3 indicates that orbital scenes with lower cloud coverage 

(0 to 2%) are concentrated between the months of May and October, based on 

the monthly grouping of eligible scenes. 

 

Figure 2 – Cultivation interval calculated based on the planting recommendation by ZARC for 
herbaceous cotton, corn, and soybean crops. 

 
Source: Research Results. 
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Figure 3 – Monthly number of orbital scenes for the study area, based on cloud cover. 

 
Source: Research Results. 

 

The plotting of data associating the number of eligible images from the 

time series with the growing windows obtained from the ZARC data processing 

provides an overview of the available material suitable for the project based on 

latitude (Figures 4 to 6). It is noted that the availability of orbital scenes does not 

coincide with the cultivation window across nearly the entire latitude range. 

 

Figure 4 – Annual composition of the availability of images with low cloud cover, based on the 
interval for herbaceous cotton. 

 
Source: Research Results. 
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Figure 5 – Annual composition of the availability of images with low cloud cover, based on the 
cultivation interval for corn.

 
Source: Research Results. 

 

Figure 6 – Annual composition of the availability of images with low cloud cover, based on the 
cultivation interval for soybean. 

 
Source: Research Results. 

 

A Python script (using the landsatxplore package) was developed for the 

automatic download of scenes from the USGS (Earth Explorer) platform based 

on the metadata catalog. With the available images, a new stage of data 
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extraction will begin, involving pre-processing, classification, and post-processing 

of the eligible orbital scenes. 

In the initial data treatment process, transformation proved to be one of 

the most labor-intensive phases in manipulating the databases, as it involved 

diagnosing issues, standardizing, normalizing, and aggregating variables, as well 

as applying filters and completing records. Due to the use of mixed databases 

(tabular and georeferenced vector data) from various sources, numerous 

discrepancies were identified, such as non-standardized municipality names, 

incomplete and/or inconsistent data. 

Despite the challenges in homogenizing the databases, the application of 

the aforementioned techniques derived from the big data paradigm proved 

essential in generating consistent and decisive directives in a relatively short time 

for subsequent stages of the project. Numerous challenges and opportunities 

surround the use of these techniques and should be further explored in the field 

of remote sensing (Mingmin, 2016). 

 

5. CONCLUSION 

 

The conclusion of this work highlights the importance of systematically 

manipulating large databases, particularly in the context of the Landsat-8 project, 

for monitoring cotton, corn, and soybean crops in the Cerrado biome. Through a 

structured Extraction, Transformation, and Loading (ETL) approach, it was 

possible to identify and select orbital scenes with the least cloud cover, coinciding 

with critical phenological development periods of the crops. This process is 

essential, as atmospheric conditions can significantly impact image quality, 

directly affecting analysis by specialists and agricultural planning. 

The results obtained demonstrate an inverse relationship between the 

availability of images with low cloud cover and the growing windows for the 

analyzed crops. It was observed that, across nearly the entire considered latitude 

range, the supply of orbital scenes is limited during the most critical planting and 

development periods. This fact emphasizes the importance of efficient data 

processing techniques that can address various challenges, such as 

inconsistencies in metadata and the heterogeneity of data sources. The use of 

automation algorithms developed in R and Python proved crucial for conducting 
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analyses in a reduced timeframe, enabling quicker and more informed decision-

making. 

Additionally, the implementation of a script for the automatic download of 

scenes from the USGS (Earth Explorer) platform represents an advancement that 

aids workflow in subsequent stages of pre-processing, classification, and post-

processing of images. The initial manipulation of data proved complex, requiring 

standardization, normalization, and completion of variables. 

Finally, the research suggests that the techniques and methods presented 

here have the potential to positively impact agricultural planning, promoting a 

more efficient and sustainable management of crops. The challenges and 

opportunities that arise from applying big data technologies in remote sensing 

should be further explored, underscoring the need for a commitment to research 

and development in this increasingly relevant field in light of climate change and 

the growing demand for food. Thus, this work paves the way for future 

investigations that can enrich our understanding of the interaction between 

technology, the environment, and agricultural practices. 
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