
Aproveitamento de resíduos de produção como fertilizantes

JULIO CESAR PASCALE PALHARES EM 12/05/2021 9 MIN DE LEITURA

Início > Colunas > Julio Ce	cio > Colunas > Julio Cesar Pascale Palhares > Aproveitamento de residuos de produção como fertilizante					
#SUSTENTABILIDADE						
	Ouvir: Aproveitamento de resíduos de produção como ferti	0	0:00			

O aproveitamento dos resíduos como fertilizante é a **forma de manejo predominante nas produções leiteiras brasileiras porque é simples e barata.**

Sempre é aconselhável a utilização de estercos, <u>dejetos</u>, compostos e efluentes de biodigestores como fornecedores de água, nutrientes e condicionadores físicos e químicos dos solos.

Melhorias nas características do solo e na produtividade das culturas vegetais são alcançadas quando são feitas aplicações regulares do resíduo. Aproximadamente, 75 a 90% dos nutrientes consumidos por animais em pastejo são devolvidos ao solo na forma de urina e fezes.

Cada solo possui características específicas que devem ser de conhecimento do produtor(a) para fazer a aplicação do resíduo como fertilizante. No Quadro 1 é apresentado como o uso do resíduo orgânico pode impactar positivamente os parâmetros de qualidade do solo.

Quadro 1. Impactos positivos dos resíduos orgânicos nos parâmetros de qualidade do solo.

Parâmetro	Descrição	Impactos Positivos	
Teor de Matéria Orgânica do Solo ¹	O teor de matéria orgânica do solo afeta todas as propriedades físicas, químicas e biológicas do solo. Ela tem uma correlação direta com a fertilidade do solo, nutrição das plantas, capacidade de retenção de água, densidade do solo e estabilidade de agregados A atividade biológica do solo pode ser estimulada pelo uso dos resíduos como fertilizante. Geralmente, com o aumento da matéria orgânica do solo sua cor torna-se mais escura.	Aumenta o teor de matéria orgânica do Solo	
Nutrientes	O resíduo orgânico é fonte de nitrogênio, fósforo e potássio e outros micronutrientes, para serem absorvidos pelas plantas	Aumenta a oferta de nutrientes para as plantas	
Capacidade de Troca de Cátions (CTC)	É a capacidade do solo de manter os nutrientes e liberá-los através de reações químicas para a absorção das plantas	Aumenta a CTC	
рН	É uma medida do nível de acidez ou alcalinidade no solo (varia de 0 a 14). Essencial para nutrição de plantas, crescimento e atividade biológica e química do solo	Mantem o pH estável	

Parâmetro	Descrição	Impactos Positivos	
Densidade	Quantidade de peso de partícula sólida por volume de solo. Reflete o nível de porosidade (espaço vazio no solo que pode ser preenchido por ar ou água) e a compactação do solo. Solos compactados (maior densidade do solo) têm menos porosidade, menor teor de ar, menor infiltração de água e baixo crescimento das plantas	Reduz a densidade do solo	
Estabilidade de Agregados	É a força da estrutura do solo para resistir ao impacto de uma força externa, como chuva, vento e erosão hídrica	Aumenta a estabilidade de agregados	
Capacidade de Infiltração de Água	Movimentação da água através da superfície do solo para o perfil do solo. O aumento da infiltração reduz o escoamento superficial de água e nutrientes	Aumenta a capacidade de infiltração	
Capacidade de Retenção de Água	É a capacidade do solo de reter a água	Aumenta a capacidade de infiltração	

¹Matéria Orgânica do Solo é um material que já foi parte de um organismo vivo ou produzido por um. Ela ocorre naturalmente nos solos pela decomposição de animais, raízes das plantas e resíduos das culturas. Também pode ser adicionada ao solo de pelo uso do resíduo orgânico como fertilizante.

Resíduos líquidos tendem a ter maior proporção de nutrientes em formas disponíveis para as plantas, formas inorgânicas, sendo mais valiosos em fornecer nutrientes no curto prazo. Resíduos sólidos tendem a ter maior proporção de nutrientes nas formas orgânicas. Os elementos orgânicos precisam ser mineralizados em formas inorgânicas para estarem disponíveis para planta.

As maiores dificuldades em se utilizar de forma correta os resíduos como fertilizante são:

- O resíduo é uma mistura de formas orgânicas e inorgânicas de nutrientes;
- O resíduo possui concentrações variadas de nutrientes o que dificulta o cálculo da quantidade a ser utilizada como fertilizante;
- O resíduo é resultado de vários aspectos do sistema de produção como: genética, tipo de dieta, forma disponível do resíduo (líquido ou sólido) e forma de aplicação no solo (superficial ou incorporação);
- O resíduo pode ser difícil de amostrar para caracterização das concentrações de nutrientes;
- O resíduo quando aplicado de forma superficial no solo pode emitir odores e ser criatório de vetores;
- O resíduo pode conter sementes de plantas invasoras;
- O resíduo pode conter antibióticos que irão afetar os micro-organismos do solo e potencializar processos de resistência antimicrobiana;
- O resíduo pode não ser manejado e aplicado de forma correta devido a indisponibilidade de equipamentos e máquinas.

É importante saber que, na maior parte das propriedades leiteiras, **os resíduos irão suprir uma parte da necessidade total de nutrientes das culturas vegetais.** Quanto mais intensificadas as áreas de lavoura e pastagem, maior a demanda de nutrientes, sendo menor a quantidade de nutrientes a ser substituída pelos resíduos orgânicos.

O **uso do resíduo como fertilizante** deve ser feito sempre tendo como referência o conceito de Balanço de Nutrientes e o preceito dos quatro Cs (PRODUTO CERTO, TAXA CERTA, TEMPO CERTO, LOCAL CERTO).

Na Figura 1 observa-se o que deve ser considerado para o cálculo do balanço de nutrientes.

As vantagens do Balanço de Nutrientes são:

- Disponibilizar para as culturas vegetais os nutrientes no momento de maior crescimento da planta;
- Reduzir ao mínimo a perda de nutrientes para o ambiente, evitando a contaminação das águas e do solo e a emissão de gases e odores;
- Evitar o excesso de nutrientes no solo, este excesso pode acarretar perdas econômicas e contestações dos órgãos licenciadores;
- Reduzir a necessidade de suplementação com fertilizantes químicos, diminuindo o custo econômico da prática de fertilização;
- Adequar à atividade as exigências da legislação ambiental;
- Reduzir os conflitos com a vizinhança devido a menor emissão de odores e poeiras.

Figura 1. Premissas do Balanço de Nutrientes para o uso dos resíduos como fertilizante.

O resíduo normalmente **não tem o equilíbrio em nutrientes que as culturas vegetais necessitam,** então a análise do resíduo e da fertilidade do solo são importantes para se ter o ajuste necessário a fim de se fazer a suplementação com fertilizante químico. Portanto, o fertilizante químico deve ser entendido como uma suplementação aos nutrientes já fornecidos pelo resíduo orgânico.

O sugerível é **calcular o Balanço de Nutrientes tendo como referencial a necessidade de nitrogênio da planta**. A aplicação com base no nitrogênio irá determinar quantidades além da exigência da planta para o fósforo e o potássio.

A quantidade de Nitrogênio (N) aplicado via resíduo não deve exceder a necessidade da planta para o atual ciclo de plantio e a quantidade de Fósforo (P) para os três ciclos de plantio futuros.

Nos países da América do Norte e da Comunidade Europeia, bem como em alguns da Ásia as fazendas são obrigadas a apresentar anualmente ao órgão licenciador o plano de manejo dos nutrientes dos resíduos baseado no Balanço de Nutrientes.

No plano deve estar documentado as quantidades de resíduo aplicadas no solo, horário, local e forma de aplicação. Isso para cada gleba da propriedade.

Nem todas as fazendas **possuem área agrícola suficiente para o uso dos resíduos como fertilizante,** respeitando o Balanço de Nutrientes. Apesar desta não ser uma realidade comum nas propriedades leiteiras, por estas apresentarem áreas de pastagem e lavoura, se a propriedade não tiver área suficiente, parte dos resíduos deve ser realocada para outras fazendas.

Essa realocação é uma **prática permitida pelos órgãos ambientais estaduais**, desde que documentada de acordo com as diretrizes de cada Estado. Outra alternativa é utilizar tecnologias de tratamento dos resíduos a fim de reduzir a concentração de nutrientes.

Etapa fundamental para o correto uso do resíduo como fertilizante é ter uma **estimativa de sua concentração de nutrientes.** A concentração de nutrientes pode variar até mesmo entre fazendas com o mesmo sistema de produção. Na Episódio 9 desta série, comentei as possibilidades que temos para avaliar a concentração de nutrientes dos resíduos.

Os resíduos leiteiros possuem baixas concentrações de nutrientes o que requer grande quantidade a ser aplicada, aumentando o risco ambiental da prática.

Os seguintes parâmetros devem ser analisados na amostra de resíduo:

- Umidade:
- · Nitrogênio Total;
- Fósforo;
- Potássio

Além destes parâmetros outros podem ser necessários, dependendo do **histórico de fertilização** da área e do tipo de solo e cultura vegetal.

A **capacidade do nutriente de ser absorvido pela planta** está relacionada a sua disponibilidade, ou seja, pode ou não ser absorvido de forma imediata.

A disponibilidade do N e do P não é de 100% após a aplicação. No caso do Potássio (K) este está na forma iônica, 100% disponível para as plantas após a aplicação. O termo "disponível" não é aplicado a fertilizantes químicos devido a maioria destes incluírem formas químicas prontamente disponíveis.

Se poderá ter disponibilidade de N e P residual até cinco anos após a aplicação. Resíduos com baixas concentrações de N orgânico como os na forma líquida terão menores concentrações de N residual ao longo dos anos.

É importante ressaltar que para o correto manejo dos nutrientes dos resíduos há de se conciliar as questões de disponibilidade com as de quantidade a fim de atender as necessidades da planta.

Na utilização dos resíduos como fertilizante se deve considerar os **processos de curto prazo** (nutrientes disponíveis após a aplicação do resíduo) e os de longo prazo (nutrientes que estarão disponíveis até 3 anos após a aplicação).

No longo prazo, o **manejo das áreas de aplicação dos resíduos e fertilizantes químicos** deve considerar o acúmulo dos nutrientes no solo. Isso é, particularmente importante, para evitar perdas de nutrientes por processos naturais (erosão, lixiviação e escorrimento superficial e sub-superficial).

Altos níveis de N podem reduzir a disponibilidade de Boro (B), Cobre (Cu) e K. O alto teor de P no solo pode interferir na absorção de Ferro (Fe), Cálcio (Ca), Cu e Zinco (Zn).

À medida que a concentração de P no solo aumenta, a necessidade de Mg (Magnésio) também aumenta. Alta concentração de K pode reduzir a disponibilidade de Mg, mas estimular a necessidade de Fe e Manganês (Mn).

A absorção de K nas plantas não é bem regulada e as altas taxas de K no solo podem aumentar muito a absorção de K pelas plantas. O consumo de forragens com excesso de K pode ser problemático para os animais leiteiros, predispondo-os à febre do leite.

Portanto, a **quantidade de fertilizante e sua concentração de K devem ser consideradas** a fim de limitar o consumo de forragem com alto teor de K.

O **nitrogênio é facilmente perdido para o meio ambiente.** Portanto, tem alto risco de causar poluição ambiental. A perda por volatilização ocorre quando o resíduo é aplicado no solo de forma superficial.

A perda por este processo é **dependente de vários fatores ambientais e pode ser significativa,** representando mais do que 50%. Uma prática que reduz significativamente este tipo de perda é a incorporação do resíduo ao solo no momento da aplicação.

A **produção animal europeia é responsável por 73% da poluição das águas**, via lixiviação de nitrato e/ou fosfato (Leip et al., 2015). Estudos ambientais neozelandeses em sistemas leiteiros indicam que de 5% e 30% do nitrogênio aplicado como fertilizante nas pastagens é perdido por lixiviação.

Silva et al. (2019) valoraram os **dejetos produzidos numa fazenda no Triângulo Mineiro** que confinava 59 vacas em lactação no período seco. Estimou-se que o valor total do dejeto, o valor do dejeto por vaca e o valor do dejeto por kg de leite foi de R\$ 18.771,00, R\$ 318,00 e de R\$ 0,13, respectivamente. Esses valores demonstram a importância econômica da utilização dos dejetos como fonte de nutrientes para as culturas vegetais. Na Tabela 1 são apresentados os valores dos dejetos

Tabela 1. Quantificação do nitrogênio (N), fósforo (P) e potássio (K) e a valoração do dejeto no período de confinamento (183 dias).

ITEM	N	Р	K
Dejeto (KG)	1.906,68	397,49	1.271,84
Perdas por volatilização¹ (KG)	533,87	26	323
Quantidade aproveitável (KG)	1.372,81	397,49	1.271,84
Preço médio de mercado do fertilizante equivalente ² (r\$/kg)	1,9	1,4	1,9
Valor estimado do dejeto no período (R\$)	5.796,31	3.751,97	9.222,96

¹considerou-se perda de N de 28%, de acordo com Xiccato et al. (2005).

²Adubo comercial utilizado para as estimativas: ureia (45% N); superfosfato simples (18% P2O5); e cloreto de potássio (60% K2O); preços sugeridos e levantados juntos ao Instituto de Economia Agrícola de São Paulo para o ano de 2017 (IEA-SP, 2018).

Utilizar **resíduos orgânicos como fertilizante é uma prática milenar** que no passado, devido as reduzidas escalas dos sistemas de produção, a prática tinha baixo risco ambiental e vários benefícios agronômicos. No presente e para o futuro, vivenciamos sistemas produtivos de maior escala e uma **intensificação dos processos produtivos** com o uso intensivo de fertilizantes químicos e alimentos concentrados.

Nesta realidade, o uso de resíduos como fertilizante deve ser feito **seguindo as orientações técnicas e o conceito de Balanço de Nutrientes** para manter os benefícios agronômicos e o baixo risco ambiental.

A história sempre nos ensina. A lição é: o uso dos resíduos orgânicos como fertilizante é benéfico para atividade leiteira, devendo ser feito com respeito aos limites agronômicos e ambientais, assim teremos uma propriedade ambientalmente equilibrada e com benefícios econômicos.

Gostou do conteúdo? Deixe seu **like** e seu **comentário**, isso nos ajuda a saber que conteúdos são mais interessantes para você. Quer escrever para nós? Clique <u>aqui</u>e veja como.

Bibliografia

LEIP, A., BILLEN, G., GARNIER, J., et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 1-13.2015.

SCHOUMANS, O.F., VAN DER SALM, C., GROENENDIJK, P., PLEASE: a simple model to determine P losses by leaching. Soil Use Manag. 29, 138–146. 2013. https://doi.org/10.1111/sum.12008.

SILVA, M.F.; PALHARES, J.C.P.; GAMEIRO, A.H. Valoração econômica dos dejetos da fase de confinamento de um sistema de produção de leite. In: Simpósio Internacional sobre Gerenciamento dos Resíduos Agropecuários e Agroindustriais, 2019, Florianópolis. Anais do VI Simpósio Internacional sobre Gerenciamento dos Resíduos Agropecuários e Agroindustriais. Concórdia: Sbera, 2019. v. 1. p. 1-556.

COMENTE:

JULIO CESAR PASCALE PALHARES

Pesquisador da Embrapa Pecuária Sudeste

MILKPOINT É UM PRODUTO DA REDE AGRIPOINT

POLÍTICA DE PRIVACIDADE

Copyright © 2021 AgriPoint - Todos os direitos reservados AgriPoint Serviços de Informação Ltda. - CNPJ 08.885,666/0001-86 R. Tiradentes, 848 - 12º andar I Centro design salvego.com - AgriPoint + desenvolvimento d-nex