

COMUNICADO TÉCNICO

413

Colombo, PR Fevereiro, 2018

Produção de filmes de celulose nanofibrilada

Washington Luiz Esteves Magalhães Francine Ceccon Claro

Produção de filmes de celulose nanofibrilada¹

¹ Washington Luiz Esteves Magalhães, Engenheiro químico, doutor em Ciências e Engenharia de Materiais, pesquisador da Embrapa Florestas, Colombo, PR; Francine Ceccon Claro, Química, doutoranda em Engenharia e Ciência dos Materiais na Universidade Federal do Paraná, Curitiba, PR

A demanda por materiais sustentáveis com alta resistência mecânica vem aumentando nos últimos anos, devido a crescentes preocupações ambientais, visando a substituição de polímeros sintéticos por naturais (Carvalho et al., 2009; Wu et al., 2012). Nesse contexto, aumenta o interesse pela aplicação da nanocelulose, um biomaterial que apresenta características únicas, como alta resistência mecânica, transparência óptica, baixa toxicidade e biodegradabilidade (Wu et al., 2012; Sacui et al., 2014).

A celulose é um polissacarídeo de fórmula molecular ($C_6H_{10}O_5$)n, com característica fibrosa, sendo o polímero natural mais abundante na terra e que pode ser usado em várias aplicações industriais (Hoenich, 2006). A celulose é encontrada em uma ampla variedade de plantas e algas, e também pode ser obtida por meio de síntese bacteriana. Inúmeras pesquisas abordam uma vasta gama de estruturas de celulose (fibras, nanofibrilas, cristais entre outras) para diversas aplicações comerciais (Hoenich, 2006; loelovich, 2008).

Devido ao aumento da área superficial, em escala nanométrica, as nanofibrilas apresentam aspectos estruturais e físicos únicos que lhes conferem propriedades de tração, óptica, elétrica e química distintas de suas contrapartes macroscópicas (Hubbe et al., 2008; Kamel, 2007). As nanofibrilas de celulose podem ser obtidas por diversos processos mecânicos ou químicos, que abram a estrutura da fibra expondo as micro-fibrilas (Nechyporchuk et al., 2015).

Os nanomateriais celulósicos têm a capacidade de formar ligações de hidrogênio, criando uma rede forte e densa, e são excelentes para aplicações como barreiras (Ferrer et al., 2017).

A nanocelulose pode ser usada em diversas aplicações, tais como: reforço em polímeros, aumento da resistência mecânica de papel cartão, liberação lenta de fármacos, cosméticos, aditivos de revestimento, embalagens de alimentos, biomedicina e barreira para gases (Abdul Khalil et al., 2014).

O objetivo deste trabalho foi propor um processo de produção de filmes de nanofibrilas de celulose vegetal a partir de uma suspensão de nanocelulose obtida por desfibrilação mecânica.

Obtenção da suspensão de nanofibrilas de celulose

As nanofibrilas de celulose foram obtidas a partir da polpa celulósica branqueada pelo método de desfibrilação mecânica em moinho coloidal Super Masscoloider Masuko Sangyo, com 1.500 rpm e 20 passes (Magalhães et al., 2017).

Método para produção de filmes de nanocelulose

A massa de suspensão de nanocelulose necessária para obtenção do filme deve ser diluída em água destilada até concentração de 3 x 10⁻³ g mL⁻¹. A mistura resultante deve ser agitada manualmente por aproximadamente 1 minuto, até completar a homogeneização. Após, filtrar em membrana de nylon (abertura de 22 µm) suportada em peneira de 60 Mesh (Figura 1).

Aguardar em torno de 1 hora e prensar cuidadosamente o filtrado com a sobreposição de outra membrana de nylon (22 µm) e uma placa de vidro (espessura de 4 mm e com o mesmo diâmetro da peneira utilizada) (Figura 2). O peso do vidro sobre

Figura 1. Processo de filtração em peneira e tela de nylon.

o gel ajudará a retirada do excesso de água. Em seguida, o conjunto peneira, gel de nanocelulose e placa de vidro deve ser levado à estufa a 60 °C para secagem por 12 horas, conforme esquema apresentado

Figura 2. A) Placa de vidro; B) Membrana de nylon.

na Figura 3. Após 12 horas, retirar o conjunto da estufa e separar cuidadosamente o filme de nanocelulose seco entre as membranas de nylon.

Figura 3. Processo de obtenção do filme de nanocelulose.

Cálculo da quantidade de celulose a ser usada em cada filme

A partir da gramatura desejada (20 a 60 g m⁻²), determina-se a massa de nanocelulose necessária para a produção do filme. A área de cada filme pode ser considerada como sendo a área da peneira a ser utilizada (Equação 1).

gramatura
$$\left(\frac{g}{m^2}\right) = \frac{massa\ de\ celulose\ (g)}{área\ da\ peneira\ (m^2)}$$
 (1)

A partir da massa de nanocelulose, determina-se a massa de suspensão de nanofibrilas necessária, considerando o teor de nanofibrilas da suspensão (Equação 2).

massa de suspensão de nanocelulose (g) = $\frac{\text{massa de nanocelulose necessária (g) x 100 (%)}}{\text{teor de nanocelulose na suspensão (%)}}$ (2)

Ex: para um filme com gramatura 20 g m⁻², uma suspensão de nanocelulose de 2% e uma peneira de área 0,0294 m²:

$$20\left(\frac{g}{m^2}\right) = \frac{massa \ de \ nanocelulose \ (g)}{0,0294 \ m^2}$$

massa de nanocelulose = 0,588 g

massa de suspensão de nanocelulose (g) = $\frac{0,588 \text{ g x } 100}{2}$

massa de suspensão de nanocelulose = 29,4 g

O filme resultante é homogêneo e translúcido (Figura 4), conforme também observado por diversos autores (Iwamoto et al., 2007; Wang et al., 2013). A largura das fibras e o tamanho dos poros são muito distintos, quando se compara o filme translúcido e uma folha de papel comum. O material torna-se translúcido quando as nanofibrilas de celulose estão densamente empacotadas e os interstícios entre as fibras são suficientemente pequenos a ponto de evitar o espalhamento da luz (Nogi et al., 2009).

Figura 4. A) Filme de nanocelulose com gramatura de 20 g m⁻²; B) Translucidez do filme de nanocelulose.

Análise complementar

A morfologia das nanofibrilas nos filmes obtidos pode ser analisada pela técnica de microscopia eletrônica de varredura. Para a microscopia é necessário colocar uma pequena porção do filme sobre fita de carbono dupla-face, previamente colada sobre porta amostras (*stubs*), e recobrir com ouro. As micrografias (Figura 5) foram obtidas por microscópio eletrônico de varredura FEI Quanta 450 FEG.

Figura 5. Micrografias do filme de nanocelulose: A) Magnificação de 500 X; B) Magnificação de 10 kX.

O filme formado apresenta superfície com morfologia impressa do filtro de nylon. Todavia, ele é compacto e não poroso, tornando-se adequado para aplicação como barreira. Não foi possível observar as fibras individuais originais da madeira. Apenas algumas fibras oriundas da adesão entre muitas nanofibrilas puderam ser observadas. No entanto, a maioria do material está densamente compactado (Figura 5), o que resulta na translucidez do filme (Nogi et al., 2009; Zhu et al., 2014).

Conclusão

O filme de nanofibrilas de celulose formado pelo método de filtração e prensagem apresenta características de translucidez, baixa porosidade e boa resistência mecânica.

Referências

ABDUL KHALIL, H. P. S.; DAVOUDPOUR, Y.; ISLAM, N.; MUSTAPHA, A.; SUDESH, K.; DUNGANI, R.; JAWAID, M. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. **Carbohydrate Polymers**, v. 99, p. 649-665, 2014. DOI: 10.1016/j. carbpol.2013.08.069.

CARVALHO, W.; CANILHA, L.; FERRAZ, A.; MILAGRES, A. M. F. Uma visão sobre a estrutura, composição e biodegradação da madeira. **Química Nova**, v. 32, n. 8, p. 2191-2195, 2009. DOI: 10.1590/S0100-40422009000800033.

FERRER, A.; PAL, L.; HUBBE, M. Nanocellulose in packaging: advances in barrier layer technologies. **Industrial Crops and Products**, v. 95, p. 574-582, 2017. DOI: 10.1016/j.indcrop.2016.11.012.

HOENICH, N. Cellulose for medical applications: past, presente and future. **BioResources**, v. 1, n. 2, p. 270-280, 2006.

HUBBE, M. A.; ROJAS, O. J.; LUCIA, L. A.; SAIN, M. Cellulosic nanocomposites: a review. **BioResources**, v. 3, n. 3, p. 929-980, 2008.

IOELOVICH, M. Cellulose as a nanostructured polymer: a short review. **BioResources**, v. 3, n. 4, p. 1403-1418, 2008.

IWAMOTO, S.; NAKAGAITO, A. N.; YANO, H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. **Applied Physics A**: Materials Science and Processing, v. 89, n. 2, p. 461-466, 2007. DOI: 10.1007/s00339-007-4175-6.

KAMEL, S. Nanotechnology and its applications in lignocellulosic composites: a mini review. **Polymer** Letters, v. 1, n. 9, p. 546–575, 2007. DOI: 10.3144/expresspolymlett.2007.78.

MAGALHÃES, W. L. E.; CLARO, F. C.; MATOS, M. de; LENGOWSKI, E. C. **Produção de nanofibrilas de celulose por desfibrilação mecânica em moinho coloidal**. Colombo: Embrapa Florestas, 2017. 5 p. (Embrapa Florestas. Comunicado técnico, 404).

NECHYPORCHUK, O.; BELGACEM, M. N.; BRAS, J. Production of cellulose nanofibrils: a review of recent advances. **Industrial Crops and Products**, v. 93, p. 2-25, 2015. DOI: 10.1016/j. indcrop.2016.02.016.

NOGI, M.; IWAMOTO, S.; NAKAGAITO, A. N.; YANO, H. Optically transparent nanofiber paper. Advanced Materials, v. 21, n. 16, p. 1595-1598, 2009. DOI: 10.1002/adma.200803174.

SACUI, I. A.; NIEUWENDAAL, R. C.; BURNETT, D. J.; STRANICK, S. J.; JORFI, M.; WEDER, C.; FOSTER, E. J.; OLSSON, R. T.; GILMAN, J. W. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. **ACS Applied Materials and Interfaces**, v. 6, n. 9, p. 6127-6138, 2014. DOI: 10.1021/am500359f.

WANG, H.; LI, D.; ZHANG, R. Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. **Bioresources**, v. 8, n. 1, p. 1374-1384, 2013.

WU, C. N. et al. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. **Biomacromolecules**, v. 13, n. 6, p. 1927-1932, 2012. DOI: 10.1021/bm300465d.

ZHU, H.; FANG, Z.; PRESTON, C.; LI, Y.; HU, L. Transparent paper: fabrications, properties, and device applications. **Energy & Environmental Science**, v. 7, n. 1, p. 269-287, 2014. DOI: 10.1039/C3EE43024C.

Exemplares desta edição podem ser adquiridos na:

Embrapa Florestas

Estrada da Ribeira, km 111, Guaraituba, Caixa Postal 319 83411-000, Colombo, PR, Brasii Fone: (41) 3675-5600 www.embrapa.br/florestas www.embrapa.br/fale-conosco/sac

> 1ª edição Versão digital (2018)

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO

Comitê Local de Publicações da Embrapa Florestas

> Presidente Patrícia Póvoa de Mattos

Vice-Presidente José Elidney Pinto Júnior

Secretária-Executiva Neide Makiko Furukawa

Membros Álvaro Figueredo dos Santos, Gizelda Maia Rego, Guilherme Schnell e Schühli, Ivar Wendling, Luis Cláudio Maranhão Froufe, Maria Izabel Radomski, Marilice Cordeiro Garrastazu, Valderês Aparecida de Sousa

> Supervisão editorial/Revisão de texto José Elidney Pinto Júnior

> > Normalização bibliográfica Francisca Rasche

Tratamento das ilustrações Francine Ceccon Claro Neide Makiko Furukawa

Projeto gráfico da coleção Carlos Eduardo Felice Barbeiro

> Editoração eletrônica Neide Makiko Furukawa

Fotos (capa e texto) Francine Ceccon Claro