Capítulo 6

Água para o fortalecimento dos sistemas agrícolas dependentes de chuva

Roseli Freire de Melo
Welson Lima Simões
Lúcio Alberto Pereira
Luiza Teixeira de Lima Brito
Elvis Pantaleão Ferreira
Luciano Cordoval de Barros
Paulo Eduardo de Aquino Ribeiro

No Semiárido brasileiro, a maioria dos agricultores familiares exploram uma agricultura em condições de dependência de chuva, que, devido à sua irregularidade, tem provocado perdas de safra. Essas perdas podem se acentuar por causa da ausência de tecnologias de tratamento de águas subterrâneas, de captação e armazenamento de água de chuva e do manejo inadequado do solo (como ausência de cobertura do solo e de adubação orgânica). Estudos realizados pela Embrapa Semiárido, em parceria com outras instituições, têm ressaltado a necessidade e a importância dessas tecnologias para aumentar a disponibilidade de água para a lavoura, principalmente no período de estiagem (Costa et al., 2002; Silva et al., 2007a; Melo et al., 2009, 2016), o que reduz os riscos de perda da lavoura, seja pelo aproveitamento da água diretamente na ocasião do plantio e/ou no período de
veranico entre as chuvas, seja na manutenção de pomares e hortas domésticas no período seco.

Devido às secas prolongadas nos últimos anos no Semiárido, tem-se observado que a quantidade de tecnologias de tratamento de águas subterrâneas e de captação e armazenamento de água de chuva implantadas aumentou, principalmente com o fomento de programas governamentais, a exemplo do Programa Uma Terra e Duas Águas e do Plano Brasil Sem Miséria, ambos do Ministério do Desenvolvimento Social.

Diante dos cenários das mudanças climáticas, sinalizados pelo Painel Intergovernamental sobre Mudança Climática (IPCC), sabe-se que a população do Nordeste, principalmente do Semiárido, sofrerá consequências negativas especialmente na atividade agrícola (Metz et al., 2007). Portanto, devem-se intensificar ainda mais os programas que incentivam o tratamento adequado de águas subterrâneas e a captação e o armazenamento de água de chuva com o objetivo de minimizar os impactos da seca e, consequentemente, reduzir os riscos de perdas de safras. Para a promoção e o uso adequado dessas tecnologias, também é de fundamental importância a sensibilização dos gestores (de órgãos especializados, de empresas públicas e/ou privadas), dos agentes financeiros e das organizações não governamentais (ONGs) quanto a sua importância para a produção de alimentos e para a segurança alimentar das famílias.

Neste capítulo, será apresentada uma caracterização das tecnologias hídricas que são utilizadas para o fortalecimento dos sistemas agrícolas dependentes de chuva, dentre as quais se destacam o aproveitamento de água salina, a cisterna de produção, o sistema barraginha, a barragem subterrânea e o uso de água de açudes.

Uso de água salina

O cultivo irrigado no Semiárido brasileiro se torna cada vez mais complexo em virtude da baixa disponibilidade de água proporcionada pela irregularidade do regime de precipitação no tempo e no espaço. Entre as pequenas fontes de água disponíveis para os produtores, destacam-se os lençóis freáticos, apesar de apresentarem baixa qualidade para irrigação em grande parte da região e de serem alcançados por poços artesianos que, muitas vezes, apresentam baixa vazão (IBGE, 2013).
A baixa qualidade se deve ao fato de que a maior parte das águas subterrâneas do Nordeste brasileiro apresenta elevada concentração de sais, o que indisponibiliza o seu uso para o cultivo irrigado de muitas culturas tradicionais nas pequenas propriedades da região. Entretanto, é de poços perfurados nessas condições que um grande número de famílias retira a água para beber e manter as atividades agrícolas (Dias et al., 2012).

O uso de água com elevados teores de sais na irrigação deve ser feito observando-se alguns critérios técnicos, que são fundamentais para um bom manejo. A verificação da tolerância da cultura à salinidade do solo é um dos critérios básicos, uma vez que os sais tendem a dificultar a absorção de água pelas raízes, causando deficiência hídrica. Além disso, ao serem absorvidos pelas plantas, os sais podem provocar queima e ondulação das folhas, redução no seu crescimento e até morte das plantas. Outro critério é a desagregação da estrutura do solo, que ocorre quando se tem excesso de sódio (Na⁺) na solução (o que se chama de sodicidade). Assim, deve-se destacar que a produção da cultura é afetada negativamente pelo aumento da salinidade e da sodicidade do solo, conforme descrito por Bernardo et al. (2006), pois o teor de sais acima do nível de tolerância da cultura e a desestruturação dos agregados do solo pelo elevado teor de sódio interferem na infiltração de água e, consequentemente, no manejo da irrigação.

Outro importante critério a ser observado no uso da irrigação com água salina é o manejo do solo. Quando inadequado, além de contribuir diretamente para o acréscimo da concentração dos sais no solo, pode provocar a elevação do nível do lençol freático e, em consequência, a ascensão capilar, culminando com o excesso de água e sais na zona radicular (Bernardo et al., 2006).

Nesse contexto, o uso da irrigação com água de baixa qualidade pelos agricultores familiares deve ser preferencialmente acompanhada por um agrônomo ou técnico para indicar e monitorar as práticas de seu manejo.

Manejo da irrigação com água salina

O uso inadequado da irrigação com água salina pode causar danos econômicos, sociais e ambientais. Entre eles, estão os problemas irreversíveis de salinização no solo, que o tornam improdutivo. O elevado custo de sua recuperação pode resultar no abandono de terras, uma realidade...
já vivida no Semiárido brasileiro. Assim, o manejo integrado do sistema solo–água planta torna-se ferramenta fundamental para evitar tal cenário e, portanto, incrementar a produtividade dos cultivos dentro de padrões de uma agricultura irrigada sustentável.

Em condições de solo e água com baixo nível de salinidade, o manejo da irrigação fundamenta-se em manter a umidade do solo até a profundidade efetiva do sistema radicular considerando a capacidade de campo (CC), condição essa que se refere à máxima capacidade de água que o solo consegue reter (Bernardo et al., 2006). Na prática, faz-se a determinação da umidade do solo antes da irrigação e aplica-se a quantidade necessária para que o solo atinja a CC (que deve ser previamente determinada por análises em laboratório).

Um método de manejo simples, barato e prático, que determina a umidade do solo de forma indireta, é o uso de aparelhos com sensores de umidade, como o tensiômetro e o Irrigas, sensor de umidade do solo desenvolvido pela Embrapa. Os aparelhos são compostos de cápsulas porosas (semelhantes às velas de filtro de água), que interagem com a umidade do solo. Na prática, o tensiômetro fornece a tensão da água no solo de forma numérica, e o Irrigas permite a observação da flutuação ou não de uma bola plástica. Com o auxílio da curva de retenção de água no solo, esses dados fornecem o valor de umidade atual do solo.

O uso de dados climáticos disponibilizados por estações meteorológicas instaladas até uma distância máxima de 40 km (estimativa válida para áreas planas, sem condicionantes de microclimas diferenciados) é outra forma de manejo da irrigação, mediante a qual se determina a quantidade de água evapotranspirada pela cultura (ETc) entre a última irrigação e o momento da próxima irrigação. Nesse caso, utilizam-se os parâmetros climáticos da evapotranspiração de referência (ET0) e do coeficiente da cultura (Kc) para estimar a ETc, sendo que o Kc apresenta valores diferenciados para cada um dos estádios fenológicos de cada cultura:

\[ETc = ET0 \times Kc \]

Já em condições de água com alto nível de salinidade, uma alternativa para o manejo da irrigação seria o uso de lâminas de lixiviação, que consistem na aplicação de um volume de água superior ao que as plantas necessitam. O intuito é manter a condutividade elétrica (concentração de
sais) do solo dentro do limite exigido pelas culturas escolhidas sem prejudi-
car seu desenvolvimento, conforme classificação disponibilizada por Ayers
 e Westcot (1999) e Bernardo et al. (2006). Essa quantidade adicional de água
que percola para baixo da zona radicular e remove parte dos sais acumu-
lados se torna um fator básico no controle dos sais solúveis aplicados via
água de irrigação. Na prática, o produtor deve manear a irrigação de forma
frequente para evitar o translocação dos sais disponíveis no perfil do
solo para o interior do bulbo molhado, local onde o sistema radicular da
planta se encontra.

Essa fração de lixiviação dependerá das características físico-quimi-
cas do solo, da cultura e dos efeitos econômicos e ambientais desejados.
Trabalhos realizados com as culturas da beterraba (Beta vulgaris L.), do sorgo
[Sorghum bicolor (L.) Moench], do feijão-caupi [Vigna unguiculata] e da erva-
sal [Atriplex nummularia] (Assis Junior et al., 2007; Carvalho Júnior et al.,
2010; Guimarães et al., 2016; Simões et al., 2016) já disponibilizam os valores
de frações de lixiviação adequados para essas culturas nas condições edafo-
climáticas em que estavam sendo utilizadas.

Na prática, as láminas de água a serem aplicadas na irrigação devem
ser calculadas de acordo com a ET_0, o coeficiente de localização, a eficiên-
cia de aplicação de água do sistema e as frações de lixiviação, conforme a
seguinte equação:

$$L_i = \frac{(ET_0 * Kc * Kl) - P}{Ef} \times (1 - FL)$$

em que:

L_i: Lâmina de irrigação, em mm.

ET_0: Evapotranspiração de referência medida no período, em mm.

Kc: Coeficiente de cultivo da cultura.

Kl: Coeficiente de localização.

P: Precipitação medida no período, em mm.

Ef: Eficiência do sistema de irrigação, em decimal.

FL: Fração de lixiviação aplicada, em decimal.

Vital et al. (1985) chamam atenção para o manejo da irrigação nas
áreas com pequenas faixas de solos aluviais (solos formados por sedimentos
carreados pelas enxurradas), uma vez que esses podem ser rapidamente salinizados em decorrência de uma irrigação mal administrada.

Para facilitar o manejo da irrigação para o produtor, tabelas práticas disponibilizadas pelo técnico com os dados de umidade atual do solo (Tabela 1) ou da E_{To} (Tabela 2) indicam o tempo correto da irrigação. É importante salientar que a planilha com uso de dados meteorológicos deve ser alterada ao longo do tempo, em virtude das mudanças do Kc da planta.

Tabela 1. Exemplo de Tabela com dados de umidade atual do solo para determinar o tempo de irrigação a ser adotado.

<table>
<thead>
<tr>
<th>Umidade do solo (kPa)</th>
<th>Tempo de irrigação (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Simões et al. (2016).

Tabela 2. Exemplo de Tabela com dados de evapotranspiração de referência (E_{To}) para determinar o tempo de irrigação a ser adotado.

<table>
<thead>
<tr>
<th>Evapotranspiração de referência</th>
<th>Tempo de irrigação (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>175</td>
</tr>
</tbody>
</table>

Uso sustentável da água salina para produção de alimentos

Uma alternativa para melhoria da eficiência de uso da água salina nas propriedades de base familiar do Semiárido é a utilização de um sistema produtivo com usos múltiplos das águas na integração agricultura-aquicultura (criação de organismos de habitat predominantemente aquático, como
peixes, crustáceos, anfíbios, moluscos, répteis, quelônicos, plantas, etc.), o qual pode ser uma estratégia sustentável para as famílias rurais.

Oliveira e Santos (2011) citam como os mais usuais sistemas integrados os seguintes: aquicultura em canais de irrigação, aquicultura em ambientes modulares (em que novos módulos podem ser acoplados ao sistema em uso), agricultura irrigada (escala familiar e industrial), rizipiscicultura (consórcio de arroz irrigado e criação de peixe), aquaponia (combinação da produção de pescados com hidroponia) e aquicultura com águas subterrâneas salinas ou rejeito de dessalinizadores, entre outros.

Para o uso da água salina dos lençóis da região semiárida, a FAO (2007) destaca como opção a produção de pescados e hortícolas para alimentação familiar e venda no comércio local e de forrageiras para alimentação animal. Nesse contexto, considerando-se que as hortícolas e as plantas forrageiras serão irrigadas com o rejeito da piscicultura, Bardach (1997) destaca as vantagens da redução dos custos com a obtenção da água e com a compra de fertilizantes (muitos dos quais, como nitrogênio e fósforo, estão embutidos na matéria orgânica da própria água).

Considerando que a criação de caprinos e ovinos faz parte do dia a dia das pequenas propriedades do Semiárido, Dias et al. (2012) destacam os manejos da engorda desses animais e da produção agrícola com o reúso da água salina mediante a criação de um sistema de produção racional, econômica e ambientalmente sustentável e de fácil implantação. Nesse sentido, deve-se selecionar culturas cada vez mais tolerantes à salinidade e que apresentem adaptabilidade à região, a exemplo do sorgo forrageiro e sorgo graminífero, da beterraba e da erva-sal. O uso da água salina para irrigação dessas culturas deve ser feito na época seca e em solos com boa drenagem, nos quais, no período chuvoso, os sais acumulados poderão ser lavados do solo, possibilitando, assim, novos ciclos de cultivo.

As variedades de sorgo forrageiro e sorgo graminífero, beterraba, cana-de-açúcar (Saccharum spp.) e erva-sal tolerantes à salinidade podem ser alternativas para os produtores dependentes de chuva do Semiárido e que utilizam água salina na irrigação para aumentar a oferta de alimentos para família e para as criações. Deve-se destacar que o sistema de uso integrado do rejeito do dessalinizador tem sido utilizado como a principal tecnologia do Programa Água Doce, do governo federal. Lançado

Vários trabalhos vêm sendo desenvolvidos com o aproveitamento de água salina, principalmente para as culturas olerícolas (Nogueira Filho et al., 2003; Simões et al., 2016). As hortaliças ganham destaque entre os produtos cultivados pelos agricultores familiares por proporcionarem um retorno econômico rápido e eficiente e necessitarem de áreas relativamente pequenas para o cultivo.

O cultivo da beterraba de mesa, que é moderadamente tolerante à salinidade, tem potencial para ser incluído em sistemas de produção que utilizam água de baixa qualidade para irrigação. Simões et al. (2016), avaliando três cultivares de beterraba (Scarlet Super, Early Wonder 200 e Fortuna) irrigadas com água salina (2,5 dS m⁻¹) do efluente da piscicultura e submetidas a diferentes frações de lixiviação (Figura 1), observaram que as frações de lixiviação de 10% e 15% proporcionaram uma melhor distribuição dos sais no perfil do solo, sendo que a fração de 15% proporcionou um aumento significativo na produtividade das cultivares Scarlet Super e Early Wonder 200. Para a cultivar Fortuna, a fração de lixiviação mais indicada foi na faixa de 7,5% (Figura 1).

![Foto: Weliton L. Simões](image)

*Figura 1. Cultivo de beterraba (*Beta vulgaris* L.) ‘Scarlet Super’, ‘Early Wonder 200’ (A) e ‘Fortuna’ (B) irrigadas com água proveniente da piscicultura e submetidas a diferentes frações de lixiviação.*
Diante da baixa disponibilidade de água para manter o produtor rural no campo, existe também um interesse na utilização dos efluentes salinos disponíveis no Nordeste para a produção de forrageiras (Gurgel et al., 2012). Dentre outras culturas, o sorgo, considerado moderadamente tolerante (Oliveira; Santos, 2011), pode ser mais uma alternativa para a produção de forrageiras nos sistemas de produção da agricultura familiar (Guimarães et al., 2016).

Avaliando os cultivos de três cultivares de sorgo forrageiro (Volumax, F305 e Sudão) irrigadas com água proveniente da piscicultura (Figura 2), Guimarães et al. (2016) concluíram que é viável o cultivo do sorgo forrageiro na região semiárida brasileira utilizando-se irrigação com água salina (com condutividade elétrica de 2,57 dS m⁻¹) procedente de tanques de piscicultura, aplicando-se uma fração de lixiviação de 15%. Os autores destacam que 'Volumax' se mostrou mais sensível à salinidade quando comparado com as demais cultivares por apresentar o menor crescimento da parte aérea e menores valores de área foliar e matérias fresca e seca.

Figura 2. Cultivares de sorgo forrageiro [Sorghum bicolor (L.) Moench] (Volumax, F305 e Sudão) irrigadas com diferentes frações de lixiviação de água salina proveniente da piscicultura (A) e detalhe do corte (B).

Água de chuva armazenada em cisterna para produção de frutas e hortaliças

A cisterna, comumente conhecida como reservatório para captação e armazenamento de água de chuva destinada ao consumo humano, evoluiu para uma tecnologia que vem contribuindo para a melhoria da dieta
alimentar das famílias rurais por meio da produção alimentos de origem vegetal (frutas e hortaliças) ou animal (carne e leite). Para isso, pequenas adaptações foram necessárias, principalmente relacionadas ao aumento da capacidade de armazenamento, passando de 16 mil litros para 52 mil litros. Com esse novo objetivo, a tecnologia passou a se denominar “cisterna de produção” ou Programa Uma Terra e Duas Águas (P1+2) e foi inserida como política pública do Ministério de Desenvolvimento Social (Figura 3).

O P1+2 é um programa que tem por objetivo assegurar à população rural o acesso à terra e à água para consumo da família (já contemplada no Programa Um Milhão de Cisternas – P1MC) e dos animais. O intuito é reduzir os riscos da atividade agrícola familiar dependente de chuva diante das irregularidades climáticas que ocorrem no Semiárido brasileiro (Gnadlinger et al., 2007).

![Figura 3. Sistema de captação da água de chuva por meio do Programa Uma Terra e Duas Águas (P1+2).](image)

No Brasil, o P1+2 teve como referência o Programa 1-2-1, desenvolvido na China. Esse programa foi apresentado durante a 9th
International Rainwater Catchment Systems Conference ocorrida simultaneamente ao 2º Simpósio Brasileiro sobre Sistemas de Captação de Água de Chuva em julho 1999 na cidade de Petrolina, PE (Qiang; Li, 1999; Gnadelinger et al., 2007). Por meio do Programa-1-2-1, o governo chinês contribuiu para que cada família tivesse “uma área de terra, duas cisternas e uma área de captação de água de chuva” (Gnadelinger et al., 2007, tradução nossa). Foram construídos 2,5 milhões de cisternas até o fim de 2003, beneficiando 1,1 milhão de famílias no fornecimento de água para beber e habilitando 305 mil hectares para receber cultivos alimentares para consumo doméstico e para venda. Tal como na China, no Semiárido brasileiro, a prioridade também foi a água para consumo humano (Gnadelinger et al., 2007). Por isso, foi implementado inicialmente o P1MC e, em seguida, o P1+2.

Manejo da água da cisterna

A contribuição da Embrapa Semiárido para o P1+2 está associada ao acervo de tecnologias e conhecimentos disponibilizados, resultante dos estudos desenvolvidos, há mais de 10 anos, sobre o manejo da água da cisterna para a produção de alimentos e das experiências de diversas comunidades rurais na luta por uma convivência sustentável entre terra e água. Esses estudos apontam que a água armazenada em uma cisterna de produção (de 52 mil litros), se bem manejada, é suficiente para manter um pequeno pomar (em torno de 20 a 30 fruteiras) e 2 a 4 canteiros de hortaliças com, em média, 12 m² de área cultivada (Brito et al., 2012; Brito; Nascimento, 2015). De acordo com Araújo et al. (2011), a produção de várias espécies de frutas e de hortaliças utilizando água de chuva armazenada na cisterna permite incrementos significativos na dieta das famílias rurais, atuando na redução de futuras doenças como hipertensão, diabetes, câncer e anemia.

Para o eficiente uso do sistema P1+2, é fundamental considerar a limitação da capacidade de armazenamento de água da cisterna de produção (52 mil litros). Por isso, deve-se planejar bem o tamanho da área a ser explorada com as fruteiras e a área dos canteiros de hortaliças. Como a água da cisterna não é suficiente para atender à demanda de evapotranspiração das plantas, seu uso não pode ser denominado de “irrigação”, mas sim de “irrigação com déficit”. Além disso, a água da cisterna não permite a obtenção do potencial máximo de produção.
A definição do volume de água a ser aplicado nas fruteiras e hortaliças depende fundamentalmente da disponibilidade de água na cisterna que, por sua vez, depende da ocorrência das precipitações pluviométricas, do período e da frequência de aplicação de água, do número de fruteiras e da área dos canteiros de hortaliças. Para facilitar o entendimento sobre o manejo da água, o ano foi dividido em três períodos: chuvoso, intermediário e sem chuvas (ou seja, de menor probabilidade de ocorrência de chuvas). Tomando-se como base o município de Petrolina, PE, esses períodos correspondem, em média, conforme Brito et al. (2012) e Brito e Nascimento (2015), a:

- Período chuvoso: duração de 14 semanas, entre janeiro e abril.
- Período intermediário: duração de 18 semanas, entre o fim de abril e agosto.
- Período sem chuvas: duração de 20 semanas, entre setembro e dezembro.

Em pesquisas realizadas por Ferreira et al. (2015, 2016) no município de Petrolina, PE, durante o ano de 2014, foi monitorada a umidade do solo em um pomar cultivado com mangueira (*Mangifera indica* L.), pinheira (*Annona squamosa*), cafeeiro (*Anacardium occidentale*), aceroleira (*Malpighia glabra* L.) e laranjeira (*Citrus sinensis*) com 4 anos de idade no espaçamento de 5 m entre plantas e 5 m entre linhas, seguindo a metodologia recomendada por Brito et al. (2012) e Brito e Nascimento (2015). Os resultados obtidos no fim dos estudos foram comparados com os de fruteiras que não receberam água da cisterna, mas apenas da chuva. Os estudos também contemplaram a avaliação de dois canteiros cultivados com hortaliças em ciclos alternados, com 4 m² cada, sob duas lâminas de água. As espécies escolhidas foram aquelas comumente cultivadas pelas famílias rurais na região: pimentão (*Capsicum annuum*), couve-folha (*Brassica oleracea*), rúcula (*Eruca sativa*), coentro (*Coriandrum sativum*) e alface (*Lactuca sativa*). A Tabela 3 contém as recomendações para o manejo da água aplicado às fruteiras e aos canteiros de hortaliças considerando a cisterna de 52 mil litros.

No início do período chuvoso, foi aplicado apenas adubo orgânico, constituído de 10 kg de esterco curtido de caprino por fruteira. Efetuou-se a aplicação de cobertura morta na projeção da copa de cada planta utilizando-se bagaço de coco visando à redução das perdas de água por
Tabela 3. Recomendação de volume de água aplicado em um pomar com 15 fruteiras e em dois canteiros (de 4 m² cada) de hortaliças, utilizando água de uma cisterna de 52 mil litros.

<table>
<thead>
<tr>
<th>Identificação</th>
<th>Duração do período (semana)</th>
<th>Volume aplicado (L por vez)</th>
<th>Frequência de aplicação (vez por semana)</th>
<th>Volume total aplicado (L por período)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomar</td>
<td>14 (durante período chuvoso)</td>
<td>8</td>
<td>3</td>
<td>5.040</td>
</tr>
<tr>
<td>Pomar</td>
<td>18 (durante período intermediário)</td>
<td>12</td>
<td>3</td>
<td>9.720</td>
</tr>
<tr>
<td>Pomar</td>
<td>20 (durante período sem chuvas)</td>
<td>16</td>
<td>3</td>
<td>14.400</td>
</tr>
<tr>
<td>Total aplicado nas fruteiras (L por ano)</td>
<td></td>
<td></td>
<td></td>
<td>29.160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identificação</th>
<th>Duração do período (dia)</th>
<th>Volume aplicado (L por dia)</th>
<th>Frequência de aplicação (vez por dia)</th>
<th>Volume total aplicado (L por ano)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canteiro 1</td>
<td>365</td>
<td>32</td>
<td>1</td>
<td>11.680</td>
</tr>
<tr>
<td>Canteiro 2</td>
<td>365</td>
<td>16</td>
<td>1</td>
<td>5.840</td>
</tr>
<tr>
<td>Total aplicado nos canteiros de hortaliças (L por ano)</td>
<td></td>
<td></td>
<td></td>
<td>17.520</td>
</tr>
</tbody>
</table>

Soma dos totais aplicados nas fruteiras e nos canteiros de hortaliças (L por ano) 46.680
evaporação e da incidência de plantas espontâneas. Na área dos canteiros, foram aplicados 4,0 L m² de esterco de caprino curtido bem misturado ao solo. As áreas dos canteiros foram cobertas com tela sombreadora (60% de sombreamento) com vistas a reduzir a insolação e diminuir o fluxo da evapotranspiração.

A umidade do solo foi monitorada utilizando-se a reflectometria no domínio da frequência (frequency-domain reflectometry – FDR), técnica indireta e não destrutiva capaz de permitir a repetitividade no espaço e no tempo e cujos dados foram ajustados com base na curva de retenção de água no solo (Figura 4). Também foi considerado um limite inferior de disponibilidade de água no solo – fator (f) de 0,7 para o grupo das frutíferas e 0,5 para as hortaliças, conforme apresentado por Bernardo et al. (2013). O valor para a umidade na capacidade de campo (CC) foi de 0,2859 cm³ cm⁻³ e, para o ponto de murcha permanente (PMP), foi de 0,0973 cm³ cm⁻³.

![Foto](attachment:Imagem.jpg)

No período chuvoso, os resultados da umidade do solo a 10 cm de profundidade permaneceram próximos à CC (0,3687 cm³ cm⁻³) em todas
as espécies cultivadas. Além disso, observou-se que, com o aumento da profundidade, a umidade também aumentou, atingindo maiores valores aos 30 cm de profundidade. No período intermediário, a umidade média do solo para as culturas da manqueira e pinheira foram superiores ao limite estabelecido como umidade crítica (15%) entre 20 cm e 50 cm de profundidade. Para as demais culturas, os valores foram abaixo desse limite. No período seco, registrou-se um total de 147,4 mm de precipitação, com maior concentração das chuvas (cerca de 95%) nos meses de novembro e dezembro.

Os resultados da umidade do solo indicam que, na camada superficial, os valores obtidos foram em torno de 10% acima do PMP (0,0802 cm³ cm⁻³). Contudo, observou-se um aumento gradativo da umidade até 20 cm de profundidade, variando de 0,1087 cm³ cm⁻³ a 0,1543 cm³ cm⁻³.

Os baixos teores de umidade, notadamente na camada mais superficial do solo e em profundidade, podem ser devido a fatores climatológicos e geram competição pela quantidade de água adicionada ao solo. Dentre esses fatores, têm-se baixos índices de umidade relativa do ar, altos valores de velocidade do vento, altas temperaturas e elevada evapotranspiração potencial. Essas condições, associadas à textura arenosa do solo, com cerca de 80% da fração areia registrada na profundidade de 10 cm a 20 cm, têm contribuído para a intensificação do fluxo de vapor d'água do solo para a atmosfera.

As produções obtidas nas áreas sob estudo foram baixas. No entanto, tem-se que considerar que 2014 foi um ano de continuação de um período de seca que teve início em 2012, tendo ocorrido apenas 184,5 mm de precipitação. Mesmo assim, apenas com a produção de acerola obtida, foi possível dispor de uma média de 400 g de frutos por dia para atender às necessidades de vitamina C das famílias.

Sob as condições estudadas, a água aplicada advinda da cisterna, somada com as precipitações pluviométricas, não atendeu às necessidades das plantas. No entanto, o propósito foi avaliar a possibilidade da manutenção de fruteiras em pequena escala com um requerimento mínimo de água dimensionado com base no volume de água armazenado na cisterna do P1+2 (52 mil litros), de modo a promover a inserção de frutas e hortaliças na dieta alimentar das famílias rurais do Semiárido brasileiro.
No tocante às hortaliças, os resultados da umidade do solo foram comparados, tendo-se como referência os dados da CC de 0,2565 cm³ cm⁻³, PMP de 0,0772 cm³ cm⁻³ e f = 0,5, considerando-se um cenário de baixa demanda hídrica, o qual corresponde a 65% da CC. Embora o volume de água administrado ao canteiro 2 tenha sido de 16 L dia⁻¹, que corresponde à metade do volume aplicado ao canteiro 1, observou-se uma diferença muito pequena nos valores de umidade do solo registrados entre 10 cm e 20 cm de profundidade (Figura 5). As médias desses valores de CC e PMP corresponderam a 0,2262 cm³ cm⁻³ para o canteiro 1 e 0,2087 cm³ cm⁻³ para o canteiro 2.

Figura 5. Canteiros de hortaliças com detalhe da produção de pimentão *Capsicum annuum* (A) e vista geral da horta (B).

O fato de os canteiros estarem elevados a aproximadamente 10 cm do solo pode ter causado uma rápida percolação da água, o que levou a valores de umidade semelhantes em profundidade entre os dois canteiros. A partir de 20 cm de profundidade, no canteiro 2, observou-se que ocorreu redução da umidade do solo, provavelmente em consequência da menor quantidade de água aplicada em relação à aplicada no canteiro 1. A partir de 60 cm de profundidade, os valores de umidade se estabeleceram próximos a 0,1356 cm³ cm⁻³, o que corresponde a cerca de 50% da CC.

As produções obtidas nos canteiros alcançaram um total de 120,32 kg, dos quais 59,08% corresponderam à produção do canteiro 1 e 40,93% à produção do canteiro 2. Diante desses resultados, é possível recomendar a lâmina aplicada (16 L dia⁻¹) no canteiro 2, pois, além de atender às demandas hídricas do grupo das hortaliças, o rendimento das produções, no geral, foi semelhante, com exceção do pimentão e do coentro, que alcançaram o dobro da produção no canteiro 1.
Sistema Barraginha

Quando recebe a água das chuvas, a superfície do solo concentra-a em forma de enxurradas, que vão se avolumando até causar danos ao solo, como a erosão, os assoreamentos e o carreamento de poluentes. Para tentar reverter essa situação, criou-se o Sistema Barraginha, uma tecnologia que permite armazenar a água da chuva para usos diversos. Ela consiste em dotar as áreas com várias minibacias (miniaçudes) dispersas (Figura 6), de modo que cada uma colha um volume significativo de água de enxurrada (Barros, 2008). Dessa forma, as barraginhas acompanham a distribuição das enxurradas no terreno e colhem a água da chuva onde ela cai (Grey-Gardner, 2003), sem deixá-la escorrer e causar danos, podendo até amenizar enchentes, contribuir para conservação de estradas e amenizar os problemas da seca (veranicos).

Ao barrarem a água de uma chuva intensa, as barraginhas propiciam um tempo para que essa água se infiltrte e recarregue o lençol freático. De acordo com Barros e Ribeiro (2009), quanto mais rápido a água se infiltrar, mais eficiente é a barraginha, pois, assim, ela estará apta a colher a próxima chuva que ocorrer ao longo da estação de chuva. A água contida em uma barraginha infiltra-se continuamente na forma de uma “franja úmida” crescente. Inicialmente, ela umedece o seu entorno, o que propicia lavouras isoladas (Figura 7). Posteriormente, ela recarrega um grande reservatório subterrâneo, que é o lençol freático, abastecendo os mananciais que mantêm as nascentes, as cisternas, os cacimbões e os córregos. Ao umedecer as baixadas, são criadas condições para uma agricultura com menor risco
de estresse hídrico e melhorias no sustento das famílias, gerando alimentos e renda local e regional, o que se reflete nas feiras, no comércio, na saúde e na satisfação das populações beneficiadas.

Clima e solo

Pesquisas realizadas pela Embrapa, de acordo com Barros (2000) e Rodrigues et al. (2012), tem mostrado que o Sistema Barraginha de captação de água de chuvas tem uma amplitude de atuação em regiões com precipitações acima de 400 mm, atuando nos períodos de chuvas intensas, quando ocorrem enchentes. Esse sistema tem sido implantado em propriedades com topografia de ondulada a plano-ondulada (com declividade
inferior a 15%) geralmente em regiões com áreas de pastagens degradadas do Brasil Central, destacando-se as regiões de pastagens de Minas Gerais, Goiás, Tocantins e Bahia (Albuquerque; Durães, 2008).

As barraginhas nas regiões de Cerrado, onde os solos são mais porosos e profundos, têm dimensões menores: 15 m de diâmetro e volume entre 100 m³ e 150 m³ (o que corresponde a 10 a 15 caminhões-pipa). Já no Vale do Jequitinhonha, em Minas Gerais, e no Piauí, onde predominam solos rasos, com capacidade de média a baixa de infiltração, as barraginhas são ligeiramente maiores, chegando a medir 20 m de diâmetro e com capacidade de armazenamento de até 300 m³. Nesses casos, a infiltração entre uma chuva e outra leva mais tempo (Barros et al., 2013).

Local e período de construção de barraginhas

A presença do produtor é necessária no processo de construção das barraginhas, pois é ele que conhece o terreno e que levará o técnico aos locais das enxurradas ou aos pontos estratégicos onde as barraginhas devem ser construídas. Como as enxurradas se espalham em várias direções e lugares das propriedades, as barraginhas devem seguir o mesmo trajeto, sendo distribuídas conforme o percurso dessas enxurradas, isto é, as linhas de drenagem. Essa distribuição é necessária para manter a umidade em toda a área e conter as erosões. O entendimento do sistema por parte do produtor é determinante para que todas as enxurradas erosivas sejam contidas e contempladas. Os produtores obtêm esse conhecimento nas reuniões mobilizadoras na comunidade realizadas por disseminadores locais da tecnologia.

As barraginhas não devem ser construídas em cursos de água perenes, nas áreas de proteção permanente (APPs), no interior das voçorocas e das grutas secas nem em terrenos com inclinação acima de 12% (Barros et al., 2013).

Período de construção e maquinário

O ideal é construir as barraginhas na época mais úmida do ano, que se inicia depois das duas primeiras chuvas e continua até 4 a 5 meses após encerradas as chuvas.
É importante iniciar a construção depois das duas primeiras chuvas porque elas umedecem o solo, favorecem a escavação e facilitam a ligação e a compactação dos aterros. Para projetos que vão se estender por todo o período úmido, deve-se iniciar a implantação nas áreas que vão secar antes (geralmente as mais altas), para que, ao fim desse período, a umidade residual nas baixadas ainda seja aproveitada.

Na construção das barraginhas, o maquinário ideal é uma pá-carregadeira ou similar ou uma retroescavadeira, sendo necessário um treinamento prévio específico do operador.

Estratégia de implantação

Em solos mais favoráveis, como os Latossolos, o tempo médio gasto para construir uma barraginha com uma pá-carregadeira é de 1 h. Já nos solos mais firmes, como os Cambissolos, esse tempo é de 2 h. O espaçamento entre as barraginhas deve seguir uma estratégia que considere o resultado da implantação do sistema a cada ano. Assim, 1/3 das barraginhas (planejadas considerando o potencial de uma determinada área) deve ser construído no primeiro ano, evitando as principais enxurradas. Depois de um ciclo de chuvas, o produtor, ao observar os resultados, motiva-se e demanda a construção de mais 1/3 das barraginhas no segundo ano. No ano seguinte, considerando os resultados dos primeiros 2 anos, implanta-se o 1/3 final das barraginhas, a fim de barrar todas as enxurradas detectadas na propriedade.

Crista, formato da barraginha e sangradouro

A crista do aterro assume comumente o formato de meia-lua ou semicircular (em solos mais planos, com até 6% de inclinação), mas também pode apresentar formato de arco (em solos de 6% a 12% de inclinação).

Em todos esses casos, a água forçará o meio do aterro ou o meio do arco. Para que o aterro não se rompa, deve apresentar crista em formato de “travesseiro”, isto é, elevado no meio e despondo para as extremidades. Assim, se houver abatimento no meio do aterro, ainda haverá uma folga elevada, e a estrutura não se romperá.

Pequenos sangradouros são construídos para verter excedentes durante chuvas intensas, embora o ideal seja que as barraginhas se enchem
e não necessitem sangrar. Caso alguma sangue com frequência, é sinal de que se deve fazer uma ou mais barraginhas acima ou intercaladas para evitar esse volume excedente. Deve-se evitar escavar os sangradouros, ou seja, eles devem ser rasos e quase imperceptíveis, para evitar início de erosão.

Desassoreamento e manutenção

Normalmente, cerca de 14% das barraginhas sofrem certo grau de assoreamento depois de 3 a 5 anos de sua construção, quando se acumulam muitos sedimentos erosivos trazidos pelas enxurradas colhidas, resultado da falta de práticas conservacionistas do solo em sua bacia de captação (Duarte, 2010). Isso ocorre principalmente com as barraginhas da parte superior da propriedade e com as de beira de estrada. Caso ocorra assoreamento na barrinha, para manter sua capacidade original de armazenamento, os sedimentos devem ser removidos por máquina e depositados nas costas do aterro.

Benefícios e vantagens proporcionadas pelas barraginhas

O maior benefício proporcionado pelo Sistema Barrinha é a contenção do avanço da degradação do solo pelas enxurradas, as quais provocam erosões laminares e sulcadas e arrastam sedimentos para as baixadas e córregos, empobrecendo o solo e comprometendo os recursos hídricos da propriedade.

Ao armazenar a água da chuva, asbarraginhas proporcionam condições para que a água nelas repescada se infiltrte no solo, atingindo o lençol freático. Depois que a água se infiltra por completo, a barrinha está pronta para receber as águas das próximas chuvas. Esse processo se repetirá sucessivamente em todo o ciclo chuvoso, e, assim, o lençol freático terá seu volume aumentado. Com isso, diversos benefícios são observados, tais como elevação dos níveis das cisternas e dos cacimbões, surgimento de minadouros e cacimbas, fortalecimento dos mananciais mantenedores das nascentes e dos córregos, revitalização e perenização de córregos antes intermitentes e umedecimento das baixadas, proporcionando uma agricultura segura e alimentos de qualidade. Tudo isso beneficia populações rurais e gera emprego e renda (Figuras 8 e 9).
Figura 8. Horta plantada aproveitando a umidade proporcionada por barraginhas.

Figura 9. Afloramento de água na baixada proporcionado por barraginha.
Acredita-se que, pelo fato de as barracintas promoverem elevação do lençol freático em toda a região à jusante, a associação dessa tecnologia com as barragens subterrâneas (construídas em leito de riachos e linhas de drenagens) pode potencializar os resultados obtidos por essa outra tecnologia de convivência com a seca.

Mobilização da comunidade

Embora os produtores possam implementar o Sistema Barraginha isoladamente, na grande maioria dos casos, eles o fazem coletivamente, envolvendo sua comunidade. Mesmo que cada produtor pretenda construir barracintas por conta própria, tanto a mobilização como os treinamentos são feitos em grupo. Geralmente, a mobilização é dividida em quatro fases: a) reuniões para primeiros contatos e apresentação do sistema feita por participantes do projeto; b) visita a unidades demonstrativas do Sistema Barraginha; c) treinamento no local; e d) construção das primeiras barracintas pelos participantes.

Os multiplicadores da tecnologia podem ser técnicos da extensão rural ou de alguma ONG, associação ou sindicato ou mesmo voluntários. Na última fase, é importante que a gestão seja própria da comunidade, mas com apoio do poder público no envolvimento, no financiamento (parcial ou total) das despesas e no uso de máquinas. O intuito dessa parceria é aproximar a comunidade, os técnicos e o poder público. Normalmente, após 50 ou 100 barracintas prontas, organiza-se um *Dia de Campo*, que se repetirá quando se chegarem à 500, às 1.000 ou mais barracintas (Figura 10).

Unidades demonstrativas descentralizadas

Centenas de comunidades com 100 a 200 barracintas já se tornaram unidades demonstrativas (também chamadas de "vitrines") desse sistema. Por sua vez, os beneficiários das barracintas tornaram-se multiplicadores dessa tecnologia da Embrapa. Diversos municípios que adotaram o Sistema Barraginha, em função não apenas da grande quantidade de barracintas, mas também dos resultados pronunciados de produção de água e do alto grau de mobilização e gestão das comunidades, são considerados vitrines para visitação. Podem-se citar como exemplos os municípios mineiros de Araçai, Buritis, Formiga, Januária, Janaúba, Jequitibá, Lagamar, Minas Novas, Montezuma e Porteirinha.
Figura 10. Dia de Campo festivo ocorrido com a participação de técnicos do Instituto de Assistência Técnica e Extensão Rural (Emater) do Piauí.

Barragem subterrânea

A barragem subterrânea é uma tecnologia de captação e armazenamento de água de chuva milenar, praticada em zonas áridas e semiáridas de vários países do mundo. A disseminação dessa tecnologia no Nordeste do Brasil intensificou-se na década de 1980. Estimativas realizadas por vários
autores permitem afirmar que foram construídas mais de 1.300 barragens na zona semiárida do Brasil até 2012 (Brito et al., 1989; Cirilo et al., 1999; Costa et al., 2002; Avaliação..., 2010).

A barragem subterrânea consiste no barramento artificial (barro batido, alvenaria e lona plástica de polietileno) do fluxo de água superficial e/ou subterrânea no sentido contrário ao do escoamento. Esse processo contribui para segurar a água da chuva que se perderia pelo escoamento superficial e subterrâneo, favorecendo, assim, a elevação do nível da água dentro do solo (Cirilo et al., 2003; Oliveira, 2010; Ferreira et al., 2011; Lima, 2013; Melo et al., 2013).

A barragem subterrânea pode ser construída de várias maneiras. A seguir, apresentam-se três modelos por ordem decrescente de complexidade e de custos operacionais de construção (Oliveira, 2001):

- **Modelo Caatinga:** é um tipo de barragem subterrânea pautada na experiência internacional. Originou-se de experiências da Associação Caatinga no município de Ouricuri, PE. Esse tipo de barragem é construída com abertura de uma trincheira linear compactada (septo), transversal ao sentido do riacho, e um enrocamento de pedras arrumadas, sem rejunte, sobre a trincheira.

- **Modelo Costa & Melo:** é o mais difundido por apresentar as seguintes características: é o mais apropriado para a zona cristalina do Semiárido, é o de mais baixa complexidade de construção, permite o monitoramento da água e é de fácil construção, exploração e manutenção. Esse modelo é caracterizado pela escavação de uma trincheira retilínea perpendicular à direção do escoamento, seguida da colocação de um septo impermeável ao longo da trincheira (lona plástica), da construção de um poço amazonas à montante e de um enrocamento de pedras arrumadas, sem rejunte, na superfície, sobre o septo impermeável.

- **Modelo Cipsa/Embrapa:** foi desenvolvido pela Embrapa Semiárido (localizada em Petrolina, PE) na década de 1980 com a finalidade de aumentar a captação e o armazenamento de água para a agricultura familiar. O modelo Cipsa/Embrapa destaca-se por ter a parede impermeabilizada com uma lona plástica de polietileno e o barramento em forma de arco. A altura de parede chega
a 1,0 m acima do nível do solo, com a presença de uma cisterna coberta à jusante para aproveitamento de água excedente (cano de descarga) e de um sangradouro de concreto ou alvenaria.

Nesse capítulo, será caracterizada a barragem subterrânea (Figura 11) e serão apresentados relatos das experiências da Embrapa Semiárido com as construídas em linhas de drenagens e riachos, com abertura de trincheiras, presença ou ausência de poço (depende da profundidade do solo) e nas quais foi utilizada, como material impermeável, a lona plástica de polietileno de 200 μ que permite maior acúmulo de água no solo, contribuindo para reduzir os riscos de perda da lavoura.

Figura 11. Desenho esquemático do funcionamento (A) e corte transversal (B) de uma barragem subterrânea.
Importância e vantagens da barragem subterrânea

Com a adoção das barragens subterrâneas, as famílias conseguem armazenar água suficiente para reduzir ou minimizar os riscos de perda da lavoura. Isso ocorre devido à formação de uma vazante artificial onde o solo permanece úmido (em algumas situações, por até 5 meses depois da época chuvosa), permitindo a realização dos plantios mesmo em época de estiagem. Nos municípios paraibanos de Remigio e Arara, há exemplos de barragens que funcionam o ano todo, proporcionando que os agricultores plantem frutíferas, forrageiras, hortaliças, plantas medicinais e batata-doce (Ipomoea batatas (L.) Lam.).

A barragem subterrânea tem mudado a vida de muitos agricultores que se apropriaram dessa tecnologia, o que é comprovado pelo acompanhamento de experiências em alguns estados. Tem-se observado a contribuição da tecnologia para a segurança alimentar e nutricional das famílias (Figura 12) e para a geração de renda a partir da comercialização do excedente da produção em feiras livre ou feiras agroecológicas.

![Figura 12. Vista parcial de barragem subterrânea produzindo em pleno verão com água de poço no distrito de Pau Ferro, município de Petrolina, PE.](image)

As principais vantagens da barragem subterrânea (Silva et al., 1998; Ferreira et al., 2011; Melo et al., 2013; Relatório..., 2014) são:
• Pouca perda de água por evaporação comparativamente à evaporação dos reservatórios de acumulação de água superficial, que pode alcançar até 2.500 mm por ano.
• Não alagamento das terras, cujos cultivos passam a ser beneficiados pela elevação do lençol freático, aproveitando o processo natural de subirrigação em grande parte do ano.
• Baixo custo de construção e manutenção, quando comparado ao de outros sistemas de acumulação de água.
• Pequenos riscos de rompimento, principalmente para as barragens construídas em riachos e linhas de drenagens.
• Menor impacto ambiental do que as barragens superficiais.
• Melhoria da fertilidade do solo devido ao acúmulo de matéria orgânica nas barragens que têm a parede elevada na superfície do solo.
• Redução dos riscos de perdas de safra quando comparados aos riscos em áreas de sequeiro.

Uma limitação importante com relação à operação das barragens subterrâneas é risco de salinização da área quando, no ambiente, já existem sais naturalmente ou quando os ambientes têm histórico de água salobra ou salgada (Melo et al., 2016). Além disso, é relevante destacar que nem todo solo é apropriado para se construir barragem subterrânea. Deve-se dar preferência aos de textura de arenosa a média e que tenham profundidade entre 1,5 m e 4,5 m.

Condições favoráveis para construção de barragem subterrânea

A barragem subterrânea deve ser construída no período de estiajem (verão) quando não existir água no lençol freático. No entanto, caso exista, faz-se necessário o bombeamento e o uso de escoras para o solo não desmoronar, principalmente em locais onde as águas das cacimbas sejam de boa qualidade e existam áreas favoráveis para sua construção em rios temporários, aluviões, linhas de drenagens ou córregos. Se a profundidade do aluvião for superior a 2,5 m, recomenda-se a construção de poço amazonas próximo ao sangradouro ou na parte mais profunda da barragem subterrânea.
Após a definição do local, é necessário abrir algumas trincheiras (buracos de postes) até a camada impermeável do solo (conhecida também como piçarra, salão, cabeça de carneiro e massapé) ao longo da linha. Devem-se construir pelo menos quatro trincheiras, sendo uma em cada extremidade e duas na parte central, onde será construída a parede. Essa etapa serve para conhecer a profundidade e o perfil do solo (que geralmente não é uniforme) e permite localizar as ombreiras (solos mais rasos nas extremidades), sendo necessária para evitar a saída da água pelas laterais (Figura 13).

![Figura 13. Corte transversal no leito de um curso d'água selecionado para construção de uma barragem subterrânea com detalhes de trincheiras, profundidades e ombreiras. Ilustradora: Juliana Martins](image)

Para o sucesso da barragem subterrânea, é necessário seguir algumas etapas: a) escolha de agricultores capacitados; b) seleção do local; c) escavação até a camada impermeável; d) remoção de pontas de pedras e raízes; e) fixação da lona; f) manutenção da parede e do sangradouro (para os modelos que permitem a sua construção); g) manejo adequado do solo, dando preferência ao uso de tração animal (para evitar compactação); e h) uso de adubo orgânico para melhoria da fertilidade do solo e, consequentemente, obtenção de produtividade satisfatória.

O comprimento da parede da barragem subterrânea depende da largura da área (rio, riacho ou linha de drenagem). Preferencialmente, deve variar de 60 m a 100 m, pois uma barragem muito estreita pode resultar em uma pequena área para o plantio, a não ser que a finalidade da barragem seja apenas abastecer o poço. Esse processo permite estimar custos e planejar a implantação da barragem subterrânea, inclusive programar a construção (de acordo com o tipo de mão de obra disponível, se manual ou mecanizada).
Manejo e opção de cultivos

No Semiárido brasileiro, a maioria dos solos apresenta baixa fertilidade devido aos baixos teores de matéria orgânica. Sendo assim, o uso de adubo orgânico é essencial, pois, além de manter a umidade do solo por maior período, contribui para a melhoria de suas características químicas, físicas e biológicas, disponibilizando nutrientes necessários às plantas (Souza et al., 2005).

Os plantios devem ser realizados de acordo com o gradiente de umidade da barragem subterrânea, ou seja, quanto mais próximo do sangradouro, mais úmido se encontra o solo. A reposição dos nutrientes no solo deve ser realizada utilizando resíduos orgânicos e/ou oriundos de rochas (restos vegetais, biofertilizantes, húmus, compostos orgânicos, estercos e pós de rocha), pois esses procedimentos podem dobrar ou até mesmo triplicar a produtividade das culturas, já que suprem o solo de nutrientes e melhoram suas propriedades físicas.

No caso do uso de esterco, recomenda-se que ele esteja bem curtido para não causar queima das plantas nem contaminação da água por nitrato. Na Figura 14, é ilustrado o plantio de feijão-caupi em barragem subterrânea no município de Petrolina, PE. Nessa barragem, no ano de 2007 (com aproximadamente 185 mm de precipitação pluviométrica), a produtividade do feijão adubado com 2 L m⁻³ de esterco foi de 1.430 kg ha⁻¹ (valor acima da média da região), enquanto, na área fora da barragem, com a mesma quantidade de esterco, a produtividade foi de 658 kg ha⁻¹ (Melo et al., 2009). Conforme estudos realizados por Santos et al. (2008), em condições de sequeiro, a produtividade média para cultivar IPA 206 é de 340 kg ha⁻¹.

Na barragem subterrânea, podem-se plantar diversas culturas, tais como: fruteiras de diferentes espécies, feijão-caupi, milho, sorgo, batata-doce, inhame (Dioscorea spp.), forrageiras, hortaliças, plantas medicinais e condimentos. É importante evitar o uso de agrotóxico no combate de pragas e doenças e dar preferência a produtos naturais, pois esses, quando utilizados corretamente, não causam impactos ao ambiente nem ao homem.
Açudes

O deficit hídrico periódico da região semiárida nordestina intensificou a construção de muitos pequenos açudes nas últimas décadas. Atualmente, existem mais de 70 mil açudes, a grande maioria dos quais é utilizado para consumo humano, irrigação, culturas de vazante e piscicultura (Albinati, 2006; Barbosa et al., 2006). De acordo com Assunção e Livingstone (1993), a política de construção de açudes baseou-se no conceito de que, desde que a seca é, por definição, um problema de falta de água, a situação deve ser resolvida com a acumulação de água em grandes quantidades, o que tem sido chamado de “solução hidráulica”. Porém, nem todos os açudes foram devidamente planejados (Lima Júnior et al., 2009). Como o deficit hídrico é quase sempre visto de maneira quantitativa, sem analisar os aspectos qualitativos, é possível imaginar o motivo pelo qual foram e ainda são construídos açudes indiscriminadamente (Oliveira; Medeiros, 2003).

Nesse contexto, tem sido comum a aplicação de políticas públicas para recursos hídricos no Semiárido brasileiro. No entanto, sua eficácia na promoção de impactos ambiental e socioeconômico tem sido limitada (Montenegro; Montenegro, 2012).

Água de açudes e seus usos

O valor econômico/ambiental dos recursos hídricos requer uma gestão integrada, que assume vários aspectos e envolve um conjunto
diverso de ações que compreendem as fases do ciclo hidrológico. Por envolver rios temporários, essa gestão inter-relaciona os sistemas hidricos com outros recursos naturais e compreende usos e finalidades múltiplas, principalmente no que se refere à construção e utilização de açudes.

Conforme Assunção e Livingstone (1993), a água dos açudes pode ser usada para diferentes propósitos: irrigação de culturas, pecuária, abastecimento de água da população, criação de peixes, geração de eletricidade e turismo, perenização de rios e reserva de água de última instância. O tipo de destino a ser dado à água de açudes geralmente determina o seu volume e o tempo durante o qual deverá ficar armazenada. Por exemplo, a construção de grandes açudes é direcionada para o armazenamento de água pluvial, ou seja, para os anos com pouca ou nenhuma precipitação. O seu uso para irrigação é tão pequeno, no entanto, que não provoca impacto na produção agrícola regional.

Quanto à construção dos açudes, os autores apresentam características bastante variáveis, em particular no que diz respeito a sua geometria. Por geometria, entende-se a forma geral da aguada e do vale barrado pela represa. De acordo com Molle (1994), os três parâmetros mais simples que caracterizam a forma de um açude são: profundidade, superfície e volume. Esses parâmetros não são equivalentes; a importância de cada um deles depende principalmente do uso previsto da represa.

Assim, para o uso destinado ao abastecimento humano ou animal, o fator principal é a profundidade da represa, da qual depende principalmente a duração da disponibilidade em água. Com efeito, a profundidade é o melhor indicador simples do tempo que a represa poderá resistir à evaporação e à infiltração.

Para o uso voltado à irrigação, o fator principal é o volume disponível, do qual dependerá a superfície irrigada, devendo-se, de preferência, haver um espelho d'água limitado, de maneira a reduzir as perdas por evaporação.

Para o uso em cultivos de vazante e/ou piscicultura, é o tamanho do espelho d'água o que importa. No primeiro caso, é favorável uma situação em que o espelho d'água diminui rapidamente (maior superfície plantada) enquanto, no segundo caso, é preferível um espelho d'água grande e pouco variável (o número de peixes é proporcional à superfície livre).
Evaporação e salinidade dos açudes

Segundo estudos realizados por Molle (1989) com base em dados de 11 postos distribuídos no Semiárido e séries variando entre 8 e 25 anos, a evaporação variou entre 2.700 mm a 3.300 mm por ano, sendo que os valores máximos ocorreram nos meses de outubro a dezembro e os mínimos de abril a junho. Isso foi confirmado pelo Instituto Interamericano de Cooperação para a Agricultura (ILCA), (Instituto Interamericano de Cooperação para a Agricultura, 2002), que verificou que a evaporação varia de 1.000 mm por ano do litoral da Bahia ao Recife. No interior, atinge 2.000 mm por ano, podendo chegar até 3.000 mm por ano em Petrolina, PE.

A evaporação tem um papel relevante no processo de salinização como agente facilitador por contribuir para a extração dos sais que são encontrados no solo pelo processo da exsudação (subida da água pelos poros do solo) e como concentrador por retirar apenas a água dos reservatórios, fazendo aumentar a concentração dos sais. Os grandes açudes, devido a seus volumes de água, têm maior inércia (resistência à mudança) e menor amplitude de variação sazonal de salinidade. Ao contrário, os açudes pequenos e médios são reservatórios de inércia geralmente muito reduzida e excessivas amplitudes de variação sazonal de salinidade (baixas variações no período das cheias e altas no período de seca). A sazonalidade é um fator importante na decisão sobre a possibilidade e o gerenciamento do uso das suas águas, haja vista que é no período de seca, quando a demanda aumenta, que a qualidade da água se encontra mais comprometida.

Variáveis climáticas e disponibilidade hídrica em açudes

Estudos sobre a influência das precipitações na disponibilidade hídrica de reservatórios, principalmente relacionados ao manejo de bacias hidrográficas visando à produção e aos usos eficientes da água e à manutenção de sua qualidade, são altamente relevantes. O Semiárido brasileiro apresenta grande quantidade de açudes de diferentes portes, em sua maioria, destinados para uso pelas famílias.

No contexto das mudanças climáticas, os cenários publicados pelos relatórios do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) (Metz et al., 2007) são considerados preocupantes para todo mundo quanto
aos aspectos de elevação da temperatura e de quantidade e distribuição das precipitações. Dos cenários previstos, aqui será citado o mais drástico. Especificamente no caso do Brasil, os impactos mais severos poderão ocorrer no Semiárido, que tende a ficar mais seco devido principalmente: à redução de 15% a 20% das chuvas e à ocorrência de secas mais intensas; à significativa redução do nível de água dos reservatórios subterrâneos, com estimativas de redução de até 70% até o ano 2050; ao aumento da temperatura entre 3 ºC a 4 ºC para a segunda metade do século 21, dentre outros.

A partir do estudo realizado no município de Petrolina, PE, por Pereira et al. (2011a), foi possível verificar que, nos últimos anos, os açudes não têm operado na sua capacidade total de armazenamento de água. A caracterização física dos açudes no município de Petrolina, PE, permitiu constatar o assoreamento da bacia hidrográfica, na maioria deles, ocasionado pelo carreamento do solo de áreas adjacentes devido à presença de pouca vegetação em suas margens e de área destinada à captação e escoamento da água de chuva. Considerando-se a capacidade de armazenamento de quatro açudes do município (Tabela 4), são apresentadas as áreas de captação necessárias para a situação atual, com base na precipitação média anual de 530,0 mm, e para uma situação de redução de 20% no valor da precipitação média (397,00 mm).

Tabela 4. Capacidade máxima de armazenamento de água, área da microbacia hidrográfica e área de captação necessária considerando a precipitação média atual e o cenário de redução de 20% em seu valor para quatro açudes localizados em Petrolina, PE.

<table>
<thead>
<tr>
<th>Reservatório</th>
<th>Capacidade máxima de armazenamento (m³)</th>
<th>Área da microbacia (km²)</th>
<th>Área de captação necessária Sob precipitação atual (km²)</th>
<th>Sob precipitação 20% reduzida (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pau Ferro (Barreiro)</td>
<td>500</td>
<td>23,5</td>
<td>4,72</td>
<td>6,30</td>
</tr>
<tr>
<td>Cruz de Salinas</td>
<td>4.021.375</td>
<td>70,85</td>
<td>37,94</td>
<td>50,65</td>
</tr>
<tr>
<td>Cristália</td>
<td>150.000</td>
<td>222,7</td>
<td>1,42</td>
<td>1,89</td>
</tr>
<tr>
<td>Catitu</td>
<td>225.375</td>
<td>665,16</td>
<td>2,13</td>
<td>2,84</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Pereira et al. (2011b).
Observa-se que o cenário de redução de 20% no total anual de chuva resulta em aumentos significativos nas áreas de captação em três reservatórios quando comparadas com as áreas atuais. Entretanto, em termos práticos, não é possível ampliar essa área de captação. Assim, devem ser realizadas ações técnicas para favorecer o escoamento superficial da água das chuvas para esses reservatórios, como citado anteriormente.

O aumento da evaporação nos cenários futuros poderá reduzir a disponibilidade hídrica dos açudes a 262,3 mm anuais no cenário otimista e a 366,3 mm no cenário pessimista.

A adoção de medidas para favorecer o escoamento superficial pode aumentar o volume de água captada nos açudes. Atividades como revegetação das áreas das bacias, uso de técnicas conservacionistas de solo, técnicas para redução da erosão hídrica, abertura de drenos para direcionar a água de chuva para a bacia hidráulica, entre outras, precisam ser incentivadas diante dos cenários climáticos futuros.

Considerações finais

Como demonstrado pelos estudos e experiências relatados neste capítulo, a falta de acesso à água e a má qualidade da água disponível são fatores limitantes ao desenvolvimento regional e à manutenção das famílias no campo. Nesse contexto, o conhecimento do sistema solo-água-plantas-atmosfera e da dinâmica da salinização dos solos torna-se uma ferramenta fundamental para o uso e manejo da agricultura biosalina.

Além do uso alternativo de água salina ou de rejeitos e do uso múltiplo da água disponível, com a aplicação da lâmina de lixiviação ideal, a drenagem correta e a escolha de uma cultura tolerante à salinidade do meio, a implantação de tecnologias de captação, armazenamento e conservação da água da chuva pode reduzir os riscos de perda da lavoura, contribuindo para a valorização da cidadania e a melhoria não só da segurança alimentar, mas também das condições de vida das famílias no Semiárido brasileiro.

A barragem subterrânea, o Sistema Barraginha, as cisternas e os açudes são tecnologias que têm sido implantadas em vários estados do Nordeste por meio de programas governamentais com o objetivo de disponibilizar água para produção de alimentos e desse dentação de animais.
Com isso, busca-se não só evitar a degradação ambiental, mas também promover o uso racional da água e garantir a sustentabilidade dos sistemas de cultivo e a qualidade de vida dos agricultores familiares do Semiárido brasileiro.

Referências

BARBOSA, J. E. L.; ANDRADE, R. S; LINS, R. P.; DINIZ, C. R. Diagnóstico do estado trófico e aspectos limnológicos de sistemas aquáticos da bacia hidrográfica do rio Taperoá, trópico semi-árido brasileiro. **Revista de Biologia e Ciências**

QIANG, ZHU, LI, YUANHONG. Rainwater Harvesting in the Loess Plateau of Gansu, China and Its Significance. In: CONFERÊNCIA INTERNACIONAL SOBRE
SISTEMAS DE CAPTAÇÃO DE ÁGUA DE CHUVA, 9., 1999, Petrolina. [Anais...]
Petrolina, 1999.

