
Capítulo 22

Funções para predição do carbono total e estoque de carbono em perfis da XV Reunião Brasileira de Classificação e Correlação de Solos

Ademir Fontana Fabiano de Carvalho Balieiro Maurício Rizzato Coelho José Francisco Lumbreras

1. Introdução

A quantificação do carbono (C) no solo pode ser feita por diversos métodos, especialmente por aqueles que determinam o C total, como o da combustão seca, e o carbono orgânico (C org), como o da oxidação úmida (Guerra; Santos, 2008). Por essa condição prevista pelo princípio dos métodos, obter ou definir a correspondência dos teores de C obtidos por diferentes métodos é uma prerrogativa para atender ao monitoramento do C.

O C total é obtido por (auto) analisadores elementares e quantifica de forma conjunta todos os tipos de C, incluindo tanto materiais orgânicos, como o húmus, raízes, animais, folhas e carvão, quanto os compostos minerais, como carbonatos e bicarbonatos (Guerra; Santos, 2008; Fontana; Bianchi, 2017). Enquanto o C org, por outro lado, é obtido pela oxidação da matéria orgânica por solução com dicromato de potássio ou sódio e quantifica apenas o C proveniente de materiais orgânicos facilmente oxidáveis ou decomponíveis, como o húmus (Walkley; Black, 1934; Fontana; Campos, 2017).

Essa diferença do teor de C deve-se à oxidação parcial do C presente na matéria orgânica do solo pelo método via úmida, com valores entre 60% e 86% (média de 76%) (Walkley; Black, 1934). De acordo com os autores, um fator de conversão que pode ser aplicado é o valor de 1,32 sobre o C org para obter o C total.

A partir dos teores de C, é possível obter os estoques nas diferentes seções do solo, seja nos horizontes, que são separados pela observação das características morfológicas como cor, estrutura e consistência e podem ter espessuras variadas, seja em camadas padrões, que são estabelecidas de forma arbitrária ou por uma espessura de interesse. Para o estoque de C no bioma Amazônia, Moraes et al. (1995) encontraram valores do estoque de C de 23,0 até 217,0 Mg ha⁻¹ e valor médio de 105,0 Mg ha⁻¹, ao passo que, mais recentemente, Gomes et al. (2019)

chegaram à faixa mais estreita e com valores de 64,0 até 149,0 Mg ha⁻¹. Essa amplitude decorre das condições intrínsecas das classes de solo na paisagem e de fatores abióticos, uma vez que os menores e maiores valores foram encontrados nas classes dos Luvissolos e Organossolos, respectivamente.

Com a quantificação dos teores de C nos solos pelos diferentes métodos e a obtenção dos estoques de C, destaca-se a possibilidade de avaliação do potencial de acúmulo que serve como parâmetro para definição de "sumidouros de C". Quando o teor de C é avaliado pelos horizontes, os resultados atestam a ação diferenciada dos processos pedogenéticos na gênese dos solos. Quando o teor de C é avaliado em camadas, é possível também inferir a qualidade do manejo, tipos de cultivo e/ou arranjos de cultivo, bem como a quantificação para avaliação do balanço de C pelos cultivos agrícolas para atender ao emergente mercado ou crédito de C.

Devido à capacidade diferenciada de cada método na quantificação do C, sobressai-se o teor do C total igual ou superior ao C org, com poucas exceções de forma contrária. Por essa condição, quando a intenção é atender aos critérios de certificação e mercado de C ou mesmo à comparação entre os teores, há a necessidade de se realizar a harmonização ou correspondência entre os tipos de C, uma vez que, de um lado, os parâmetros de referência utilizam o C total e, de outro, a maioria dos laboratórios do Brasil obtém o C org.

Dessa forma, este capítulo objetiva desenvolver funções para a predição do carbono total a partir do carbono orgânico, além de calcular o estoque de carbono total e orgânico em um conjunto de diferentes perfis de solo.

2. Material e métodos

2.1. Seleção dos perfis

Os solos avaliados correspondem a perfis descritos e amostrados nas RCCs do Pantanal (Carvalho Filho et al., 2012), Roraima (Oliveira et al., 2018), Rondônia (Oliveira et al., 2019), Maranhão (Oliveira et al., 2020), Amazonas e Pará (vide Capítulo 9) e no município de Bom Jardim, RJ (dados não publicados) (Apêndice 21.1).

Pela denominação dos horizontes genéticos, os horizontes superficiais incluem A, AB, AE, AC, H, e os subsuperficiais, BA, BE, CA, EA, B, E, C, ambos com seus subscritos. A profundidade máxima dos horizontes superficiais é de 280 cm, tendo a maioria profundidade inferior a 50 cm, enquanto os horizontes subsuperficiais possuem profundidade inicial de 3 cm até a profundidade máxima de 410 cm, tendo a maioria profundidade inferior a 150 cm.

Neste trabalho são avaliados os horizontes minerais, classificados segundo Santos et al. (2018), agrupados como a seguir: a) superficiais não antrópicos: A chernozêmico, A húmico, A proeminente, A moderado, A fraco; b) superficiais antrópicos: A antrópico; c) subsuperficiais: B latossólico, B textural, B plânico e B espódico, glei, plíntico, vértico, E e C; d) orgânicos: H hístico.

2.2. Análises laboratoriais

2.2.1. Determinação das frações granulométricas

Amostras de solo foram submetidas à dispersão por uma solução de hidróxido de sódio, e a determinação deu-se pelo método do densímetro. Foram obtidos os teores de areia grossa (2 - 0,512 mm), areia fina (0,512 - 0,053 mm), silte (0,053 - 0,002 mm) e argila total (< 0,002 mm) (Donagemma et al., 2017).

2.2.2 Determinação do carbono orgânico

Amostras de solo foram submetidas à oxidação por uma solução com uma mistura de dicromato de potássio e ácido sulfúrico, associada com fonte de calor externa. A determinação do C org ocorre indiretamente em função da reação do carbono presente nos compostos orgânicos com o dicromato de potássio.

O cálculo do teor de C org é efetuado pelo volume de dicromato de potássio utilizado na oxidação da matéria orgânica, o qual é obtido pela diferença entre o volume de uma prova em branco e o de uma amostra pela titulação com a solução de sulfato ferroso amoniacal (Fontana; Campos, 2017). Esse método é definido como Walkley e Black (1934) modificado por Vettori (1969) devido à adição da fonte de calor externa ao método proposto por Walkley e Black (1934).

2.2.3 Determinação do carbono total

Todas as amostras de solo foram submetidas ao processo de combustão com temperatura em torno de 1.000 °C em equipamento (auto) analisador elementar. Pela combustão, o C é convertido em CO₂, sendo arrastado para fora da câmara de combustão por meio de um gás de transporte inerte, como o hélio, e passa através de uma coluna aquecida (em torno de 625 °C) de cobre de elevada pureza. O cobre tem a função de remover o oxigênio residual não consumido na combustão.

Para a determinação do C, o gás gerado na câmara de combustão (CO₂) é separado em uma coluna de cromatografia gasosa, seguido da detecção por condutividade térmica (Fontana; Bianchi, 2017).

2.2.4. Obtenção das funções de predição do carbono total do solo

Os teores de C e estoque foram avaliados quanto aos tipos ou origem dos horizontes, sendo minerais não antrópicos, antrópicos e orgânicos. Foi considerada também a posição de ocorrência no perfil de solo, sendo superficiais (não antrópicos e antrópicos) e subsuperficiais. Dos horizontes orgânicos (H hísticos), devido ao baixo número de dados (n = 5), não foram efetuadas avaliações.

A taxa de recuperação (TR%) foi obtida considerando o C total como método de referência:

$$TR \% = 1 - \left[\frac{(C total - C org)}{C total} \right] \times 100 \tag{1}$$

Em seguida, foi calculado um fator de correspondência ou fator de correção (FC) entre os métodos por meio da Equação 2.

$$FC = \frac{c \ total}{c \ org} \tag{2}$$

Para a calibração das funções de predição do C total foi utilizado o modelo linear. A avaliação do desempenho preditivo de cada função foi baseada na raiz quadrática média do erro (root mean square error - RMSE) e no coeficiente de determinação ajustado (R²ajus). Quanto mais próximo de zero estiver o RMSE, mais precisas são as previsões. O R² assume valores entre 0,0 e 1,0, onde um valor de 1,0 indica o ajuste perfeito.

$$RMSE = \left[(1/N) \sum_{i=1}^{N} \left(C \ total_i - C \ total_{obs,i} \right)^2 \right]^{1/2}$$
(3)

$$R_{adj}^{2} = 1 - \left(1 - \frac{\sum_{i=1}^{N} (C \ total_{i} - C \ total_{i})^{2}}{\sum_{i=1}^{N} (C \ total_{i} - C \ total_{i})^{2}}\right) \frac{(N-1)}{(N-p)}$$
(4)

Onde:

C total_{obs}, i: i-ésimo valor observado; C total_{pred}, i: i-ésimo valor previsto; N: número de observações; p: número de preditores.

Os resultados obtidos pelas funções propostas são plotados em relação aos valores observados em uma linha 1:1 (linha de identidade) para comparação.

2.2.5. Cálculo do estoque de carbono dos perfis de solo

Diferentemente da obtenção das funções de predição do C total, foram utilizados dados apenas dos perfis da XV Reunião Brasileira de Classificação e Correlação de Solos (XV RCC), classificados segundo Santos et al. (2018). O estoque de carbono é obtido para cada perfil até a profundidade de coleta (Apêndice 21.2).

Pela falta de dados de Ds de alguns horizontes nos solos minerais, os valores de Ds foram preditos nos perfis AM-02 (horizonte Bwc1) e AM-15 (horizonte 4C) pela função de pedotransferência (PTF4) do trabalho de Reis et al. (2024). Nos solos orgânicos como o PA-17 (horizontes 2Ho1 e 2Ho2), a Ds foi obtida aplicando-se a função de pedotransferência (F2) do trabalho de Beutler et al. (2017). Os teores de C org dos horizontes 2Ho1 e 2Ho2 (PA-17) foram obtidos pela divisão do teor de matéria orgânica (mufla) pelo fator 1,86, conforme definição proposta por Valladares (2003) e contemplada no manual de métodos de análise de solo por Fontana et al. (2017).

O estoque de C de cada horizonte foi obtido pela equação proposta por Veldkamp (1994), com a inclusão da proporção de materiais grossos (PMG) para correção do volume

ocupado por essa fração. A PMG foi obtida a partir da densidade média das frações grossas de 2,8 g cm⁻³.

$$Est C = C \times Ds \times (1-PMG) \times E \times 0,1 \tag{5}$$

Em que:

Est C: estoque de C do horizonte (Mg ha⁻¹); C: teor de C do horizonte (g kg⁻¹); Ds: densidade do solo do horizonte (kg dm⁻³); PMG: proporção dos materiais grossos (decimal); E: espessura do horizonte (cm).

O estoque total de C de cada perfil é obtido pela Equação 6:

Estoque total
$$C(Mg ha^{-1}) = soma do Est C de todos os horizontes$$
 (6)

2.2.6. Cálculo do estoque de carbono em camadas do solo

Os estoques obtidos por cada horizonte genético (definido por características morfológicas – cor, estrutura e consistência) com espessuras variadas (item 2.2.5) foram agrupados para camadas padrão de 0 a 30 cm e 0 a 100 cm que são preconizadas pelo IPCC e FAO (FAO, 2020).

A adequação foi realizada multiplicando-se o estoque de C de cada horizonte pela sua espessura, e, quando é necessário atingir a espessura da camada de interesse (30 ou 100 cm), soma-se o resultado da multiplicação do estoque de C do horizonte pela espessura necessária para atingir a camada de interesse, e divide-se o resultado pela espessura total da camada de interesse.

$$Estoque\ C\ (camada) = (Estoque\ C\ x\ EsHorX + Estoque\ C\ x\ EsHorXn)\ /\ EsTC \tag{7}$$

Em que:

Estoque C: estoque de C do horizonte; EsHorX: espessura do horizonte que contribui para atingir a camada de interesse; EsCT: espessura total da camada de interesse.

O estoque total de C de cada camada (0-30 cm e 0-100 cm) é obtido pela seguinte equação:

Estoque total $C(Mg ha^{-1}) = soma do Est C de todas as camadas (até 0-30 cm e 0-100 cm)$ (8)

3. Resultados e discussão

3.1. Predição do carbono total do solo (todos os perfis)

Nos horizontes superficiais não antrópicos, os teores de C org variam entre 1,1 e 58,9 g kg⁻¹, enquanto o C total, entre 1,7 e 76,5 g kg⁻¹ (Figura 22.1). O valor da taxa de recuperação

(TR) do C org tem média de 75% (21% a 118%), sendo a maioria entre 60% e 100%, enquanto o fator de correspondência ou correção médio é de 1,40 do C org para o C total (Figura 22.1).

Para os horizontes A antrópicos, os teores de C org variam entre 5,3 e 21,7 g kg⁻¹, enquanto o C total, entre 7,1 e 46,9 g kg⁻¹ (Figura 22.1). O valor da taxa de recuperação (TR) do C org tem média de 59% (31% a 81%), enquanto o fator de correspondência ou correção médio é de 1,92 do C org para o C total (Figura 22.1).

Quanto ao valor do FC muito superior nos horizontes A antrópicos, isso se deve à maior participação do C presente em estruturas orgânicas recalcitrantes como o carvão, o qual não é quantificado no método via úmida (Fontana; Campos, 2017).

Nos horizontes subsuperficiais, os teores de C org variam entre 0,1 e 14,5 g kg⁻¹, enquanto o C total, entre 0,2 e 16,2 g kg⁻¹ (Figura 22.2). O valor da taxa de recuperação (TR) do C org tem média de 72% (15% a 150%), sendo a maioria entre 55% e 100%, enquanto o fator de correspondência ou correção médio é de 1,54 do C org para o C total (Figura 22.1).

O valor do FC obtido nos horizontes superficiais não antrópicos está em consonância com o apresentado por Walkley e Black (1934), que é de 1,32 com uma recuperação média de 76% (60% a 86%), enquanto para os horizontes subsuperficiais é ligeiramente superior.

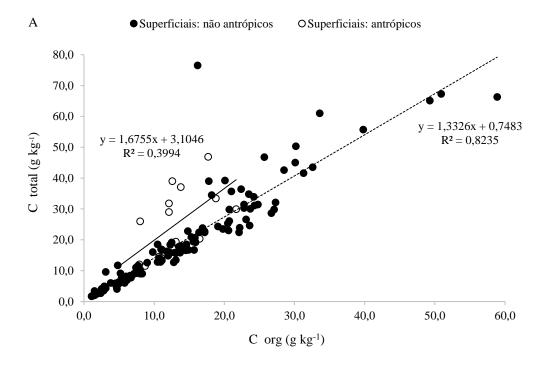
Em trabalho desenvolvido sob cultivo de eucalipto na região centro-leste do estado de Minas Gerais, foi observado fator ligeiramente inferior, sendo em média 1,22 (1,16 a 1,25) para a camada superficial de três tipos de solo (Cambissolos, Latossolos e Neossolos) (Gatto et al., 2009).

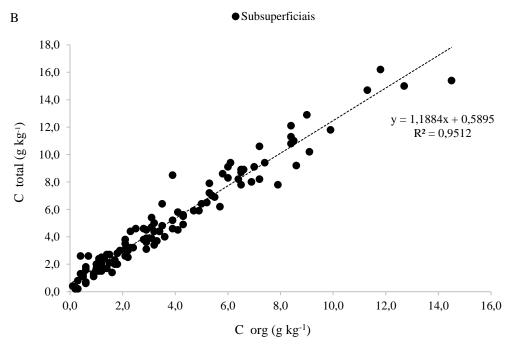
Figura 22.1. Estatística descritiva do C org, C total, TR e FC dos horizontes superficiais.

		Não anti	rópicos			A antı	rópico	
Variável	C org	C total	TR	FC	C org	C total	TR	FC
	g k	xg ⁻¹	%		g 1	kg-1	%	
Média	14,8	20,5	75	1,40	12,7	24,3	59	1,92
Mediana	13,1	16,7	76	1,31	12,4	23,2	67	1,50
Moda	1,1	9,0	76	1,27	12,1	-	38	-
Mínimo	1,1	1,7	21	0,85	5,3	7,1	31	1,23
Máximo	58,9	76,5	118	4,72	21,7	46,9	81	3,25
Desv Pad	10,8	15,8	14	0,44	4,3	11,5	19	0,73
Curtose	3,0	1,9	2,1	30,17	0,0	-0,8	-1,8	-1,21
Assimetria	1,4	1,4	-0,7	4,64	0,4	0,3	-0,4	0,71
Contagem	111	111	111	111	16	16	16	16

TR: Taxa de recuperação; FC: fator de correspondência ou correção; Desv Pad: Desvio padrão.

Figura 22.2. Estatística descritiva do C org, C total, TR e FC dos horizontes subsuperficiais.


V	C org	C total	TR	FC
Variável —	——-g	kg-1	%	
Média	3,7	5,0	72	1,54
Mediana	2,9	4	74	1,36
Moda	1,2	2	74	1,36
Mínimo	0,1	0,2	15	0,67
Máximo	14,5	16,2	150	6,50
Desv Pad	3,0	3,6	18	0,69
Curtose	1,3	0,6	3	24,75
Assimetria	1,2	1,0	0	4,25
Contagem	117	117	117	117,00


TR: Taxa de recuperação; FC: fator de correspondência ou correção; Desv Pad: Desvio padrão.

Os teores de C org têm correlação positiva e significativa com o C total nos horizontes superficiais não antrópicos (0,91), horizontes superficiais antrópicos (0,63) e horizontes subsuperficiais (0,97) (Figura 22.1). Nesse sentido, destaca-se o potencial de aplicação das funções para predição do C total diante da escassez de equipamentos para análise ao longo do País, sendo uma opção viabilizar a utilização dos dados obtidos como C org pelo método via úmida.

Em estudos com horizontes de diferentes tipos de solos, para as camadas superficiais, intermediárias e subsuperficiais, sob cultivo de eucalipto na região centro-leste do estado de Minas Gerais, foi obtida correlação satisfatória do C org com o C total, sendo 0,929, 0,966 e 0,929, respectivamente (Gatto et al., 2009). Em horizontes superficiais e subsuperficiais minerais com variação de classes texturais de diversas regiões e estados do Brasil, a correlação variou entre 0,95 e 0,975 (Machado et al., 2003).

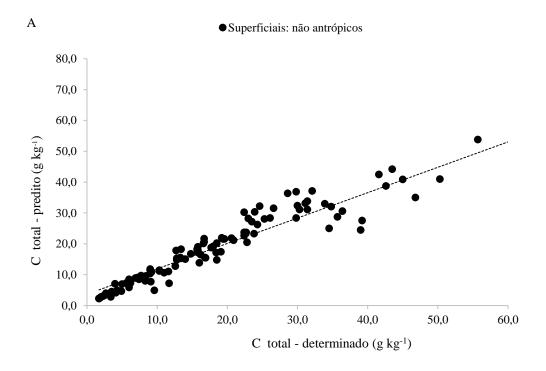
Em avaliações na camada de 0 a 20 cm de solos do Cerrado, sob vegetação natural e cultivo, observou-se uma correlação de 0,925 (Sato et al., 2014), e em solos do Rio Grande do Sul a correlação foi de 0,936 (Frattini; Kalckmann, 1967).

Figura 22.1. Dispersão dos teores de C org com o C total dos horizontes superficiais (A) e subsuperficiais (B).

A constatação de elevada correlação entre os tipos de C nos horizontes superficiais não antrópicos e subsuperficiais indica que os métodos apresentam correspondência satisfatória e a possibilidade do desenvolvimento de funções de regressão para a predição do C total a partir do C org, enquanto, para os horizontes superficiais antrópicos, o valor da correlação denota a

influência dos componentes-fonte de C na variação entre o C org e o C total, especialmente a presença de carvões, o qual não é quantificado no método que obtém o C org.

Com base na afirmação anterior, para a predição dos teores de C total a partir dos teores de C org, são propostas funções desenvolvidas para os horizontes superficiais não antrópicos e subsuperficiais independentemente da textura, uso, cobertura e manejo (Figura 22.3). A menor precisão das funções para obtenção do C total nos horizontes superficiais denota a maior variabilidade, intrínseca a esses horizontes, da composição e transformação do material orgânico, como a presença de material orgânico particulado e/ou carvão, mesmo que em pouca quantidade.


Pelos valores do RMSE, a função para a predição dos teores de C total nos horizontes superficiais não antrópicos tem precisão regular e, para os subsuperficiais, tem precisão boa (Figura 22.3). Dessa forma, a dispersão entre os teores de C total observados e preditos para cada tipo de horizonte corrobora a eficácia da predição a partir do C org (Figura 22.2).

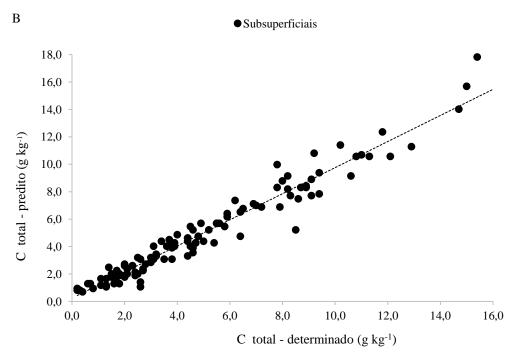

Para os horizontes superficiais não antrópicos, a maior variabilidade da composição e estado de transformação do material orgânico depositado como resíduos denota uma predição de C total com maiores incertezas. Essa condição, apesar de ser um ponto desfavorável à aplicação dessa metodologia para a obtenção do C total, não a inviabiliza, mas denota que é possível um aprimoramento com maior detalhamento de fatores de influência, como o tipo de cobertura ou vegetação, manejo e tipo de cultivo e textura do solo.

Figura 22.3. Equações de regressão para predição dos teores de C total (g kg⁻¹) a partir dos teores de C org (g kg⁻¹) nos horizontes superficiais não antrópicos e subsuperficiais.

Função	Horizontes	Equação	R ²	RMSE	N
F1	Superficiais (não antrópicos)	C total = $1,3326 \times C \text{ org} + 0,7483$	0,8235	6,58	111
F2	Subsuperficiais	C total = $1,1884 \times C \text{ org} + 0,5895$	0,9512	0,80	117

 R^2 : coeficiente de determinação; RMSE: raiz quadrática média do erro em g kg^{-1} ; N: número de amostras; C total: carbono total; C org: carbono orgânico.

Figura 22.2. Teores de C total determinados versus preditos nos horizontes superficiais não antrópicos (A) e subsuperficiais (B).

3.2. Estoque de carbono do solo (perfis da XV RCC)

Avaliando todos os perfis de solo, os valores do estoque de carbono orgânico (Est C org) variam entre 50,3 e 699,5 Mg ha⁻¹, enquanto os valores do estoque de carbono total (Est C total) são expressivamente superiores e variaram entre 85,5 e 910,5 Mg ha⁻¹.

O maior valor do Est C org está no Organossolo Háplico (PA-17), que tem em sua composição grande proporção de matéria orgânica, e o menor, no Gleissolo Háplico (AM-12). Para o Est C total, o maior também está no Organossolo Háplico (PA-17), e o menor, no Plintossolo Argilúvico (AM-08).

A variação entre tipos de solos deve-se aos processos pedogenéticos que determinam a composição intrínseca de cada classe de solo, destacando-se a classe dos Organossolos e os solos com horizontes diagnósticos A húmicos, que possuem maiores espessuras de camadas com grande quantidade de C. Essas variações serão ressaltadas a seguir quando avaliada a proporção das camadas de 0 a 30 cm e 0 a 100 cm em relação a todo o perfil.

No que tange aos solos do bioma Amazônia, os valores estão dentro da faixa obtida por outros autores, com exceção do Organossolo Háplico (PA-17), cujos valores são muito superiores. Moraes et al. (1995) obtiveram valores de 23,0 até 217,0 Mg ha⁻¹, e o valor médio é de 105,0 Mg ha⁻¹. Mais recentemente, Gomes et al. (2019) observaram valores de 64,0 até 149,0 Mg ha⁻¹, para Luvissolos e Organossolos, respectivamente.

Na avaliação dos solos minerais na camada de 0 a 100 cm, destacam-se os perfis AM-01, PA-06 e PA-07, com o Est C org superando 180,0 Mg ha⁻¹ (Figura 22.3) e o Est C total a 260,0 Mg ha⁻¹ (Figura 22.4). Na camada de 0 a 30 cm, mantém-se esses mesmos padrões, porém com valores inferiores. Nesses perfis, os horizontes superficiais são classificados como A antrópico (AM-01, Argissolo Amarelo) e A húmico (PA-06 e PA-07, Neossolo Quartzarênico e Latossolo Amarelo, respectivamente), os quais se sobressaem pela contribuição do C na sua composição e definição.

Os menores valores para os Est C org nas camadas de 0 a 30 cm e 0 a 100 cm ocorrem no perfil AM-09 (Figuras 22.3 e 22.4), Espodossolo Humilúvico, com horizonte superficial classificado como A fraco. Os menores valores para o Est C total foram no AM-09, Espodossolo Humilúvico (0-100 cm), e AM-15, Gleissolo Háplico (0-30 cm), com horizontes superficiais classificados como A moderado e A fraco, respectivamente.

Notadamente, o perfil PA-17 (Organossolo Háplico) distingue-se pelo elevado Est de C, o que é conferido pelas condições pedogenéticas que determinam sua essência de composição orgânica. Nesse perfil os valores de carbono aumentam em profundidade, sendo destacado o seu incremento na camada abaixo de 30 cm a partir da superfície do solo (Figuras 22.3 e 22.4).

Quanto à proporção do estoque de C na camada de 0 a 100 cm, em geral ela representa aproximadamente 2/3, exceto o perfil AM-09 (Espodossolo), em que não passa de 1/4. Na camada de 0 a 30 cm, em geral, a proporção representa aproximadamente 1/3, exceto o perfil AM-09, onde é aproximadamente 1/9. O perfil AM-09 é classificado como Espodossolo, cujo princípio de formação preconiza a acumulação iluvial de matéria orgânica humificada no horizonte subsuperficial B espódico, que se inicia a 317 cm de profundidade.

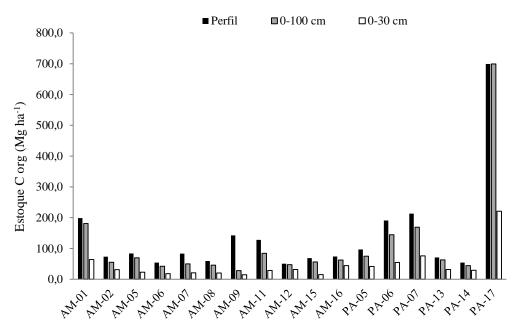


Figura 22.3. Estoques de C org no perfil e camadas do solo.

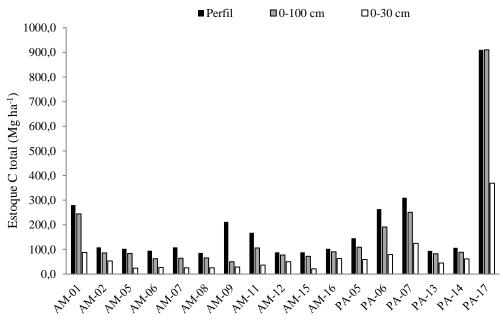


Figura 22.4. Estoques de C total no perfil e camadas do solo.

4. Considerações finais

As funções para a predição dos teores de C total a partir do C org têm potencial como utilização alternativa diante de limitações para a obtenção do C total por equipamentos automáticos, em especial para a função dos horizontes superficiais não antrópicos e subsuperficiais.

Os valores dos Est C dos solos minerais são variados, baixos a intermediários em todo o perfil dos Gleissolos Háplicos, Cambissolo Flúvico e Plintossolo Argilúvico, enquanto se sobressaem com estoque mais elevado em subsuperfície no Espodossolo Humilúvico.

Os valores do Est C para os solos minerais entre 0 e 100 cm de profundidade são menores nos Gleissolos Háplicos e Espodossolo Humilúvico e maiores nos Latossolos Amarelos (com horizontes A húmico e A antrópico) e Neossolo Quartzarênico (com horizonte A húmico).

Destaca-se a capacidade de estocagem de altas quantidades de C no solo orgânico, representado pelo Organossolo Háplico, sendo considerado um sumidouro de C.

Sugere-se quantificar o estoque de C até pelo menos 100 cm de profundidade nos solos espessos e de maior desenvolvimento pedogenético, como os Argissolos e Latossolos, e em todos os horizontes com elevado conteúdo de carbono, como os horizontes hísticos, A húmico e A antrópico.

Referências

BEUTLER, S. J.; PEREIRA, M. G.; TASSINARI, W. de S.; MENEZES, M. D. de; VALLADARES, G. S.; ANJOS, L. H. C. dos. Bulk density prediction for Histosols and soil horizons with high organic matter content. Revista Brasileira de Ciência do Solo, v. 41, e0160158, 2017. Disponível em: https://doi.org/10.1590/18069657rbcs20160158. Acesso em: 16 jan. 2025.

CARVALHO FILHO, A.; LUMBRERAS, J. F.; CARDOSO, E. L.; MOTTA, P. E. F.; JACOMINE, P. K. T.; COELHO, M. R.; ARAÚJO, A. R.; FERNANDES, F. A.; OLIVEIRA, V. A. Solos da X Reunião Brasileira de Classificação e Correlação de Solos (RCC do Pantanal). In: CARDOSO, E. L.; CRISPIM, S. M. A.; CARVALHO FILHO, A.; LUMBRERAS, J. F.; MOTTA, P. E. F. da; ARAÚJO, A. R.; FERNANDES, A. H. B. M.; JACOMINE, P. K. T.; FERNANDES, F. A.; COELHO, M. R.; CALDERANO, S. B.; SHINZATO, E.; SOARES, M. T. S. (ed.). Guia de campo da X Reunião Brasileira de Classificação e Correlação de Solos: RCC do Pantanal. Guia de Campo. Brasília, DF: Embrapa, 2012.

DONAGEMMA, G. K.; VIANA, J. H. M.; ALMEIDA, B. G.; RUIZ, H. A.; KLEIN, V. A.; DECHEN, S. C. F.; FERNANDES, R. B. A. Análise granulométrica. In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. (ed.). **Manual de métodos de análise de solo**. 3. ed. rev. e ampl. Brasília, DF: Embrapa, 2017. p. 95-116.

FAO. A protocol for measurement, monitoring, reporting and verification of soil organic carbon in agricultural landscapes: GSOC-MRV protocol. Rome, 2020. DOI: https://doi.org/10.4060/cb0509en.

FONTANA, A.; BIANCHI, S. R. Carbono e nitrogênio total - analisador elementar. In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA. W. G. (ed.). Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasília, DF: Embrapa, 2017. p. 393-396.

FONTANA, A.; CAMPOS, D. V. B. Carbono orgânico. In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. (ed.). **Manual de métodos de análise de solo**. 3. ed. rev. e ampl. Brasília, DF: Embrapa, 2017. p. 360-367.

FONTANA, A.; SOARES, P. F.; ANJOS, L. H. C. dos; VALLADARES, G. S. Solos com altos teores de matéria orgânica. In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA. W.

- G. (ed.). Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasília, DF: Embrapa, 2017. p. 427-437.
- FRATTINI, C. T. A.; KALCKMANN, R. E. Correlação entre alguns métodos de determinação de carbono. **Pesquisa Agropecuária Brasileira**, v. 2, p. 259-261, 1967.
- GATTO, A.; BARROS, N. F. de; NOVAIS, R. F.; SILVA, I. R.; MENDONÇA, E. de S.; VILLANI, E. M. de A. Comparação de métodos de determinação do carbono orgânico em solos cultivados com eucalipto. Revista Brasileira de Ciência do Solo, v. 33, p. 735-740, 2009. Disponível em: https://doi.org/10.1590/S0100-06832009000300026. Acesso em: 25 ago. 2024.
- GOMES, L. C.; FARIA, R. M.; SOUZA, E. de; VELOSO, G. V.; SCHAEFER, C. E. G. R.; FERNANDES FILHO, E. I. Modelling and mapping soil organic carbon stocks in Brazil. **Geoderma**, v. 340, p. 337-350, 2019. Disponível em: https://doi.org/10.1016/j.geoderma.2019.01.007. Acesso em: 3 set. 2024.
- GUERRA, J. G. M.; SANTOS, G. A. Métodos químicos e físicos. In: SANTOS, G. A.; SILVA, L. S; CANELLAS, L. P.; CAMARGO, F. A. O. (ed.). Fundamentos da matéria orgânica do solo: ecossistemas tropicais & subtropicais. 2. ed. rev. e atual. Porto Alegre: Metrópole, 2008. p. 185-199.
- MACHADO, P. L. O. de A.; CAMPOS, A. C. de; SANTOS, F. S. dos. Métodos de preparo de amostras e de determinação de carbono em solos tropicais. Rio de Janeiro: Embrapa Solos, 2003. 9 p. (Embrapa Solos. Circular técnica, 19). Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPS/11582/1/circtec_19_2003_metodos_preparo.pdf. Acesso em: 25 ago. 2024.
- MORAES, J. L.; CERRI, C. C.; MELILLO, J. M.; KICKLIGHTER, D.; NEIL, C.; SKOLE, D. L.; STEUDLER, P. A. Soil carbon stocks of the Brazilian Amazon Basin. **Soil Science Society of America Journal**, v. 59, p. 244-247, 1995. Disponível em: https://acsess.onlinelibrary.wiley.com/doi/epdf/10.2136/sssaj1995.03615995005900010038x. Acesso em: 3 set. 2024.
- OLIVEIRA, V. A. de; LUMBRERAS, J. F.; COELHO, M. R.; MENDES, A. M.; ANJOS, L. H. C. dos; CIPRIANI, H. N.; MEDEIROS, I. M. de; CALDERANO, S. B.; KER, J. C. Solos da XII Reunião Brasileira de Classificação e Correlação de Solos: RCC de Rondônia. In: LUMBRERAS, J. F.; SILVA, L. M. da; ANJOS, L. H. C. dos; OLIVEIRA, V. A. de; WADT, P. G. S.; PEREIRA, M. G.; DELARMELINDA-HONORÉ, E. A.; BURITY, K. T. L. (ed.). Guia de campo da XII Reunião Brasileira de Classificação e Correlação de Solos: RCC de Rondônia. Brasília, DF: Embrapa, 2019. E-book. Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/203098/1/Guia-de-campo-da-XII-RCC-Rondonia.epub. Acesso em: 24 ago. 2024.
- OLIVEIRA, V. A. de; LUMBRERAS, J. F.; SILVA, M. B. e; COELHO, M. R.; ALMEIDA, J. A. de; ARAÚJO FILHO, J. C. de; MENDONÇA-SANTOS, M. de L.; MOURA-BUENO, J. M.; SANTIAGO, C. M. Solos da XIII Reunião Brasileira de Classificação e Correlação de Solos (RCC do Maranhão). In: SILVA, M. B. e; LUMBRERAS, J. F.; COELHO, M. R.; OLIVEIRA, V. A. de (ed.). Guia de campo da XIII Reunião Brasileira de Classificação e Correlação de Solos: RCC do Maranhão. Brasília, DF: Embrapa, 2020. E-book. Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/218466/1/Guia-de-campo-da-XIII-RCC-Maranhao.epub. Acesso em: 24 ago. 2024.
- OLIVEIRA, V. A. de; VALE JUNIOR, J. F. do; SCHAEFER, C. E. G. R.; LUMBRERAS, J. F.; COELHO, M. R.; MELO, V. F.; CAMPOS, M. C. C.; CORRÊA, G. R.; CALDERANO, S. B.; KER, J. C. Solos da XI Reunião Brasileira de Classificação e Correlação de Solos (RCC de Roraima). In: BATISTA, K. D.; LUMBRERAS, J. F.; COELHO, M. R.; OLIVEIRA, V. A. de; VALE JUNIOR, J. F. do. (ed.). Guia de campo da XI Reunião Brasileira de Classificação e Correlação de Solos: RCC de

Roraima. Brasília, DF: Embrapa, 2018. E-book. Disponível em: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1104265. Acesso em: 25 ago. 2024.

REIS, A. M. H. dos; TEIXEIRA, W. G.; FONTANA, A.; BARROS, A. H. C.; VICTORIA, D. de C.; VASQUES, G. M.; SAMUEL-ROSA, A.; OTTONI, M. V.; MONTEIRO, J. E. B. de A. Hierarchical pedotransfer functions for predicting bulk density in Brazilian soils. **Scientia Agricola**, v. 81, e20220255, 2024. Disponível em: https://www.scielo.br/j/sa/a/qVttcTxS6KV7ypyTh33Zydh/. Acesso em: 3 set. 2024.

SANTOS, H. G. dos; JACOMINE, P. K. T.; ANJOS, L. H. C. dos; OLIVEIRA, V. A. de; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A. de; ARAÚJO FILHO, J. C. de; OLIVEIRA, J. B. de; CUNHA, T. J. F. **Sistema Brasileiro de Classificação de Solos**. 5. ed. rev. e ampl. Brasília, DF: Embrapa, 2018. 356 p. Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/199517/1/SiBCS-2018-ISBN-9788570358004.pdf. Acesso em: 25 ago. 2024.

SATO, J. H.; FIGUEIREDO, C. C.; MARCHÃO, R. L.; MADARI, B. E.; BENEDITO, L. E. C.; BUSATO, J. G.; SOUZA, D. M. de D. Methods of soil organic carbon determination in Brazilian savannah soils. **Scientia Agricola**, v. 71, n. 4, p. 302-308, 2014. Disponível em: https://doi.org/10.1590/0103-9016-2013-0306. Acesso em: 25 ago. 2024.

VALLADARES, G. S. Caracterização de Organossolos, auxílio à sua classificação. 2003. 129 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica.

VELDKAMP, E. Organic carbon turnover in three tropical soils under pasture after deforestation. **Soil Science Society of America Journal**, v. 58, p. 175-180, 1994.

VETTORI, L. **Métodos de análise de solo**. Rio de Janeiro: Equipe de Pedologia e Fertilidade do Solo, 1969. 24 p. (Brasil. Equipe de Pedologia e Fertilidade do Solo. Boletim técnico, 7).

WALKLEY, A.; BLACK, I. A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. **Soil Science**, v. 37, n. 1, p. 29-38, Jan. 1934. Disponível em: http://dx.doi.org/10.1097/00010694-193401000-00003. Acesso em: 25 ago. 2024

Apêndice 22.1: Teores de carbono obtidos por diferentes métodos de horizontes de solos de diversas regiões do Brasil.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonto	Horizonte	Prof inicial	Prof final	C org	C total	TR	FC
Municipio	Estado	Dioma	USO	renn	horizonte	Horizonte	superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	rc
Icatu	MA	Cerrado	Queimada	MA-01	A1	Superficial	A moderado	0	7	18,2	34,5	53	1,9
Icatu	MA	Cerrado	Queimada	MA-01	A2	Superficial	A moderado	7	28	2,4	2,7	89	1,13
Icatu	MA	Cerrado	Queimada	MA-01	AE	Superficial	A moderado	28	63	1,1	1,7	65	1,55
Icatu	MA	Cerrado	Queimada	MA-01	EA	Subsuperficial		63	100	0,6	0,7	86	1,17
Icatu	MA	Cerrado	Queimada	MA-01	EA	Subsuperficial		100	152	0,1	0,4	25	4
Icatu	MA	Cerrado	Queimada	MA-01	Bs/E	Subsuperficial		152	230	1,3	2,4	54	1,85
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Au	Superficial	A antrópico	0	13	17,7	46,9	38	2,65
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Auk1	Superficial	A antrópico	13	36	18,8	33,4	56	1,78
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Auk2	Superficial	A antrópico	36	56	13,8	37,1	37	2,69
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Auk3	Superficial	A antrópico	56	75	12,1	29	42	2,4
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Auk4	Superficial	A antrópico	75	123	12,6	39	32	3,1
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Auk5	Superficial	A antrópico	123	148	12,1	31,8	38	2,63
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Auk6	Superficial	A antrópico	148	165	8	26	31	3,25
São José de Ribamar	MA	Cerrado	Capoeira	MA-14	Ab	Superficial	A enterrado	255	280	1,5	3,4	44	2,27
Morros	MA	Cerrado	Capoeira	MA-16	A	Superficial	A moderado	0	10	4,8	11,7	41	2,44
Morros	MA	Cerrado	Capoeira	MA-16	AE	Superficial	A moderado	10	30	1,7	2,3	74	1,35
Morros	MA	Cerrado	Capoeira	MA-16	E	Subsuperficial		30	73	0,3	0,8	38	2,67
Morros	MA	Cerrado	Capoeira	MA-16	Bh1	Subsuperficial		73	120	6,1	9,4	65	1,54
Morros	MA	Cerrado	Capoeira	MA-16	Bh2	Subsuperficial		120	140	5,3	7,2	74	1,36
Rorainópolis	RR	Amazônia	Horticultura	RR-01	Aup	Superficial	A antrópico	0	14	10,7	14,5	74	1,36
Rorainópolis	RR	Amazônia	Horticultura	RR-01	Au1	Superficial	A antrópico	14	41	7,9	12	66	1,52
Rorainópolis	RR	Amazônia	Horticultura	RR-01	Au2	Superficial	A antrópico	41	63	5,3	7,1	75	1,34
Rorainópolis	RR	Amazônia	Horticultura	RR-01	BA1	Subsuperficial		63	72	3,9	5,2	75	1,33
Rorainópolis	RR	Amazônia	Horticultura	RR-01	BA2	Subsuperficial		72	94	2,9	3,6	81	1,24
Rorainópolis	RR	Amazônia	Horticultura	RR-01	Bt1	Subsuperficial		94	110	1,8	2	90	1,11
Ariquemes	RO	Amazônia	Pastagem	RO-12	Ap1	Superficial	A moderado	0	14	26,7	28,6	93	1,07
Ariquemes	RO	Amazônia	Pastagem	RO-12	Ap2	Superficial	A moderado	14	20	14,5	16,6	87	1,14
Ariquemes	RO	Amazônia	Pastagem	RO-12	BA	Subsuperficial		20	30	9,1	10,2	89	1,12
Ariquemes	RO	Amazônia	Pastagem	RO-12	Bw1	Subsuperficial		30	53	6,9	8	86	1,16
Ariquemes	RO	Amazônia	Pastagem	RO-12	Bw2	Subsuperficial		53	72	6,4	8,2	78	1,28
Ariquemes	RO	Amazônia	Pastagem	RO-12	2Ab	Superficial	A enterrado	72	103	8,3	9	92	1,08
Ariquemes	RO	Amazônia	Pastagem	RO-12	2ABb	Superficial	A enterrado	103	133	6,1	6,9	88	1,13
Ariquemes	RO	Amazônia	Pastagem	RO-12	2Bwb	Subsuperficial		133	170	4,1	4,5	91	1,1
Corumbá	MS	Pantanal	Pastagem natural	MS 01	A1	Superficial	A moderado	0	6	7,8	10,3	76	1,32
Corumbá	MS	Pantanal	Pastagem natural	MS 01	A2	Superficial	A moderado	6	15	4,9	6,2	79	1,27
Corumbá	MS	Pantanal	Pastagem natural	MS 01	Bh	Subsuperficial		81	103	2,2	2,5	88	1,14
Corumbá	MS	Pantanal	Pastagem natural	MS 02	A1	Superficial	A moderado	0	2	58,9	66,3	89	1,13

Apêndice 22.1. Continuação.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonte	Horizonte	Prof inicial	Prof final	Corg	C total	TR	- FC
•					horizonte		superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	_
Corumbá	MS	Pantanal	Pastagem natural	MS 02	A2	Superficial	A moderado	2	8	14,6	18,5	79	1,27
Corumbá	MS	Pantanal	Pastagem natural	MS 02	EA	Subsuperficial		8	13	3,2	3,4	94	1,06
Corumbá	MS	Pantanal	Pastagem natural	MS 02	Btn1	Subsuperficial		47	75	1,2	2,1	57	1,75
Corumbá	MS	Pantanal	Pastagem natural	MS 03	A1	Superficial	A moderado	0	12	5,8	6	97	1,03
Corumbá	MS	Pantanal	Pastagem natural	MS 03	A2	Superficial	A moderado	12	36	1,1	1,7	65	1,55
Corumbá	MS	Pantanal	Pastagem natural	MS 03	A3	Superficial	A moderado	36	58	1,3	1,9	68	1,46
Corumbá	MS	Pantanal	Pastagem natural	MS 04	A1	Superficial	A moderado	0	12	4,6	5	92	1,09
Corumbá	MS	Pantanal	Pastagem natural	MS 04	A2	Superficial	A moderado	12	20	1,5	2	75	1,33
Corumbá	MS	Pantanal	Pastagem natural	MS 05	A1	Superficial	A moderado	0	4	22,2	23,9	93	1,08
Corumbá	MS	Pantanal	Pastagem natural	MS 05	A2	Superficial	A moderado	4	30	5,8	7,4	78	1,28
Corumbá	MS	Pantanal	Pastagem natural	MS 05	A3	Superficial	A moderado	30	60	2,8	3,5	80	1,25
Corumbá	MS	Pantanal	Pastagem natural	MS 06	A1	Superficial	A moderado	0	5	6,7	7,7	87	1,15
Corumbá	MS	Pantanal	Pastagem natural	MS 06	A2	Superficial	A moderado	5	20	3,1	4,3	72	1,39
Corumbá	MS	Pantanal	Pastagem natural	MS 07	Ap1	Superficial	A moderado	0	10	12,5	19,1	65	1,53
Corumbá	MS	Pantanal	Pastagem natural	MS 07	A2	Superficial	A moderado	10	29	10,5	12,8	82	1,22
Corumbá	MS	Pantanal	Pastagem natural	MS 07	Biv1	Subsuperficial		29	50	5,7	6,2	92	1,09
Corumbá	MS	Pantanal	Pastagem natural	MS 07	Biv2	Subsuperficial		50	72	2,9	3,1	94	1,07
Corumbá	MS	Pantanal	Pastagem natural	MS 08	A1	Superficial	A moderado	0	10	12,0	14,8	81	1,23
Corumbá	MS	Pantanal	Pastagem natural	MS 08	A2	Superficial	A moderado	10	28	4,5	5,9	76	1,31
Corumbá	MS	Pantanal	Pastagem natural	MS 08	2AC	Superficial	A moderado	28	63	2,7	3,5	77	1,3
Corumbá	MS	Pantanal	Floresta	MS 09	A1	Superficial	A moderado	0	4	31,3	41,6	75	1,33
Corumbá	MS	Pantanal	Floresta	MS 09	A2	Superficial	A moderado	4	18	15,3	20,9	73	1,37
Corumbá	MS	Pantanal	Floresta	MS 09	BA	Subsuperficial		18	45	2,8	3,8	74	1,36
Corumbá	MS	Pantanal	Floresta	MS 09	2Bg1	Subsuperficial		45	64	3,4	4,4	77	1,29
Corumbá	MS	Pantanal	Pastagem	MS 10	A1	Superficial	A chernozêmico	0	4	32,6	43,5	75	1,33
Corumbá	MS	Pantanal	Pastagem	MS 10	A2	Superficial	A chernozêmico	4	16	19,1	24,3	79	1,27
Corumbá	MS	Pantanal	Pastagem	MS 10	AB	Superficial	A chernozêmico	16	26	10,7	14	76	1,31
Corumbá	MS	Pantanal	Pastagem	MS 10	BA	Subsuperficial		26	34	6,5	8,9	73	1,37
Corumbá	MS	Pantanal	Pastagem	MS 10	Bv1	Subsuperficial		34	57	4,3	5,5	78	1,28
Corumbá	MS	Pantanal	Floresta	MS 11	A1	Superficial	A moderado	0	5	50,9	67,3	76	1,32
Corumbá	MS	Pantanal	Floresta	MS 11	A2	Superficial	A moderado	5	14	23,7	30	79	1,27
Corumbá	MS	Pantanal	Floresta	MS 11	BA	Subsuperficial		14	30	8,4	11,3	74	1,35
Corumbá	MS	Pantanal	Floresta	MS 11	Biv1	Subsuperficial		30	55	7,0	9,1	77	1,3
Corumbá	MS	Pantanal	Pastagem natural	MS 12	A1	Superficial	A moderado	0	5	7,4	11	67	1,49
Corumbá	MS	Pantanal	Pastagem natural	MS 12	A2	Superficial	A moderado	5	9	4,9	5,6	88	1,14
Corumbá	MS	Pantanal	Pastagem natural	MS 12	Bh1	Subsuperficial		83	105	1,2	1,5	80	1,25
Corumbá	MS	Pantanal	Pastagem natural	MS 12	E/BE	Subsuperficial		105	120	0,6	0,6	100	1
Corumbá	MS	Pantanal	Pastagem natural	MS 12	Bh2	Subsuperficial		137	151	0,9	1,3	69	1,44
Corumbá	MS	Pantanal	Pastagem natural	MS 12	Bh3	Subsuperficial		151	180	0,5	1,1	45	2,2
Corumbá	MS	Pantanal	Pastagem natural	MS 12	Bh4	Subsuperficial		180	188	1,1	1,5	73	1,36
Corumbá	MS	Pantanal	Pastagem natural	MS 12	Btn	Subsuperficial		188	210	0,4	2,6	15	6,5

Apêndice 22.1. Continuação.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonte	Horizonte	Prof inicial	Prof final	C org	C total	TR	- FC
•					horizonte		superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	_
Corumbá	MS	Pantanal	Pastagem natural	MS 13	A1	Superficial	A moderado	0	4	23,6	24,6	96	1,04
Corumbá	MS	Pantanal	Pastagem natural	MS 13	A2	Superficial	A moderado	4	13	6,6	8,4	79	1,27
Corumbá	MS	Pantanal	Pastagem natural	MS 13	Btg1	Subsuperficial		17	30	4,3	4,9	88	1,14
Corumbá	MS	Pantanal	Pastagem natural	MS 14	A1	Superficial	A chernozêmico	0	8	49,3	65,1	76	1,32
Corumbá	MS	Pantanal	Pastagem natural	MS 14	A2	Superficial	A chernozêmico	8	24	39,8	55,7	71	1,4
Corumbá	MS	Pantanal	Pastagem natural	MS 14	A3	Superficial	A chernozêmico	24	41	30,2	50,3	60	1,67
Corumbá	MS	Pantanal	Pastagem natural	MS 14	A4	Superficial	A chernozêmico	41	61	25,7	46,8	55	1,82
Corumbá	MS	Pantanal	Pastagem natural	MS 14	AB	Superficial	A chernozêmico	61	72	20,1	39,2	51	1,95
Bodoquena	MS	Cerrado	Pastagem	MS 15	Ap	Superficial	A moderado	0	10	19,8	23,5	84	1,19
Bodoquena	MS	Cerrado	Pastagem	MS 15	A2	Superficial	A moderado	10	23	14,9	16,7	89	1,12
Bodoquena	MS	Cerrado	Pastagem	MS 15	Bt1	Subsuperficial		39	59	8,6	9,2	93	1,07
Sidrolândia	MS	Cerrado	Lavoura	MS 16	Ap	Superficial	A proeminente	0	7	24,8	31,4	79	1,27
Sidrolândia	MS	Cerrado	Lavoura	MS 16	A2	Superficial	A proeminente	7	14	20,7	26,1	79	1,26
Sidrolândia	MS	Cerrado	Lavoura	MS 16	AB	Superficial	A proeminente	14	29	15,6	19,4	80	1,24
Sidrolândia	MS	Cerrado	Lavoura	MS 16	Bw1	Subsuperficial		29	47	12,7	15	85	1,18
Campo Grande	MS	Cerrado	Floresta	MS 17	A1	Superficial	A moderado	0	12	6,0	8,1	74	1,35
Campo Grande	MS	Cerrado	Floresta	MS 17	A2	Superficial	A moderado	12	27	2,5	4,1	61	1,64
Campo Grande	MS	Cerrado	Floresta	MS 17	Bw1	Subsuperficial		73	118	1,0	1,7	59	1,7
Campo Grande	MS	Cerrado	Pastagem natural	MS 18	A1	Superficial	A moderado	0	9	24,3	31,1	78	1,28
Campo Grande	MS	Cerrado	Pastagem natural	MS 18	A2	Superficial	A moderado	9	21	13,8	18	77	1,3
Campo Grande	MS	Cerrado	Pastagem natural	MS 18	BA	Subsuperficial		21	40	11,3	14,7	77	1,3
Campo Grande	MS	Cerrado	Pastagem natural	MS 18	B1	Subsuperficial		40	64	8,5	11	77	1,29
Bom Jardim	RJ	Mata Atlântica	Eucalipto	P05	Ap	Superficial	A húmico	0	18	30,1	45	67	1,5
Bom Jardim	RJ	Mata Atlântica	Eucalipto	P05	A2	Superficial	A húmico	18	45	22,8	31,4	73	1,38
Bom Jardim	RJ	Mata Atlântica	Eucalipto	P05	A3	Superficial	A húmico	45	85	22,8	30,3	75	1,33
Bom Jardim	RJ	Mata Atlântica	Eucalipto	P05	AB	Superficial	A húmico	85	100	14,8	22,8	65	1,54
Bom Jardim	RJ	Mata Atlântica	Olericulura	P09	Ap	Superficial	A húmico	0	40	15,6	19,6	80	1,26
Bom Jardim	RJ	Mata Atlântica	Olericulura	P09	A2	Superficial	A húmico	40	65	10,5	18,5	57	1,76
Bom Jardim	RJ	Mata Atlântica	Olericulura	P09	A3	Superficial	A húmico	65	80	11,1	16,8	66	1,51
Bom Jardim	RJ	Mata Atlântica	Olericulura	P09	AB	Superficial	A húmico	80	102	10,9	12,8	85	1,17
Bom Jardim	RJ	Mata Atlântica	Pastagem	P12	Ap	Superficial	A húmico	0	23	15,9	19,2	83	1,21
Bom Jardim	RJ	Mata Atlântica	Pastagem	P12	A2	Superficial	A húmico	23	58	11,1	13,3	83	1,2
Bom Jardim	RJ	Mata Atlântica	Pastagem	P12	A3	Superficial	A húmico	58	95	11.0	16,9	65	1,54
Bom Jardim	RJ	Mata Atlântica	Café	P13	Ap	Superficial	A húmico	0	19	23,1	26,6	87	1,15
Bom Jardim	RJ	Mata Atlântica	Café	P13	A2	Superficial	A húmico	19	32	20,5	25,3	81	1,23
Bom Jardim	RJ	Mata Atlântica	Café	P13	A3	Superficial	A húmico	32	60	20,6	23	90	1,12
Bom Jardim	RJ	Mata Atlântica	Café	P13	AB	Superficial	A húmico	60	90	12,9	15,8	82	1,22
Bom Jardim	RJ	Mata Atlântica	Maracujá	P35	Ap	Superficial	A húmico	0	20	17,2	22,4	77	1,3
Bom Jardim	RJ	Mata Atlântica	Maracujá	P35	A2	Superficial	A húmico	20	38	15,8	20,6	77	1,3
Bom Jardim	RJ	Mata Atlântica	Maracujá	P35	A3	Superficial	A húmico	38	61	17,2	22,7	76	1,32
Bom Jardim	RJ	Mata Atlântica	Maracujá	P35	AB	Superficial	A húmico	61	85	10,9	13,4	81	1,23

Apêndice 22.1. Continuação.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonte	Horizonte	Prof inicial	Prof final	C org	C total	TR	- FC
					horizonte		superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	
Bom Jardim	RJ	Mata Atlântica	Floresta	PM1	A1	Superficial	A húmico	0	22	27,3	32,1	85	1,18
Bom Jardim	RJ	Mata Atlântica	Floresta	PM1	A2	Superficial	A húmico	22	40	27,1	29,8	91	1,1
Bom Jardim	RJ	Mata Atlântica	Floresta	PM1	A3	Superficial	A húmico	40	65	22,1	22,4	99	1,01
Bom Jardim	RJ	Mata Atlântica	Floresta	PM1	AB	Superficial	A húmico	65	75	12,8	12,7	101	0,99
Iranduba	AM	Amazônia	Floresta	AM-01	Au1	Superficial	A antrópico	0	8	21,7	29,9	73	1,38
Iranduba	AM	Amazônia	Floresta	AM-01	Au2	Superficial	A antrópico	8	18	16,5	20,3	81	1,23
Iranduba	AM	Amazônia	Floresta	AM-01	Au3	Superficial	A antrópico	18	37	13,1	19,4	68	1,48
Iranduba	AM	Amazônia	Floresta	AM-01	Au4	Superficial	A antrópico	37	54	12,7	17,2	74	1,35
Iranduba	AM	Amazônia	Floresta	AM-01	Au5	Superficial	A antrópico	54	73	11,0	14,2	77	1,29
Iranduba	AM	Amazônia	Floresta	AM-01	ABu	Superficial	A antrópico	73	95	8,7	11,5	76	1,32
Iranduba	AM	Amazônia	Floresta	AM-01	BAu1	Subsuperficial		37	78	4,7	5,9	80	1,26
Iranduba	AM	Amazônia	Floresta	AM-01	BAu2	Subsuperficial		78	119	2,1	3,8	55	1,81
Iranduba	AM	Amazônia	Floresta	AM-01	Bt	Subsuperficial		119	153	1,4	2,7	52	1,93
Iranduba	AM	Amazônia	Floresta	AM-01	Bw	Subsuperficial		153	200	1,1	2,4	46	2,18
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	A	Superficial	A moderado	0	7	17,8	39,0	46	2,19
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	BA1	Subsuperficial		7	15	8,4	10,8	78	1,29
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	BA2	Subsuperficial		15	26	6,0	8,3	72	1,38
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	Bw1	Subsuperficial		26	42	4,1	5,8	71	1,41
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	Bw2	Subsuperficial		42	80	2,9	3,9	74	1,34
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	Bw3	Subsuperficial		80	108	2,3	3,2	72	1,39
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	Bw4	Subsuperficial		108	163	1,7	2,0	85	1,18
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	Bwc1	Subsuperficial		163	177	1,4	1,7	82	1,21
Rio Preta da Eva	AM	Amazônia	Área desmatada	AM-02	Bwc2	Subsuperficial		177	200	1.0	1,5	67	1,5
Itacoatiara	AM	Amazônia	Capoeira	AM-05	Ag	Superficial	A moderado	0	5	15,7	16,7	94	1,06
Itacoatiara	AM	Amazônia	Capoeira	AM-05	2CAg	Subsuperficial		5	13	14,5	15,4	94	1,06
Itacoatiara	AM	Amazônia	Capoeira	AM-05	3Cg1	Subsuperficial		13	33	7,9	7,8	101	0,99
Itacoatiara	AM	Amazônia	Capoeira	AM-05	3Cg2	Subsuperficial		33	65	7.4	9,4	79	1,27
Itacoatiara	AM	Amazônia	Capoeira	AM-05	4Cg3	Subsuperficial		65	115	2,1	3,5	60	1,67
Itacoatiara	AM	Amazônia	Capoeira	AM-05	4Cg4	Subsuperficial		115	150	2,1	2,6	81	1,24
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	Ap	Superficial	A fraco	0	5	9,0	12,6	71	1,4
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	2ACg	Superficial		5	17	5,3	7,7	69	1,45
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	3Cg1	Subsuperficial		17	42	3,2	5,0	64	1,56
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	4Cg2	Subsuperficial		42	73	2,9	4,5	64	1,55
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	5Cg3	Subsuperficial		73	105	1,7	2,3	74	1,35
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	6Cg4	Subsuperficial		105	156	0,7	2,6	27	3,71
Itacoatiara	AM	Amazônia	Lavoura de subsistência	AM-06	7Cg5	Subsuperficial		156	192	1,2	2,5	48	2,08
Iranduba	AM	Amazônia	Floresta	AM-07	A1	Superficial	A moderado	0	4	6,2	7,2	86	1,16
Iranduba	AM	Amazônia	Floresta	AM-07	A2	Superficial	A moderado	4	15	7,6	9,2	83	1,21
Iranduba	AM	Amazônia	Floresta	AM-07	BA	Subsuperficial	. i inoderado	15	35	4,3	5,5	78	1,28
Iranduba	AM	Amazônia	Floresta	AM-07	Bi	Subsuperficial		35	87	3,2	4,4	73	1,38
Iranduba	AM	Amazônia	Floresta	AM-07	2C	Subsuperficial		87	126	3,1	3,9	79	1,26

Apêndice 22.1. Continuação.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonte	Horizonte	Prof inicial	Prof final	Corg	C total	TR	FC
•					horizonte		superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	
Iranduba	AM	Amazônia	Floresta	AM-07	2Cg	Subsuperficial		126	200	2,2	3,0	73	1,36
Iranduba	AM	Amazônia	Capoeira	AM-08	A	Superficial	A moderado	0	6	13,7	15,8	87	1,15
Iranduba	AM	Amazônia	Capoeira	AM-08	Btg1	Subsuperficial		6	30	3,4	4,4	77	1,29
Iranduba	AM	Amazônia	Capoeira	AM-08	2Btg2	Subsuperficial		30	49	2,9	3,8	76	1,31
Iranduba	AM	Amazônia	Capoeira	AM-08	2Btgf1	Subsuperficial		49	67	3,1	5,4	57	1,74
Iranduba	AM	Amazônia	Capoeira	AM-08	2Btgf2	Subsuperficial		67	101	1,5	2,7	56	1,8
Iranduba	AM	Amazônia	Capoeira	AM-08	2Cg1	Subsuperficial		101	151	1,2	1,7	71	1,42
Iranduba	AM	Amazônia	Capoeira	AM-08	3Cg2	Subsuperficial		151	175	1,2	1,8	67	1,5
Manaus	AM	Amazônia	Campinarana	AM-09	A1	Superficial	A fraco	0	8	4,7	4,0	118	0,85
Manaus	AM	Amazônia	Campinarana	AM-09	A2	Superficial	A fraco	8	23	3,1	9,6	32	3,1
Manaus	AM	Amazônia	Campinarana	AM-09	AE	Superficial	A fraco	23	50	3,8	6,0	63	1,58
Manaus	AM	Amazônia	Campinarana	AM-09	E1	Subsuperficial		50	130	0,2	0,3	67	1,5
Manaus	AM	Amazônia	Campinarana	AM-09	E2	Subsuperficial		130	250	0,3	0,2	150	0,67
Manaus	AM	Amazônia	Campinarana	AM-09	2 E3	Subsuperficial		250	321	0,2	0,2	100	1
Manaus	AM	Amazônia	Campinarana	AM-09	3Bh	Subsuperficial		321	326	5,5	6,9	80	1,25
Manaus	AM	Amazônia	Campinarana	AM-09	4Bhsm	Subsuperficial		326	366	9,0	12,9	70	1,43
Manaus	AM	Amazônia	Campinarana	AM-09	4Bhs	Subsuperficial		366	380	9,9	11,8	84	1,19
Manaus	AM	Amazônia	Campinarana	AM-09	4Bs	Subsuperficial		380	396	3,9	8,5	46	2,18
Manaus	AM	Amazônia	Campinarana	AM-09	5C	Subsuperficial		396	410	2,8	4,6	61	1,64
Parintins	AM	Amazônia	Pastagem natural	AM-11	A1	Superficial	A moderado	0	5	8,0	10,3	78	1,29
Parintins	AM	Amazônia	Pastagem natural	AM-11	A2	Superficial	A moderado	5	17	7,2	9,0	80	1,25
Parintins	AM	Amazônia	Pastagem natural	AM-11	Cg1	Subsuperficial		17	41	6,5	8,7	75	1,34
Parintins	AM	Amazônia	Pastagem natural	AM-11	Cg2	Subsuperficial		41	61	7,2	8,2	88	1,14
Parintins	AM	Amazônia	Pastagem natural	AM-11	2Cg3	Subsuperficial		61	70	5,3	7,9	67	1,49
Parintins	AM	Amazônia	Pastagem natural	AM-11	3Cg4	Subsuperficial		70	86	5,2	6,5	80	1,25
Parintins	AM	Amazônia	Pastagem natural	AM-11	4Cg5	Subsuperficial		86	115	6,5	7,8	83	1,2
Parintins	AM	Amazônia	Pastagem natural	AM-11	4Cg6	Subsuperficial		115	160	5,8	8,6	67	1,48
Parintins	AM	Amazônia	Pastagem plantada	AM-12	Apg1	Superficial	A moderado	0	5	22,4	36,4	62	1,63
Parintins	AM	Amazônia	Pastagem plantada	AM-12	2Apg2	Superficial	A moderado	5	11	9,8	16,0	61	1,63
Parintins	AM	Amazônia	Pastagem plantada	AM-12	3Cg	Subsuperficial		11	38	3,1	4,7	66	1,52
Parintins	AM	Amazônia	Pastagem plantada	AM-12	4Abg	Superficial	A enterrado	38	63	1,9	2,5	76	1,32
Parintins	AM	Amazônia	Pastagem plantada	AM-12	4C'g1	Subsuperficial		63	99	0,6	1,8	33	3
Parintins	AM	Amazônia	Pastagem plantada	AM-12	5C'g2	Subsuperficial		99	150	0,4	1,3	31	3,25
Parintins	AM	Amazônia	Pastagem natural	AM-15	Ag	Superficial	A fraco	0	4	5,2	9,1	57	1,75
Parintins	AM	Amazônia	Pastagem natural	AM-15	2Č	Subsuperficial		4	11	1,1	2,0	55	1,82
Parintins	AM	Amazônia	Pastagem natural	AM-15	3Cg	Subsuperficial		11	15	6,6	8,9	74	1,35
Parintins	AM	Amazônia	Pastagem natural	AM-15	4C	Subsuperficial		15	19	2,1	3,1	68	1.48
Parintins	AM	Amazônia	Pastagem natural	AM-15	5Abg	Superficial	A enterrado	19	23	13,1	13,4	98	1,02
Parintins	AM	Amazônia	Pastagem natural	AM-15	5Cg1	Subsuperficial	- 1 01110111110	23	41	3,5	6,4	55	1,83
Parintins	AM	Amazônia	Pastagem natural	AM-15	6Cg2	Subsuperficial		41	60	4,9	5,9	83	1,2
Parintins	AM	Amazônia	Pastagem natural	AM-15	6Cg3	Subsuperficial		60	108	3,6	4,0	90	1,11

Apêndice 22.1. Continuação.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonte	Horizonte	Prof inicial	Prof final	C org	C total	TR	FC
_					horizonte		superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	_
Parintins	AM	Amazônia	Pastagem plantada	AM-15	7Cg4	Subsuperficial		108	145	1,7	2,3	74	1,35
Parintins	AM	Amazônia	Pastagem natural	AM-16	Ag	Superficial	A moderado	0	4	12,3	15,8	78	1,28
Parintins	AM	Amazônia	Pastagem natural	AM-16	CAg	Subsuperficial		4	14	11,8	16,2	73	1,37
Parintins	AM	Amazônia	Pastagem natural	AM-16	2Abg	Superficial	A enterrado	14	27	12,3	18,4	67	1,5
Parintins	AM	Amazônia	Pastagem natural	AM-16	2Cg	Subsuperficial		27	51	3,1	4,7	66	1,52
Parintins	AM	Amazônia	Pastagem natural	AM-16	2Cgn1	Subsuperficial		51	76	1,3	1,7	76	1,31
Parintins	AM	Amazônia	Pastagem natural	AM-16	2Cgn2	Subsuperficial		76	119	1,1	1,8	61	1,64
Parintins	AM	Amazônia	Pastagem natural	AM-16	2Cgn3	Subsuperficial		119	155	1,6	1,4	114	0,88
Belterra	PA	Amazônia	Floresta	PA-05	A1	Superficial	A moderado	0	8	23,5	34,8	68	1,48
Belterra	PA	Amazônia	Floresta	PA-05	A2	Superficial	A moderado	8	27	11,8	16,2	73	1,37
Belterra	PA	Amazônia	Floresta	PA-05	BA	Subsuperficial		27	47	6,0	9,1	66	1,52
Belterra	PA	Amazônia	Floresta	PA-05	Bw1	Subsuperficial		47	72	5,0	6,4	78	1,28
Belterra	PA	Amazônia	Floresta	PA-05	Bw2	Subsuperficial		72	130	2,5	4,6	54	1,84
Belterra	PA	Amazônia	Floresta	PA-05	Bw3	Subsuperficial		130	190	1,9	3,0	63	1,58
Santarém	PA	Amazônia	Floresta	PA-06	A1	Superficial	A húmico	0	6	21,0	35,7	59	1,7
Santarém	PA	Amazônia	Floresta	PA-06	A2	Superficial	A húmico	6	22	16,9	23,8	71	1,41
Santarém	PA	Amazônia	Floresta	PA-06	A3	Superficial	A húmico	22	52	13,5	17,7	76	1,31
Santarém	PA	Amazônia	Floresta	PA-06	A4	Superficial	A húmico	52	89	8,0	9,0	89	1,13
Santarém	PA	Amazônia	Floresta	PA-06	A5	Superficial	A húmico	89	125	5,4	8,3	65	1,54
Santarém	PA	Amazônia	Floresta	PA-06	AC	Superficial	A húmico	125	169	2,9	4,9	59	1,69
Santarém	PA	Amazônia	Floresta	PA-06	C	Subsuperficial		169	205	1,5	2,1	71	1,4
Belterra	PA	Amazônia	Floresta	PA-07	A1	Superficial	A húmico	0	15	33,6	61,0	55	1,82
Belterra	PA	Amazônia	Floresta	PA-07	A2	Superficial	A húmico	15	27	28,5	42,6	67	1,49
Belterra	PA	Amazônia	Floresta	PA-07	A3	Superficial	A húmico	27	40	24,2	33,9	71	1,4
Belterra	PA	Amazônia	Floresta	PA-07	A4	Superficial	A húmico	40	58	16,4	22,4	73	1,37
Belterra	PA	Amazônia	Floresta	PA-07	A5	Superficial	A húmico	58	78	13,1	15,7	83	1,2
Belterra	PA	Amazônia	Floresta	PA-07	AB	Superficial	A húmico	78	97	7,7	11,6	66	1,51
Belterra	PA	Amazônia	Floresta	PA-07	BA	Subsuperficial		97	137	5,4	7,0	77	1.3
Belterra	PA	Amazônia	Floresta	PA-07	Bw	Subsuperficial		137	200	3,5	4,8	73	1,37
Juruti	PA	Amazônia	Pastagem natural	PA-13	Apg	Superficial	A moderado	0	5	20,7	29,8	69	1,44
Juruti	PA	Amazônia	Pastagem natural	PA-13	2CAg	Subsuperficial		5	15	7,2	10,6	68	1,47
Juruti	PA	Amazônia	Pastagem natural	PA-13	2Cg1	Subsuperficial		15	32	4,3	5,6	77	1,3
Juruti	PA	Amazônia	Pastagem natural	PA-13	2Cg2	Subsuperficial		32	55	3,3	3,7	89	1,12
Juruti	PA	Amazônia	Pastagem natural	PA-13	3Cgn1	Subsuperficial		55	69	3,9	4,6	85	1,18
Juruti	PA	Amazônia	Pastagem natural	PA-13	3Cgn2	Subsuperficial		69	101	2,4	3,2	75	1,33
Juruti	PA	Amazônia	Pastagem natural	PA-13	3Cgn3	Subsuperficial		101	145	1,2	1,8	67	1,5
Juruti	PA	Amazônia	Pastagem natural	PA-14	Ag	Superficial	A fraco	0	3	16,2	76,5	21	4,72
Juruti	PA	Amazônia	Pastagem natural	PA-14	2CAvg	Subsuperficial		3	20	8,4	12,1	69	1,44
Juruti	PA	Amazônia	Pastagem natural	PA-14	2Cvg1	Subsuperficial		20	43	2,3	4,4	52	1,91
Juruti	PA	Amazônia	Pastagem natural	PA-14	2Cvg2	Subsuperficial		43	71	1,8	2,8	64	1,56
Juruti	PA	Amazônia	Pastagem natural	PA-14	2Cvg2 2Cvg3	Subsuperficial		71	113	1,0	2.0	50	2

Apêndice 22.1. Continuação.

Município	Estado	Bioma	Uso	Perfil	Nomenclatura	Horizonte	Horizonte	Prof inicial	Prof final	C org	C total	TR	FC
Municipio	Estado	Dioma	USO	renn	horizonte	погізопіе	superficial	cm	cm	g kg ⁻¹	g kg ⁻¹	%	rc
Juruti	PA	Amazônia	Pastagem natural	PA-14	2Cvgn	Subsuperficial		113	150	0,9	1,1	82	1,22
Juruti	PA	Amazônia	Pastagem natural	PA-14	2C'vg1	Subsuperficial		150	170	0,6	1,6	38	2,67
Juruti	PA	Amazônia	Pastagem natural	PA-14	2C'vg2	Subsuperficial		170	205	0,5	1,3	38	2,6
Santarém	PA	Amazônia	Pastagem natural	PA-17	Hd1	Superficial	H hístico	0	4	94,4	131,0	72	1,39
Santarém	PA	Amazônia	Pastagem natural	PA-17	Hd2	Superficial	H hístico	4	12	88,6	100,7	88	1,14
Santarém	PA	Amazônia	Pastagem natural	PA-17	Hd3	Superficial	H hístico	12	29	129,0	253,9	51	1,97
Santarém	PA	Amazônia	Pastagem natural	PA-17	2Ho1	Superficial	H hístico	29	65	368	410,7	90	1,12
Santarém	PA	Amazônia	Pastagem natural	PA-17	2Ho2	Superficial	H hístico	65	90	459	530,0	87	1,16

Prof = profundidade; C org = carbono orgânico; C total = carbono total; TR: Taxa de recuperação; FC: fator de correspondência ou correção.

Apêndice 22.2: Teores de carbono e estoque de horizontes, perfis e camadas (0 a 100 cm e 0 a 30 cm) dos solos⁽¹⁾ da XV RCC.

Perfil	Tipo	Nomen.	Prof inicial	Prof final	Ds	C org	C total	PMG	Est C org	Est C total	Est C org (perfil)	Est C total (perfil)	Est C org (0-100 cm)	Est C total (0-100 cm)	Est C org (0-30 cm)	Est C total (0-30 cm)
	Horizonte	horiz.	cm	cm	kg dm ⁻³	g kg ⁻¹	g kg ⁻¹	-	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha-1	Mg ha-1
	Argissólic	co Amarelo	Distrófico l	latossólico		textura n			argilosa, epie			esoférrico, fase				
AM-01	A antrópico	Au1	0	8	1,21	21,7	29,9	0,0036	21,0	28,9	198,6	280,3	180,6	244,5	64,1	87,4
AM-01	A antrópico	Au2	8	18	1,32	16,5	20,3	0,0057	21,6	26,6						
AM-01	A antrópico	Au3	18	37	1,39	13,1	19,4	0,0118	34,1	50,5						
AM-01	A antrópico	Au4	37	54	1,25	12,7	17,2	0,005	26,9	36,4						
AM-01	A antrópico	Au5	54	73	1,23	11,0	14,2	0,0639	24,1	31,1						
AM-01	A antrópico	ABu	73	95	1,20	8,7	11,5	0,0232	22,4	29,6						
AM-01		BAu1	37	78	1,31	4,7	5,9	0,0004	25,2	31,7						
AM-01		BAu2	78	119	1,18	2,1	3,8	0,0004	10,1	18,3						
AM-01		Bt	119	153	1,34	1,4	2,7	0	6,4	12,3						
AM-01		Bw	153	200	1,33	1,1	2,4	0,0004	6,9	15,0						
	Latossolo .	Amarelo Di	strófico pet	troplíntico	, textura mi	uito argilo	sa, A mod	erado, end	loconcreciona	ário, álico, caul	inítico, Tmb, l	nipoférrico, fase	floresta equato	orial perenifólia	, relevo plano	
AM-02	A moderado	A	0	7	1,05	17,8	39,0	0	13,1	28,8	73,4	108,7	54,8	85,5	31,3	53,2
AM-02		BA1	7	15	1,20	8,4	10,8	0,0004	8,0	10,3						
AM-02		BA2	15	26	1,23	6,0	8,3	0,0007	8,1	11,2						
AM-02		Bw1	26	42	1,23	4,1	5,8	0,0007	8,0	11,4						
AM-02		Bw2	42	80	1,16	2,9	3,9	0,0011	12,8	17,2						
AM-02		Bw3	80	108	1,03	2,3	3,2	0,0011	6,6	9,2						
AM-02		Bw4	108	163	1,27	1,7	2,0	0,0018	11,9	14,0						
AM-02		Bwc1	163	177	1,23	1,4	1,7	0,1493	2,1	2,5						
AM-02		Bwc2	177	200	1,22	1,0	1,5	0,0236	2,7	4,1						
			Gleissolo	Háplico 7	Ta Eutrófico	o neofluvi	ssólico, tex	ktura siltos	sa, A moderac	do, Tma, fase f	loresta equator	ial hidrófila de	várzea, relevo j	plano		
AM-05	A moderado	Ag	0	5	0,98	15,7	16,7	0	7,7	8,1	83,4	102,9	69,4	83,8	23,0	24,0
AM-05		2CAg	5	13	0,80	14,5	15,4	0	9,3	9,9						
AM-05		3Cg1	13	33	1,08	7,9	7,8	0	17,1	16,9						
AM-05		3Cg2	33	65	1,07	7,4	9,4	0	25,4	32,3						
AM-05		4Cg3	65	115	1,35	2,1	3,5	0	14,2	23,7						
AM-05		4Cg4	115	150	1,32	2,1	2,6	0	9,7	12,0						
		Gleiss	solos Háplic	co Ta Euti	ófico neofl	uvissólico	o, textura n	nédia/silto	sa/média, A ı	moderado, Tma	, fase floresta	equatorial higró	ófila de várzea,	relevo plano		
AM-06	A moderado	Apg	0	5	1,18	9,0	12,6	0	5,3	7,5	54,1	94,7	42,1	62,6	17,9	26,3
AM-06		2ACg	5	17	1,12	5,3	7,7	0	7,2	10,4						
AM-06		3Cg1	17	42	1,30	3,2	5,0	0	10,4	16,2						
AM-06		4Cg2	42	73	1,41	2,9	4,5	0	12,7	19,6						
AM-06		5Cg3	73	105	1,43	1,7	2,3	0	7,8	10,5						
AM-06		6Cg4	105	156	1,36	0,7	2,6	0	4,9	18,1						
AM-06		7Cg5	156	192	1,38	1,2	2,5	0	6,0	12,4						

Apêndice 22.2. Continuação.

Perfil	Tipo	Nomen.	Prof inicial	Prof final	Ds	C org	C total	PMG	Est C org	Est C total	Est C org (perfil)	Est C total (perfil)	Est C org (0-100 cm)	Est C total (0-100 cm)	Est C org (0-30 cm)	Est C total (0-30 cm)
	Horizonte	horiz.	cm	cm	kg dm ⁻³	g kg ⁻¹	g kg ⁻¹	-	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹
		Camb	issolo Flúv	ico Ta Eu	trófico glei:	ssólico, te	xtura méd	ia/siltosa,	A moderado,	Tma, hipoférrio	co, fase florest	a tropical higró	fila de várzea,	relevo plano		
AM-07	A moderado	A1	0	4	1,08	6,2	7,2	0	2,7	3,1	82,9	108,7	49,7	64,5	20,5	25,2
AM-07	A moderado	A2	4	15	1,22	7,6	9,2	0	10,2	12,4						
AM-07		BA	15	35	1,19	4,3	5,5	0	10,2	13,0						
AM-07		Bi	35	87	1,28	3,2	4,4	0	21,3	29,2						
AM-07		2C	87	126	1,33	3,1	3,9	0	16,1	20,2						
AM-07		2Cg	126	200	1,38	2,2	3,0	0	22,5	30,7						
		ntossolo Ar	gilúvico Al	lumínico g						oderado, epiálic						
AM-08	A moderado	A	0	6	1,09	13,7	15,8	0,0004	9,0	10,4	59,4	85,5	45,6	65,5	20,3	25,0
AM-08		Btg1	6	30	1,39	3,4	4,4	0	11,3	14,6						
AM-08		2Btg2	30	49	1,66	2,9	3,8	0	9,1	12,0						
AM-08		2Btgf1	49	67	1,44	3,1	5,4	0,0029	8,0	13,9						
AM-08		2Btgf2	67	101	1,65	1,5	2,7	0,01	8,4	15,0						
AM-08		2Cg1	101	151	1,62	1,2	1,7	0,0046	9,7	13,7						
AM-08		3Cg2	151	175	1,34	1,2	1,8	0,0014	3,9	5,8						
					esso típico, t					-arenosa, A fra						
AM-09	A fraco	A1	0	8	1,36	4,7	4,0	0,0014	5,1	4,3	142,5	211,8	28,1	50,2	14,4	28,8
AM-09	A fraco	A2	8	23	1,39	3,1	9,6	0,0036	6,4	19,9						
AM-09	A fraco	AE	23	50	1,47	3,8	6,0	0,005	15,0	23,7						
AM-09		E1	50	130	1,52	0,2	0,3	0,0079	2,4	3,6						
AM-09		E2	130	250	1,54	0,3	0,2	0,0086	5,5	3,7						
AM-09		2 E3	250	321	1,63	0,2	0,2	0,0232	2,3	2,3						
AM-09		3Bh	321	326	1,66	5,5	6,9	0,0036	4,6	5,7						
AM-09 AM-09		4Bhsm 4Bhs	326 366	366 380	1,70 1,72	9,0	12,9 11,8	0,0132 0,0039	60,3 23,8	86,4 28,3						
AM-09 AM-09		4Bis 4Bs	380	396	1,72	9,9 3,9	8,5	0,0039	25,8 10,5	28,3						
AM-09		5C	396	410	1,69	2,8	6,5 4,6	0,0029	6,6	10,9						
Alvi-07	Gle							,		iltosa, A moder	ado Tma fase	e campo equato	rial hidrófilo de	várzea relevo	nlano	
AM-11	A moderado	A1	0	5	1,38	8,0	10,3	0	5,5	7,1	128,0	167,8	84,1	106.0	29,6	38,3
AM-11	A moderado A moderado	A2	5	17	1,41	7,2	9,0	0	12,2	15,3	120,0	107,0	07,1	100,0	27,0	30,3
AM-11		Cg1	17	41	1,26	6,5	8,7	0	19,6	26,2						
AM-11		Cg2	41	61	1,26	7,2	8,2	0	18,1	20,6						
AM-11		2Cg3	61	70	1,34	5,3	7,9	0	6,4	9,6						
AM-11		3Cg4	70	86	1,34	5,2	6,5	0	11,1	13,9						
AM-11		4Cg5	86	115	1,22	6,5	7,8	0	23,0	27,5						
AM-11		4Cg6	115	160	1,23	5,8	8,6	0	32,1	47,6						

Apêndice 22.2. Continuação.

Perfil	Tipo Horizonte	Nomen.	Prof inicial	Prof final	Ds	C org	C total	PMG		Est C total	Est C org (perfil)	Est C total (perfil)	Est C org (0-100 cm)	Est C total (0-100 cm)	Est C org (0-30 cm)	Est C total (0-30 cm)
	HOHZOHU		cm	cm	kg dm ⁻³	g kg ⁻¹	g kg ⁻¹	-	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹
														ea, relevo plano		
AM-12	A moderado	Apg1	0	5	1,21	22,4	36,4	0	13,5	22,0	50,3	88,3	47,0	77,6	31,5	50,3
AM-12	A moderado	2Apg2	5	11	1,47	9,8	16,0	0	8,7	14,1						
AM-12		3Cg	11	38	1,59	3,1	4,7	0	13,3	20,1						
AM-12	A enterrado	4Abg	38	63	1,67	1,9	2,5	0	8,0	10,5						
AM-12		4C'g1	63	99	1,64	0,6	1,8	0	3,6	10,7						
AM-12		5C'g2	99	150	1,65	0,4	1,3	0	3,4	10,9						
		Glei	ssolo Hápli	ico Ta Eut	trófico neof		-	nédia/arei				uatorial higrófil				
AM-15	A fraco	Ag	0	4	1,20	5,2	9,1	0	2,5	4,4	68,3	88,3	55,9	72,4	15,0	21,3
AM-15		2C	4	11	1,50	1,1	2,0	0	1,2	2,1						
AM-15		3Cg	11	15	1,22	6,6	8,9	0	3,2	4,3						
AM-15		4C	15	19	1,79	2,1	3,1	0	1,5	2,2						
AM-15	A enterrado	5Abg	19	23	1,26	13,1	13,4	0	6,6	6,8						
AM-15		5Cg1	23	41	1,31	3,5	6,4	0	8,2	15,1						
AM-15		6Cg2	41	60	1,42	4,9	5,9	0	13,2	15,9						
AM-15		6Cg3	60	108	1,35	3,6	4,0	0	23,4	25,9						
AM-15		7Cg4	108	145	1,36	1,7	2,3	0	8,6	11,6						
		Gleissolo H	láplico Ta l	Eutrófico :	solódico ve	rtissólico,	textura arg	gilosa, A 1	noderado, me	soendossolódi	co, Tma, fase c	campo tropical l	hidrófilo de vár	zea, relevo plan	.0	
AM-16	A moderado	Ag	0	4	1,31	12,3	15,8	0	6,5	8,3	73,7	102,3	62,5	90,2	44,3	63,1
AM-16		CAg	4	14	1,26	11,8	16,2	0	14,9	20,5						
AM-16	A enterrado	2Abg	14	27	1,35	12,3	18,4	0	21,6	32,3						
AM-16		2Cg	27	51	1,46	3,1	4,7	0	10,9	16,5						
AM-16		2Cgn1	51	76	1,47	1,3	1,7	0	4,8	6,2						
AM-16		2Cgn2	76	119	1,48	1,1	1,8	0	7,0	11,5						
AM-16		2Cgn3	119	155	1,40	1,6	1,4	0	8,1	7,1						
	Late	ossolo Amar	elo Distrófi	ico típico,	textura mu	ito argilos	sa, A mode	rado, álic	o, epidistrófic	o, caulinítico, '	Tmb, mesoférr	ico, fase florest	a equatorial pe	renifólia, relevo	plano	
PA-05	A moderado	A1	0	8	0,84	23,5	34,8	0	15,8	23,4	96,5	145,2	75,0	109,1	41,7	59,3
PA-05	A moderado	A2	8	27	1,07	11,8	16,2	0	23,9	32,9						
PA-05		BA	27	47	1,09	6,0	9,1	0	13,1	19,8						
PA-05		Bw1	47	72	1,13	5,0	6,4	0	14,2	18,1						
PA-05		Bw2	72	130	1,15	2,5	4,6	0	16,7	30,7						
PA-05		Bw3	130	190	1,13	1,9	3,0	0	12,9	20,3						
			N	leossolo Q	uartzarênic	co Órtico l	húmico, tex	tura aren	osa-média, ál	co, fase cerrad	o equatorial su	bcaducifólio, re	elevo plano			
PA-06	A húmico	A1	0	6	0,98	21,0	35,7	0,0007	12,4	21,0	190,7	263,9	144,6	191,3	54,7	79,3
PA-06	A húmico	A2	6	22	1,04	16,9	23,8	0,0011	28,0	39,4						
PA-06	A húmico	A3	22	52	1,33	13,5	17,7	0,0029	53,9	70,6						
PA-06	A húmico	A4	52	89	1,41	8,0	9,0	0,0025	41,6	46,8						
PA-06	A húmico	A5	89	125	1,48	5,4	8,3	0,0039	28,7	44,1						
	417	AC	125	169	1,45	2,9	4,9	0,005	18,4	31,0						
PA-06	A húmico	AC	123	10)	1,43	2,7	1,,,	0,005	10,7	51,0						

Apêndice 22.2. Continuação.

Perfil	Tipo Horizonte	Nomen.	Prof inicial	Prof final	Ds	C org	C total	PMG	Est C org	Est C total	Est C org (perfil)	Est C total (perfil)	Est C org (0-100 cm)	Est C total (0-100 cm)	Est C org (0-30 cm)	Est C total (0-30 cm)
	Horizonte		cm	cm	kg dm ⁻³	g kg ⁻¹	g kg ⁻¹	-	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹	Mg ha ⁻¹
Latossolo Amarelo Distrófico húmico, textura muito argilosa, álico, epidistrófico, caulinítico, Tmb, hipoférrico, fase floresta equatorial perenifólia, relevo plano																
PA-07	A húmico	A1	0	15	0,76	33,6	61,0	0,0004	38,3	69,6	213,0	309,7	168,9	250,8	75,8	125,0
PA-07	A húmico	A2	15	27	0,89	28,5	42,6	0	30,4	45,5						
PA-07	A húmico	A3	27	40	0,98	24,2	33,9	0	30,7	43,0						
PA-07	A húmico	A4	40	58	0,96	16,4		0,0007	28,4	38,8						
PA-07	A húmico	A5	58	78	0,93	13,1	15,7	0	24,3	29,2						
PA-07	A húmico	AB	78	97	1,03	7,7	11,6	0	15,0	22,6						
PA-07		BA	97	137	1,05	5,4	7,0	0	22,8	29,5						
PA-07		Bw	137	200	1,05	3,5	4,8	0	23,1	31,7						
		Gleissolo Háj	plico Ta Eu					osa/siltosa	•					rzea, relevo plai		
PA-13	A moderado	Apg	0	5	1,13	20,7	29,8	0	11,7	16,9	70,5	94,2	62,7	82,5	31,8	44,8
PA-13		2CAg	5	15	1,48	7,2	10,6	0	10,7	15,7						
PA-13		2Cg1	15	32	1,46	4,3	5,6	0	10,6	13,9						
PA-13		2Cg2	32	55	1,44	3,3	3,7	0	10,9	12,2						
PA-13		3Cgn1	55	69	1,43	3,9	4,6	0	7,8	9,2						
PA-13		3Cgn2	69	101	1,47	2,4	3,2	0	11,3	15,1						
PA-13		3Cgn3	101	145	1,42	1,2	1,8	0	7,5	11,3						
		Vertissolo	Hidromórfi	ico Órtico	solódico, te			a, A fraco				o equatorial hic				
PA-14	A fraco	A	0	3	1,14	16,2	76,5	0	5,6	26,2	54,1	106,4	44,2	88,2	29,3	61,8
PA-14		2CAvg	3	20	1,45	8,4	12,1	0	20,7	29,9						
PA-14		2Cvg1	20	43	1,30	2,3	4,4	0	6,9	13,1						
PA-14		2Cvg2	43	71	1,40	1,8	2,8	0	7,1	11,0						
PA-14		2Cvg3	71	113	1,38	1,0	2,0	0,0004	5,8	11,6						
PA-14		2Cvgn	113	150	1,38	0,9	1,1	0	4,6	5,6						
PA-14		2C'vg1	150	170	1,14	0,6	1,6	0,006	1,4	3,6						
PA-14		2C'vg2	170	205	1,18	0,5	1,3	0,0036	2,1	5,4						
	Organossol			o, textura a				, distrófico						ófilo de várzea,		
PA-17	H hístico	Hd1	0	4	0,68	94,4	131,0	0	25,6	35,6	699,5	910,5	699,5	910,5	221,0	369,0
PA-17	H hístico	Hd2	4	12	0,75	88,6	100,7	0	53,0	60,3						
PA-17	H hístico	Hd3	12	29	0,61	129,0	253,9	0	134,2	264,2						
PA-17	H hístico	2Ho1	29	65	0,22	368,3	410,7	0	291,7	325,3						
PA-17	H hístico	2Ho2	65	90	0,17	458,6	530,0	0	194,9	225,2						

Nomen horiz. = nomenclatura horizonte; Prof = profundidade; Ds = densidade do solo; C org = carbono orgânico; C total = carbono total; PMG = proporção materiais grossos; Est = estoque.

¹ Classificados segundo Santos et al. (2018).