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ABSTRACT: This study aimed to manipulate databases from the Landsat-8
project to select orbital scenes with minimal cloud coverage aligned with the
growth periods of cotton, corn, and soybean crops in the Cerrado biome.
Employing an Extract, Transform, Load (ETL) approach, the research focused on
extracting and transforming large datasets by integrating georeferenced
information from IBGE and data from the Agricultural Risk Zoning (ZARC). The
planting windows for the 2014 to 2019 harvests were identified with a 20% or
lower climate risk, considering variables such as soil and climate conditions. The
results indicated that the availability of images with low cloud coverage is
inversely related to the planting windows, especially during critical periods. To
streamline the processing, algorithms were developed in R and Python, and a
script for automatic image downloading was implemented. Despite data
standardization challenges, applying big data techniques proved essential for the
analysis. This study enhances efficiency in agricultural planning and emphasizes
the importance of further exploring remote sensing technologies in response to
current food security and sustainability demands.
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RESUMO: Este trabalho teve como objetivo a manipulagédo de grandes bases de
dados do projeto Landsat-8 para selecionar cenas orbitais com menor cobertura
de nuvens, correspondendo ao periodo de desenvolvimento das culturas de
algodao, milho e soja no bioma do Cerrado. Utilizando uma abordagem de
Extracdo, Transformacéo e Carregamento (ETL), o estudo focou na extracao e
transformacdo de grandes bases de dados, integrando informacdes
georreferenciadas do IBGE e dados do Zoneamento Agricola de Risco Climatico
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(ZARC). As janelas de plantio para as safras de 2014 a 2019 foram identificadas
com um risco climatico de 20% ou menos, considerando variaveis como solo e
clima. Os resultados mostraram que a disponibilidade de imagens com baixa
cobertura de nuvens é inversamente proporcional as janelas de -cultivo,
especialmente durante periodos criticos. Para facilitar o processamento, foram
desenvolvidos algoritmos em R e Python, e um script para download automatico
de imagens com baixa cobertura de nuvens foi implementado. Apesar dos
desafios na padronizacdo dos dados, este estudo teve como objetivo contribuir
para a eficiéncia do planejamento agricola e destacar a importancia de continuar
a explorar tecnologias de sensoriamento remoto diante das demandas atuais por
seguranca alimentar e sustentabilidade.

PALAVRAS-CHAVE: mapeamento, classificacdo, dados espaciais,
sustentabilidade agricola.
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1. INTRODUCTION

The evolution of Earth observation sensors, installed on space and aerial
platforms, has generated an immense amount of data that is revolutionizing
agricultural monitoring. Daily, this information feeds various applications in
remote sensing, especially in precision agriculture, which benefits from the
increased availability and diversity of sensors. This transformation is vital as it
enables more efficient management of crops, promotes sustainable agricultural
practices, and maximizes productivity.

The applications of remote sensing in agriculture are vast and varied.
Monitoring technigues have proven effective in distinguishing crops, tracking
plant growth, and estimating soil moisture. Additionally, the ability to obtain real-
time information about crop conditions provides a solid foundation for strategic
decisions related to food security and economic management. Early detection of
stress in crops, for example, is crucial for farmers to react quickly and implement
corrective actions that minimize losses.

However, challenges persist in the field of remote sensing, such as
limitations in the spatial and temporal resolution of images and cloud interference.
To address these barriers, various innovative approaches are being explored.
Data fusion from multiple sources and the use of deep learning techniques have
emerged as promising strategies to enhance the quality of the information
obtained. Furthermore, integrating data from different sensors with local
knowledge is essential for a more comprehensive and effective analysis.

In this context, this work aims to manipulate and analyze large databases
from the Landsat-8 project, focusing on selecting orbital scenes with minimal
cloud coverage during critical development periods for cotton, corn, and soybean
crops in the Cerrado biome. The research seeks to implement a structured
Extraction, Transformation, and Loading (ETL) approach to integrate and process
georeferenced information, alongside data from the Agricultural Zoning of
Climate Risk (ZARC) and metadata from IBGE, in order to identify planting
windows with a climate risk of less than 20% between the harvests of 2014 to
2019. Additionally, the study aims to develop algorithms in R and Python to

automate the download of images, allowing for a more efficient process for
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monitoring crops and improving agricultural management practices in light of

contemporary demands for food security and sustainability.

2. THEORETICAL FRAMEWORK

A range of Earth observation sensors embedded in space and aerial
platforms generates vast databases every day, enabling applications in various
research fields. Among these areas, agricultural remote sensing stands out,
benefiting from the increasing launch of new sensors that expand observation
possibilities and promote the success of precision agriculture (Huang et al.,
2018). This technological evolution is crucial as it allows for a more efficient
approach to crop monitoring.

In this context, Kingra et al. (2016) analyzed the various applications of
remote sensing techniques in agriculture, including crop discrimination, growth
monitoring, and soil moisture estimation, among others. Obtaining timely and
reliable information about cultivated areas and their growth conditions can be
extremely beneficial for producers and planners, facilitating strategic decisions
regarding food security and economic management.

Additionally, Hazaymeh et al. (2016) addressed the methods used to
monitor agricultural drought, highlighting the importance of remote sensing as a
powerful tool for capturing spatial dynamics over large areas. They identified
methods such as optical and thermal remote sensing, which have proven
effective compared to in-situ approaches that, while accurate, do not offer the
same spatial coverage.

Complementing these perspectives, Huang et al. (2016) discussed low-
altitude remote sensing systems, focusing on detecting stress in crops, which is
vital for precision agriculture. Early detection of stress allows for a quicker and
more effective response from farmers, contributing to maximized productivity.

The review by Bégué et al. (2018) on remote sensing for mapping
cultivation practices reinforces this idea, revealing that many investigations still
rely on limited local data. This suggests a growing need for research that
combines data from multiple sensors with expert knowledge for a more

comprehensive and effective analysis.
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Sanches et al. (2018) contributed a multi-temporal and multi-sensor
reference database, which can be a valuable tool for mapping agricultural land
use. With in-situ data collection and images from orbital sensors, it was possible
to create a solid foundation for analyzing key annual crops, such as those
occurring in Luis Eduardo Magalhaes (LEM), a crucial agricultural area in Brazil.

Building on such advancements, Feyisaa et al. (2020) highlighted the
limitations of accuracy in mapping agro-ecosystem complexes, particularly in
small agricultural properties. They suggested that participatory classification and
the use of vegetation indices could be effective strategies for addressing the
diversity of cropping systems, emphasizing the importance of local community
participation.

However, challenges such as spatial and temporal resolution and cloud
coverage continue to be significant barriers. To address these limitations,
scholars like Shen et al. (2021) tested space-time fusion models to improve the
quality of NDVI data, demonstrating a continued commitment to innovation in
remote sensing techniques.

Qin et al. (2021) explored the use of optical and thermal remote sensing
for monitoring droughts, pointing out chlorophyll fluorescence as a promising
indicator for early detection. Analysis of future directions, including the integration
of multi-source data and deep learning techniques with knowledge transfer,
suggests an evolutionary path for research in this area.

Ali et al. (2023) advanced further by employing a hyperspectral imaging
system to identify different agricultural species. The use of advanced classifiers
and dimensionality reduction shows promise for achieving high levels of accuracy
in crop classification.

To conclude this chapter, it is essential to recognize that the integration of
advanced remote sensing technologies not only enhances our understanding of
agricultural dynamics but also significantly supports sustainable farming
practices. By leveraging diverse datasets and innovative methodologies,
researchers and practitioners can make informed decisions that ultimately

contribute to food security and efficient resource management in agriculture.
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3. METHODOLOGY

For planning, management, and monitoring projects at a regional scale
that require medium spatial resolution images, the Landsat product portfolio is
widely used. The launch of the Landsat-8 satellite not only continued the historical
series of 40 years but also expanded data collection by including new spectral
bands (443 nm, 1370 nm, 10895 nm, and 12000 nm) and improving the sensor's
signal-to-noise performance and radiometric resolution (Roy et al., 2014;
Vermote et al.,, 2016). This vast amount of data generated by the Landsat-8
sensors results in a large volume of metadata, essential for research and scene
selection, reflecting the so-called "4Vs" (volume, velocity, variety, and veracity)
that characterize the manipulation of large databases. This study focuses on the
first stage of this process, addressing the extraction and transformation of
massive datasets, both georeferenced and non-georeferenced, through
automation in R and Python.

The study area was defined using the vector database of municipal
boundaries provided by IBGE, encompassing all Brazilian municipalities within
the Cerrado. For these municipalities, the planting windows for soybean, corn,
and cotton crops from 2014 to 2019 were identified, with associated climate risk
lower than 20%, using the Agricultural Zoning of Climate Risk (ZARC) (Assad et
al., 2018) provided by MAPA (2018), whose analysis considered different soil
types, climatological normals, and cultivar cycles to estimate crop development
in each harvest.

Additionally, the vector database of Landsat-8 paths (Worldwide
Reference System — WRS2) and the metadata of images associated with the
selected tiles (USGS, 2018) were used to filter orbital scenes, taking into account
atmospheric interference for the mosaic coverage of the area of interest and the
time series. The compatibility between political-administrative boundaries and the
boundaries of the Cerrado biome presented challenges, resulting in information
gaps, especially in municipalities without intersections. To ensure the contiguity
of the layer, it was necessary to select and incorporate these polygons.

The first product was a vector file containing the municipalities of interest,
from which the municipal geocode from IBGE was extracted, serving as a primary
key for subsequent joins with other databases (ZARC and the Landsat-8
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metadata catalog). The ZARC database underwent filtering, selection, field

standardization, and data completion through coding in R (RStudio). The

selection of soybean, corn, and cotton cultivars for the 2014 to 2019 harvests was

based on the planting windows defined by planting dates and climate risk, as

illustrated in Figure 1.

Figure 1 — Schematic diagram used for calculating the planting window for herbaceous cotton,

corn, and soybean
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Source: created by the authors.

To determine the crop cycles, the average number of days based on the

literature was considered: 125 days for soybean (Carneiro et al., 2014, Zito et al.,
2017), 130 days for corn (Cruz et al., 2014), and 150 days for herbaceous cotton

(Marur et al, 2003). Data processing followed the ETL (Extraction,

Transformation, and Loading) method, using algorithms developed in R and

Python through the R Studio and Eclipse IDEs, as well as ArcGIS software (Esri,

2018), along with specific libraries and functions.
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4. RESULTS AND DISCUSSIONS

The main database manipulated was that of the orbital scenes related to
the OLI/TIRS sensor. The mosaic of various scenes for a predefined area allows
for representation of large expanses (Guimardes, 2015). After meeting the
requirements regarding the time intervals (01/01/2014 — 20/09/2018), spatial
coverage (municipal base within the Cerrado biome), and cloud coverage (10%),
a database with the metadata of the scenes was generated, which underwent
adjustment and filtering operations.

As an initial result, Figure 2 shows the composition of information
regarding the recommended time interval for each crop based on latitude.
Subsequently, Figure 3 indicates that orbital scenes with lower cloud coverage
(O to 2%) are concentrated between the months of May and October, based on

the monthly grouping of eligible scenes.

Figure 2 — Cultivation interval calculated based on the planting recommendation by ZARC for
herbaceous cotton, corn, and soybean crops.
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Figure 3 — Monthly number of orbital scenes for the study area, based on cloud cover.
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The plotting of data associating the number of eligible images from the

latitude (Figures 4 to 6). It is noted that the availability of orbital scenes does not

coincide with the cultivation window across nearly the entire latitude range.

Figure 4 — Annual composition of the availability of images with low cloud cover, based on the

interval for herbaceous cotton.
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Figure 5 — Annual composition of the availability of images with low cloud cover, based on the

cultivation interval for corn.
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Figure 6 — Annual composition of the availability of images with low cloud cover, based on the
cultivation interval for soybean.
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A Python script (using the landsatxplore package) was developed for the
automatic download of scenes from the USGS (Earth Explorer) platform based
on the metadata catalog. With the available images, a new stage of data
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extraction will begin, involving pre-processing, classification, and post-processing
of the eligible orbital scenes.

In the initial data treatment process, transformation proved to be one of
the most labor-intensive phases in manipulating the databases, as it involved
diagnosing issues, standardizing, normalizing, and aggregating variables, as well
as applying filters and completing records. Due to the use of mixed databases
(tabular and georeferenced vector data) from various sources, numerous
discrepancies were identified, such as non-standardized municipality names,
incomplete and/or inconsistent data.

Despite the challenges in homogenizing the databases, the application of
the aforementioned techniques derived from the big data paradigm proved
essential in generating consistent and decisive directives in a relatively short time
for subsequent stages of the project. Numerous challenges and opportunities
surround the use of these techniques and should be further explored in the field

of remote sensing (Mingmin, 2016).

5. CONCLUSION

The conclusion of this work highlights the importance of systematically
manipulating large databases, particularly in the context of the Landsat-8 project,
for monitoring cotton, corn, and soybean crops in the Cerrado biome. Through a
structured Extraction, Transformation, and Loading (ETL) approach, it was
possible to identify and select orbital scenes with the least cloud cover, coinciding
with critical phenological development periods of the crops. This process is
essential, as atmospheric conditions can significantly impact image quality,
directly affecting analysis by specialists and agricultural planning.

The results obtained demonstrate an inverse relationship between the
availability of images with low cloud cover and the growing windows for the
analyzed crops. It was observed that, across nearly the entire considered latitude
range, the supply of orbital scenes is limited during the most critical planting and
development periods. This fact emphasizes the importance of efficient data
processing techniques that can address various challenges, such as
inconsistencies in metadata and the heterogeneity of data sources. The use of
automation algorithms developed in R and Python proved crucial for conducting
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analyses in a reduced timeframe, enabling quicker and more informed decision-
making.

Additionally, the implementation of a script for the automatic download of
scenes from the USGS (Earth Explorer) platform represents an advancement that
aids workflow in subsequent stages of pre-processing, classification, and post-
processing of images. The initial manipulation of data proved complex, requiring
standardization, normalization, and completion of variables.

Finally, the research suggests that the techniques and methods presented
here have the potential to positively impact agricultural planning, promoting a
more efficient and sustainable management of crops. The challenges and
opportunities that arise from applying big data technologies in remote sensing
should be further explored, underscoring the need for a commitment to research
and development in this increasingly relevant field in light of climate change and
the growing demand for food. Thus, this work paves the way for future
investigations that can enrich our understanding of the interaction between

technology, the environment, and agricultural practices.
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