Mara Cecília de Mattos Grisi
Universidade de Brasília, Departamento de pós-graduação em Agronomia – Brasília, DF

Nilton Tadeu Vilela Junqueira
Embrapa Cerrados – Planaltina, DF

Fábio Gelape Faleiro
Embrapa Cerrados – Planaltina, DF

Ana Maria Costa
Embrapa Cerrados – Planaltina, DF

Jamile da Silva Oliveira
Embrapa Cerrados – Planaltina, DF

CAPÍTULO 11

O MARACUJÁ SUSPIRO (PASSIFLORA NITIDA KUNTH)

RESUMO: O Maracujá Suspiro, *Passiflora nitida* Kunth, é uma espécie de ampla distribuição no Brasil. Exemplares já foram coletados em todos os estados das regiões Norte e Centro-Oeste e encontrados em alguns estados da Região Nordeste (Piauí, Bahia e Maranhão) e Sudeste (Noroeste de Minas Gerais, principalmente nas divisas com Goiás e com o Distrito Federal). Seus frutos, de sabor doce e aroma agradável, possuem alto potencial para serem consumidos ao natural. Por possuir flores vistosas e multicoloridas, esta espécie pode ser utilizada também como planta ornamental. Apresenta alto potencial como porta-enxerto para o maracujá-azedo visando minimizar danos causados por doenças de raiz. Nas condições do Distrito Federal e em área experimental, a polinização natural de *P. nitida* é tão eficaz quanto a polinização artificial. Entretanto, em áreas com deficiência de polinizador, a polinização artificial é recomendada. A comparação das plantas de *P. nitida* vindas de diferentes regiões brasileiras mostrou que os frutos dos acessos do Bioma Cerrado são consideravelmente maiores daqueles vindos do Bioma Amazônico. Da mesma forma, os períodos de carpogênese (PCs), definidos como sendo o intervalo temporal entre a abertura da flor e a maturação completa do fruto, variam de acordo com a origem do material genético e, também, ao longo do ano. O maior PC (90 dias) é um pouco mais extenso que os PCs do maracujá-doce (*P. alata*) (60 – 70 dias) e do maracujá-azedo comercial (60 - 70 dias) ao passo que o menor PC (60 dias) é equivalente a estas espécies.

PALAVRAS-CHAVE: Maracujá, espécie silvestre, características físicas, polinização e período de carpogênese.

“Suspiro passion fruit”, Passiflora nitida Kunth, is a widely distributed wild species in Brazil. Specimens have already been collected in all states of the North and Midwest regions, and also found in some states of the Northeast (Piauí, Bahia, and Maranhão) and Southeast (Northwest of Minas Gerais, mainly in the borders with Goiás and Federal District) regions. Its fruits have a sweet taste, pleasant aroma, and presents a high potential for in natura consumption. Due to its showy and multicolored flowers, this species
can also be used as an ornamental plant. It has high potential as a rootstock for sour passion fruit (Passiflora edulis Sims), aiming to minimize the damage caused by root diseases. In an experimental area under the Federal District environmental conditions, natural pollination of P. nitida is as effective as artificial pollination. However, in areas with deficiency of pollinators, artificial pollination is recommended. The comparison of P. nitida plants from different Brazilian regions showed that fruits from the Cerrado Biome are considerably larger than those from the Amazon Biome. Likewise, the periods of carpogogenesis (PC), defined as the interval between flower opening and complete fruit maturation, vary according to the origin of the genetic material and also throughout the year. The largest PC (90 days) is slightly longer than those registered for the sweet passion fruit (P. alata) (60 - 70 days) and the commercial sour passion fruit (60 - 70 days), while the lowest PC (60 days) is similar in these species.

KEYWORDS: Passion fruit, wild species, physical characteristics, pollination and period of carpogogenesis.

1 | INTRODUÇÃO

A. nitida pertence ao grupo dos maracujás-doces consumidos *in natura* pelas comunidades rurais, sendo também utilizado no preparo de doces e sucos. É um fruto bastante conhecido e comercializado em feiras e sacoîões no Norte do Brasil, especialmente em Manaus (AM), com bom potencial mercadológico (KINUPP, 2014). Conhecida popularmente como maracujá-suspiro, maracujá-de-rato, maracujá-domatico ou maracujá-de-cheiro (JUNQUEIRA et al., 2007), *P. nitida* possui características peculiares, com cor e sabor similares à granadilla (*Passiflora ligularis* Juss.). Apesar do grande potencial, ainda não existem cultivos comerciais desta espécie, predominando a atividade extrativista. Acessos de *P. nitida* coletados em diferentes regiões do Cerrado apresentam características fenotípicas peculiares, como frutos maiores e com maior quantidade de polpa, quando comparados àqueles originários da região Norte do Brasil, abrindo, assim, mais possibilidades para a sua exploração econômica.
Algumas seleções genéticas de *P. nitida* são imunes à fusariose, doença muito séria do maracujazeiro azedo em várias regiões do Brasil. Tais seleções têm grande potencial para uso como porta-enxerto. O uso de espécies silvestres de maracujazeiro como porta-enxerto tem recebido maior atenção das pesquisas nos últimos anos para o manejo de doenças causadas por patógenos de solo, como *Fusarium oxysporum* f. sp. *passiflorae* e *Fusarium solani*. Neste contexto, a espécie *P. nitida* está entre as espécies de passifloras que possuem resistência ou tolerância aos principais patógenos do solo e tem sido promissora como porta-enxerto (JUNQUEIRA et al., 2006). Uma experiência de sucesso é o trabalho de parceria realizado entre a Cooperativa Agropecuária Mista Terranova Ltda. (COOPERNOVA) e a Embrapa. Por meio desse trabalho, uma seleção de *P. nitida* foi validada para uso como porta-enxerto do maracujazeiro azedo (MACHADO et al., 2015). Após dois anos de avaliação, todas as plantas obtidas de mudas enxertadas continuavam vivas e produzindo em áreas com histórico de ocorrência de doenças causadas por *Fusarium* spp., ao contrário das mudas obtidas por sementes (ARAÚJO et al., 2012; MACHADO et al., 2015). Essa tecnologia está sendo validada com sucesso em outras regiões do Brasil.

2 I APECTOS BOTÂNICOS

P. nitida é uma espécie trepadeira pertencente ao subgênero *Passiflora* série Laurifoliae. As flores são grandes e vistosas, com sépalas e pétalas de cor branca, filamentos da corona de cor predominantemente azul-arroxeado apresentado anéis mais roxos, com 9 cm a 11 cm de largura (OLIVEIRA, 2018). As flores de *P. nitida* possuem estigmas curvados (MENEZES, 1990), característica de crucial importância para a polinização, pois, é através dela que os estigmas ficam ao alcance do toque do visitante floral, possibilitando a deposição e o recolhimento dos grãos de pólen transportados por eles, especialmente durante a coleta de néctar (BRUCKNER et al., 2005). O fruto é uma baga ovóide, mede cerca de 8 cm de diâmetro longitudinal e 3 cm a 7 cm de diâmetro transversal; a casca apresenta cerca de 1,5 cm de espessura, considerada espessa e essencialmente esponjosa (OLIVEIRA, 2018).
3 | FLORAÇÃO

A abertura das flores da *P. nitida*, geralmente, se inicia, nas condições climáticas do Cerrado do Planalto Central, em torno das seis e sete horas da manhã, permanecendo abertas por todo o dia. O período de floração pode variar de acordo com a região. Menezes (1990), por exemplo, verificou abundante florescimento nos meses de outubro a abril, nas condições de Jaboticabal, no estado de São Paulo. Nesta mesma região, Pereira (1998) relatou a ocorrência de florescimento intenso de *P. nitida* (acesso “Manaus”) de outubro a fevereiro, com pico máximo em dezembro e janeiro e ausência de florescimento nos meses de agosto, setembro, março e abril. Já nas condições de São José do Rio Preto, São Paulo, as plantas de *P. nitida* floresceram mais intensamente, no primeiro ano, em janeiro e fevereiro e, no ano seguinte, em março (OLIVEIRA, 1996a).

Apesar de possuir flores completas, esta espécie apresenta auto-incompatibilidade. Desta forma, para produção de frutos, torna-se necessária a polinização cruzada entre flores de diferentes plantas, através de polinizadores ou da polinização artificial.

Figura 1: Floração e frutificação de *P. nitida*. Foto: Nilton Tadeu Vilela Junqueira.

Figura 2: flores de *P. nitida*. Foto: Nilton Tadeu Vilela Junqueira.
4 | POLINIZAÇÃO

A eficiência na polinização é um dos aspectos de suma importância no cultivo do maracujazeiro uma vez que está intimamente ligada à produtividade da cultura. Para formação das sementes, polpa e arilo, é necessário que os grãos de pólen de uma flor de uma planta sejam depositados nos estigmas de outra flor de outra planta compatível para fecundação dos óvulos. Quanto maior a quantidade de óvulos fecundados, maior será a eficiência da polinização. O fruto de *P. edulis*, por exemplo, possui em média 300 sementes, e cada uma depende de um grão de pólen para ser formada (CAMILLO, 2003; SIQUEIRA et al, 2009). Melo et al. (2014) observaram que para o vingamento do fruto são necessários pelo menos 100 grãos de pólen, sendo que, quanto maior a quantidade de pólen compatível depositado no estigma, maior é o crescimento dos frutos com maior número de sementes e rendimento de polpa.

a) Polinização natural do maracujazeiro

As mamangavas, abelhas de grande porte dos gêneros *Xylocopa*, *Centris* e *Eulaema*, são as principais agentes polinizadoras das espécies *P. nitida* e *P. edulis* Sims (MALERBO-SOUZA et al., 2002). O tamanho dessas abelhas, as torna capazes de polinizar as flores de maracujá, em virtude da distância entre os estigmas e os nectários. Ao buscarem o néctar, elas tocam as anteras com o seu tórax, deixando o pólen depositado no dorso. Voando para outra flor, essas abelhas entram em contato com o estigma com o seu tórax cheio de pólenes, polinizando a flor. O percentual de vingamento e qualidade dos frutos dependem diretamente do número de abelhas de grande porte presentes nos cultivos. A carência destes polinizadores nativos tem sido apontada como um dos fatores responsáveis pela baixa produtividade de frutos (KRAUSE et al., 2012).
Figura 3: Abelha mamangava visitando a flor de *P. nitida*. Foto: Mara Cecília de Mattos Grisi.

As abelhas menores, como a *Apis mellifera* L. apresentam dificuldade em realizar a polinização (YAMASHIRO, 1981; CAMILLO, 2003), sendo consideradas pragas da cultura. Devido ao tamanho reduzido dessas abelhas, as mesmas retiram os grãos de pólen das anteras, porém, são incapazes de depositá-los nos estigmas flores. Uma alternativa para minimizar este problema é a retirada do pólen antes da visitação das abelhas melíferas e posterior uso deste pólen retirado para a polinização artificial.

Figura 4: Abelhas arapuás (*Trigona* sp.) visitando a flor de *P. nitida*. Foto: Mara Cecília de Mattos Grisi.

a) Polinização artificial maracujazeiro

A carência de polinizadores, em áreas de cultivos comerciais, acarreta problemas como baixa produtividade, falta de padronização dos frutos quanto ao aspecto, sabor, coloração, uniformidade de tamanho e formato (BRASIL, 2000). Assim, a polinização artificial é uma alternativa para elevar a taxa de vingamento de frutos, sendo já
empregada em pomares comerciais de maracujá azedo, apesar do aumento do custo de produção.

A polinização artificial é indicada em cultivos em estufa ou em plantios localizados em áreas infestadas com pragas, em que o uso frequente de inseticidas é inevitável e, principalmente, em áreas em que os polinizadores naturais são escassos.

Pereira (1998), em estudo realizado com a espécie *P. nitida* (acesso “Manaus”), obteve 93,7% de frutificação por polinização natural, no mês de julho e 71,7% em outubro, contra 100% de frutificação por polinização artificial nestes dois períodos.

Nas condições do Distrito Federal e em área experimental, a polinização natural (efetuada por insetos) de *P. nitida* é tão eficaz quanto a polinização artificial (feita manualmente).

5 I AUTO-INCOMPATIBILIDADE

A auto-incompatibilidade é um mecanismo fisiológico onde uma planta fértil monóica é incapaz de produzir zigotos quando polinizada com o seu pólen devido a impedimentos da germinação do grão de pólen no estigma ou ao rompimento do tubo polínico no estilete (SCHIFINO-WITTMANN e DALL'AGNOL, 2002). Em *P. edulis*, ocorre auto-incompatibilidade esporofítica (BRUCKNER et al., 1995) associada a um gene relacionado ao sistema gametófito capaz de influenciar na relação de compatibilidade (SUASSUNA et al., 2003).

Pereira (1998) observou a ocorrência de diferentes graus de incompatibilidade entre plantas de *P. nitida* acesso “Manaus”, assim como ocorre na espécie *P. edulis*. Segundo a autora, para que haja a autopolinização é necessário a intervenção de um agente externo, já que não ocorre frutificação de flores protegidas (pré-ensacadas). Oliveira (1996b) sugere que a autopolinização espontânea não ocorre devido à falta de contato entre os estigmas e anteras. Por outro lado, quando foi realizada autopolinização artificial, cerca de 20% dos botões frutificaram e chegaram até a maturação com tamanho e características de cor, sabor e formato semelhantes aos frutos provenientes de polinização cruzada. Oliveira (1996) e Menezes (1990) também relataram a autocompatibilidade em *P. nitida*. Oliveira (1996a) obteve 7,9% de frutificação com a autopolinização artificial, enquanto Menezes (1990) obteve 40% de frutificação.

6 I CARPOGÊNESE

O período de carpogênese (PC) é o intervalo temporal entre a abertura da flor (antese) e a maturação completa do fruto. Ter o conhecimento do PC possibilita planejar entressafras e estimar épocas de colheita.

Alguns estudos reportam o PC de maracujá-suspiro. Menezes (1990), por
exemplo, estudando *P. nitida* nas condições de Jaboticabal, SP, verificou que a maturação completa do fruto ocorreu em torno de 60 dias após a fertilização, período em que iniciou a diminuição do seu tamanho e a casca assumiu a coloração amarelo-pálida ou alaranjada. Pereira (1998) observou que o PC de *P. nitida* acesso “Manaus” varia de acordo com a época do ano. O autor verificou que nas floradas ocorridas em outubro a fevereiro, o PC foi de 60 dias, e nas floradas de maio, este período foi de 90 dias. O crescimento dos frutos ocorreu até os 30-40 dias após a fecundação, quando houve estabilização da curva de crescimento e início do processo de amadurecimento.

![Figura 5: frutos maduros de *P. nitida*. Foto: Nilton Tadeu Vilela Junqueira.](image)

Para as condições climáticas do Distrito Federal, os PCs do maracujá azedo comercial (*P. edulis* “flavicarpa”) e do maracujá doce (*P. alata*) variam de 60 a 70 dias. A ampliação destes períodos para 90-100 dias, por meio de hibridações com espécies silvestres, pode resultar em cultivares capazes de produzir durante os períodos de entressafra, obtendo dessa forma, melhores preços de venda. Neste contexto, acessos de *P. nitida* que apresentem períodos de carpogênese acima de 90 dias são potenciais para serem utilizados nos programas de melhoramento com esta finalidade.

Os frutos de *P. nitida* permanecem presos aos ramos, mesmo após sua completa maturação, podendo permanecer por até 4 meses presos à planta depois de maduros, mantendo condições adequadas para o consumo.

![Figura 6: Frutos maduros de *P. nitida*. Foto: Mara Cecília de Mattos Grisi.](image)
7 | CARACTERÍSTICAS FÍSICAS E FÍSICO-QUÍMICA DE FRUTOS

Um fruto de qualidade é aquele passível de atender às expectativas dos diferentes segmentos consumidores em suas características internas e externas. As características internas estão relacionadas ao sabor (teor de açúcares e acidez) e ao conteúdo de suco (rendimento), sendo estes parâmetros utilizados pela indústria como critério de seleção dos frutos, enquanto as externas estão relacionadas à boa aparência (cor da casca, tamanho, peso, ausência de defeitos) e representam os parâmetros adotados pelo consumidor no momento da escolha (AGUIAR et al., 2015).

As características físicas e físico-químicas do maracujá são de grande importância para o melhoramento genético dessa frutífera, pois permitem inferir propriedades organolépticas dos frutos adequadas às exigências de qualidade dos mercados in natura ou industrial. O tamanho e o formato de frutos, por exemplo, são importantes na etapa de seleção, de acordo com a destinação. No caso do maracujá azedo, frutos de maior diâmetro são preferidos pelo consumidor, pois esta característica estaria, supostamente, diretamente correlacionada com rendimento de suco. Amassa dos frutos também é uma característica adotada pelos consumidores para avaliar a qualidade. Já a indústria de polpa prefere frutos de tamanho intermediário, com massa em torno de 200g em virtude das características dos equipamentos utilizados na despalpa.

A massa e as dimensões dos frutos do *P. nitida* variam em média de 21g a 135g de acordo com a origem do material genético (JUNQUEIRA, et al 2010).

O balanço entre o conteúdo de sólidos solúveis totais (SST) e acidez titulável total (ATT) denominada de ratião (SST/ATT) é o principal responsável pelo sabor do fruto e pode ser influenciado pelas condições impostas durante o processo produtivo, como adubação, temperatura e disponibilidade de água e, principalmente, pelas características genéticas do material (RAMOS et al., 2013). O teor de SST representa uma das melhores formas de avaliação do grau de doçura do produto, que é maior com a evolução da maturação, devido aos processos de biossíntese ou ainda de degradação de polissacarídeos (CHITARRA e CHITARRA, 2005). No caso da *P. nitida* os valores de pH estão na faixa de 3,3 a 4,4 o que pode ser considerado alto quando comparado ao maracujá azedo, cujos valores estão na faixa de 2,5 a 3,0. Da mesma forma, apresenta valores elevados de SST entre 10 a mais de 17 °Brix e baixos valores de ATT entre 1,45 a 0,05, resultado num ratião que oscila de acordo com o material genético e local de produção de 4 até 400 (COHEN, et al. 2008; JUNQUEIRA et al. 2010).

Para indústria, os valores de sólidos totais, que corresponde a soma dos sólidos solúveis e insólubles, devem ser elevados (NEGREIROS et al., 2008), pois quanto maior este valor, maior a eficiência da indústria na concentração da polpa, o que reduz os custos de produção (KRAUSE et al., 2008).

A Instrução Normativa nº 1, de 7 de janeiro de 2000, do Ministério da Agricultura e
do Abastecimento (BRASIL, 2000) estabeleceu como padrão de qualidade da polpa de maracujá *P. edulis* Sims o teor mínimo de SST de 11° Brix e de 2,50 g 100 g⁻¹ (2,50%) de acidez total titulável (ATT) na polpa de maracujá azedo *P. edulis* Sims, sendo polpa definida como o produto não fermentado e não diluído, obtido da parte comestível do maracujá (*Passiflora* spp.), através de processo tecnológico adequado. Porém, não existe padronização

8.1 POLINIZAÇÃO ARTIFICIAL, VINGAMENTO DE FLORES E CARACTERÍSTICAS FÍSICAS DE DIFERENTES ACESSOS DE *P. NITIDA* NA EMBRAPA CERRADOS

Em experimento conduzido no campo experimental da Embrapa Cerrados, Planaltina, DF, progênies de seis acessos coletados em Arraias – TO; Belterra - PA; Canarana- MT; Manaus - AM (de capoeira); Núcleo Rural São José (N.R.S.J.) - DF (vereda e chapada) foram avaliadas quanto ao período de carpogênese (PC) e efeito da polinização natural (PN) e artificial (PA) nas características físicas de frutos.

Arraias é um município brasileiro do estado do Tocantins localizado a uma latitude 12°55’53” sul e a uma longitude 46°56’18” oeste. Belterra é um município brasileiro do estado do Pará, pertencente à Mesorregião do Baixo Amazonas localizado a uma latitude 02° 38’ 11” sul e longitude 54° 56’ 14” oeste. Canarana é um município brasileiro do estado de Mato Grosso, localizado a 13° 33’ 16” sul e uma longitude de 52° 16’ 20” oeste. Manaus, capital do estado do Amazonas, pertence à mesorregião do Centro Amazonense e localiza-se a uma latitude de 3° 6’ 0” sul e a uma longitude de 60° 01’ 0” oeste. O Núcleo Rural São José é uma colônia agrícola de produtores rurais, situada em Planaltina, Distrito Federal, localizado a uma latitude de 15°42’30” sul e a uma longitude de 47°21’43” oeste. Em cada um desses locais foram coletados frutos de três plantas consideradas mais vigorosas. As sementes foram semeadas e um total de 8 mudas de cada acesso foram plantadas em campo em janeiro de 2016. Em cada acesso, 15 flores foram escolhidas aleatoriamente, polinizadas artificialmente, e outras 15 foram mantidas sob polinização natural. Na Tabela 2 são apresentados os índices (porcentagens) de vingamento de frutos destes acessos para as flores polinizadas artificialmente e naturalmente.

<table>
<thead>
<tr>
<th>Acesso / Tipo fitofisionômicos</th>
<th>Índice de vingamento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
</tr>
<tr>
<td>Arraias, TO / Cerrado típico</td>
<td>60</td>
</tr>
<tr>
<td>Núcleo Rural São José, DF / Cerrado típico de Chapada</td>
<td>46,66</td>
</tr>
<tr>
<td>Belterra, PA, Floresta Amazônica</td>
<td>40</td>
</tr>
<tr>
<td>Núcleo Rural São José, DF / Vereda</td>
<td>46,66</td>
</tr>
<tr>
<td>Manaus, AM / Capoeira</td>
<td>100</td>
</tr>
</tbody>
</table>

Tecnologia de Produção em Fruticultura

Capítulo 11

105
Tabela 1. Índice de vingamento de frutos (%) produzidos por polinização artificial (PA) e polinização natural (PN) em seis acessos de *P. nitida*.

A PA foi mais eficiente em relação à polinização natural, para os acessos “Arraiais” e “Manaus” (Tabela 1). Para os acessos “Belterra” e “N. R. S. J. Vereda”, a PN mostrou-se mais eficiente. Já para os acessos “N. R. S. J. Chapada” e “Canarana” não houve diferença entre a PA e PN. A área de plantio localiza-se próxima à mata, e, por isso, houve intensa visita de mamangavas e outros agentes polinizadores; sugerindo que, para esta região, o índice de agentes polinizadores é satisfatório, não havendo necessidade em se realizar PN.

Na Tabela 2 são apresentadas as médias dos períodos de carpogênese dos acessos avaliados.

<table>
<thead>
<tr>
<th>Acesso</th>
<th>PC (dias)</th>
<th>Período de avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
<td>PN</td>
</tr>
<tr>
<td>Arraias</td>
<td>69,2 Aa</td>
<td>69 Aa</td>
</tr>
<tr>
<td>Núcleo Rural São José (Chapada)</td>
<td>52 Aa</td>
<td>49,1 Ba</td>
</tr>
<tr>
<td>Belterra</td>
<td>65 Aa</td>
<td>66 Aa</td>
</tr>
<tr>
<td>Núcleo Rural São José (Vereda)</td>
<td>81 Aa</td>
<td>85 Aa</td>
</tr>
<tr>
<td>Manaus</td>
<td>81,4 Aa</td>
<td>71 Ab</td>
</tr>
<tr>
<td>Canarana</td>
<td>69,2 Aa</td>
<td>69 Aa</td>
</tr>
</tbody>
</table>

Tabela 2. Média dos períodos de carpogênese (PC) de seis acessos de *Passiflora nitida* provenientes de diferentes regiões brasileiras.

Médias seguidas por letras minúsculas e maiúsculas iguais não diferem entre si na linha e na coluna, respectivamente, pelo teste T de student, a 5% de probabilidade.

Os acessos “N. R. S. J. Vereda” e “Manaus” apresentaram maiores médias para PC, tanto com a PA como PN, variando de 71 a 85 dias. No entanto, não houve diferença significativa entre os acessos, com exceção do acesso “N. R. S. J. Chapada” polinizado naturalmente, o qual obteve menor média de 49,1 dias para carpogênese (Tabela 2). Esses valores de PC se aproximam dos resultados encontrados por Pereira (1998), que verificou que frutos de *P. nitida* na primavera-verão, demoram cerca de 60 a 70 dias da polinização até o amadurecimento. Neste mesmo trabalho, o autor encontrou maior PC durante o inverno (de 80 a 90 dias).

Na Tabela 3 são apresentados os valores médios observados na avaliação das características físicas.
<table>
<thead>
<tr>
<th>N.</th>
<th>MF (g)</th>
<th>CF (cm)</th>
<th>DF (cm)</th>
<th>EC (cm)</th>
<th>VP (ml)</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
<td>PN</td>
<td>PA</td>
<td>PN</td>
<td>PA</td>
<td>PN</td>
</tr>
<tr>
<td>1</td>
<td>77,7</td>
<td>57,0</td>
<td>5,6</td>
<td>6,6</td>
<td>5,4</td>
<td>4,4</td>
</tr>
<tr>
<td></td>
<td>Pa</td>
<td>Ba</td>
<td>Ba</td>
<td>Ba</td>
<td>Ba</td>
<td>Cb</td>
</tr>
<tr>
<td></td>
<td>AAAb</td>
<td>Aa</td>
<td>Aa</td>
<td>Bb</td>
<td>Aa</td>
<td>Aa</td>
</tr>
<tr>
<td>2</td>
<td>64,9</td>
<td>95,6</td>
<td>5,9</td>
<td>7,0</td>
<td>5,5</td>
<td>7,4</td>
</tr>
<tr>
<td></td>
<td>BCAa</td>
<td>Bb</td>
<td>Aa</td>
<td>Bb</td>
<td>Aa</td>
<td>Cb</td>
</tr>
<tr>
<td></td>
<td>Aa</td>
<td>AAAb</td>
<td>Aa</td>
<td>AAAb</td>
<td>Aa</td>
<td>AA</td>
</tr>
<tr>
<td>3</td>
<td>46,9</td>
<td>45,9</td>
<td>5,3</td>
<td>5,4</td>
<td>4,8</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Cb</td>
<td>Aa</td>
</tr>
<tr>
<td>4</td>
<td>127,0</td>
<td>107,5</td>
<td>8,2</td>
<td>8,6</td>
<td>7,8</td>
<td>7,4</td>
</tr>
<tr>
<td></td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
</tr>
<tr>
<td>5</td>
<td>53,4</td>
<td>50,5</td>
<td>5,5</td>
<td>5,5</td>
<td>4,7</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>Ba</td>
<td>Ba</td>
<td>Ca</td>
<td>BCAa</td>
<td>BCAa</td>
</tr>
<tr>
<td></td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
<td>Aa</td>
</tr>
<tr>
<td>6</td>
<td>53,2</td>
<td>51,0</td>
<td>5,5</td>
<td>5,6</td>
<td>4,8</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>Ba</td>
<td>Ba</td>
<td>BCAa</td>
<td>BCAa</td>
<td>BCAa</td>
</tr>
</tbody>
</table>

Tabela 3. Médias de massa (MF), comprimento (CF) e diâmetro de frutos (DF), espessura de casca (EC), volume de polpa com sementes (VP), número de sementes (NS) em acessos de *P. nilida* com polinização artificial (PA) e natural (PN).

Médias seguidas por letras minúsculas e maiúsculas iguais não diferem entre si na linha e na coluna, respectivamente, pelo teste T de student, a 5% de probabilidade. Legenda: N.: acesso; acesso 1 (Arraiais); acesso 2 (Núcleo Rural São José Chapada); acesso 3 (Belterra); acesso 4 (Núcleo Rural São José Vereda); acesso 5 (Manaus); acesso 6 (Canares).

Os acessos 2 e 4, ambos provenientes do Distrito Federal, apresentaram maiores médias para todos os caracteres, tanto com a PN como com a PA (MF: 95,69 g a 107 g; CF: 5,9 cm a 8,6 cm; DF: 7,4 cm a 7,8 cm; EC: 1,4 cm a 1,6 cm; VP: 22 cm a 33,2 cm e NS: 110 a 140 sementes) (Tabela 3). Os acessos 1, 3, 5 e 6 obtiveram as menores médias para MF (45,9 g a 57 g; com exceção do acesso 1 em PA); CF (5,3 cm a 6,6 cm); e VP (14,3 ml a 22,8 ml). As menores médias para DF foram obtidas pelo acesso 1 (PN: 4,4 cm) e acesso 5 (PA: 4,7 cm). Com relação a EC os menores valores foram observados para o acesso 2 (PA: 0,8 cm), acesso 3 (PA e PN: 0,7 cm), acesso 5 (PA: 0,8 cm). E finalmente para NS, os menores valores de PC foram obtidos pelo acesso 1 (PN: 37 sementes).

Houve diferença significativa entre as médias obtidas com a PA e PN, a 5% de probabilidade, para os caracteres MF nos acessos 2 e 4, sendo que maior média foi obtida com a PN no acesso 2 (95,6 g), e com a PA no acesso 4 (127 g). Para o caractere DF, também foram observadas diferenças entre PA e PN nos acessos 1 e
2, sendo o maior valor obtido com a PA no acesso 1 (5,4 cm) e com a PN no acesso 2 (7,4 cm). Para EC o maior valor foi obtido com a PN no acesso 2 (1,4 cm), e com a PA no acesso 4 (1,6 cm). Em relação ao NS houve diferença entre a PA e PN apenas para o acesso 1, com maior valor obtido com a PA (118 sementes).

Esses resultados mostram que a influência da PN e PA nas características físicas de frutos pode variar entre os acessos.

Em relação aos SST e pH os acessos avaliados apresentaram valores entre 10,6 e 14,9, e 3,3 a 4,1, não tendo sido observada variações estatísticas decorrentes do tipo de polinização respectivamente (Tabela 4).

<table>
<thead>
<tr>
<th>Acesso</th>
<th>SST (°Brix)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arraias</td>
<td>10,6 b</td>
<td>3,6 b</td>
</tr>
<tr>
<td>Núcleo Rural São José (Chapada)</td>
<td>12,6 ab</td>
<td>3,3 b</td>
</tr>
<tr>
<td>Belterra</td>
<td>13,0 ab</td>
<td>3,4 b</td>
</tr>
<tr>
<td>Núcleo Rural São José (Vereda)</td>
<td>14,9 a</td>
<td>4,1 a</td>
</tr>
<tr>
<td>Manaus</td>
<td>11,8 ab</td>
<td>3,4 b</td>
</tr>
<tr>
<td>Canarana</td>
<td>12,6 ab</td>
<td>3,3 b</td>
</tr>
</tbody>
</table>

Médias seguidas por letras minúsculas iguais não diferem entre si na coluna, pelo teste T de student, a 5% de probabilidade.

Para os dois caracteres SST e pH, o acesso “N. R. S. J. Vereda” obteve as maiores médias. Para indústria, os valores de SST devem ser elevados (NEGREIROS et al., 2008), pois quanto maior este valor, maior a eficiência da indústria na concentração da polpa, o que reduz os custos de produção (KRAUSE et al., 2008).

Neste experimento chegou-se as seguintes conclusões:

1. Nas condições do Cerrado do Planalto Central de Planaltina, DF, a polinização natural da *P. nitida* foi tão eficaz quanto a polinização artificial para esta área experimental. No entanto, para áreas comerciais com dimensões e número de plantas bem maiores, a situação pode ser diferente, levando a necessidade de polinização manual;

2. Os períodos de carpogênese (PCs) variaram pouco entre os acessos. O maior PC (85 dias) é pouco mais extenso que os PCs do maracujá-doce (*Passiflora alata*) e do maracujá-azedo comercial (*P. edulis*). Portanto, a *P. nitida* não tem potencial para ser utilizada no melhoramento para ampliar seus PCs;

3. As massas de frutos de acessos do Cerrado são bem maiores que os Amazônicos.
REFERÊNCIAS

MACHADO, C. de F.; FALEIRO, F. G.; JUNQUEIRA, N. T. V.; JESUS, O. N. de J.; Araújo, F. P. de

MENEZES, J. M. T. Seleção de porta-enxertos tolerantes a morte prematura de plantas para Passiflora edulis Sims f. flavicarpa Deg. e comportamento de Passiflora nitida HBK na região de Jaboticabal. 1990. 73 f. Dissertação (Mestrado) - Universidade Estadual Paulista. Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal.

