

ISSN 1677-9274 **149** Dezembro, 2016

Análise de dados de RNA-Seq utilizando o Galaxy

Empresa Brasileira de Pesquisa Agropecuária Embrapa Informática Agropecuária Ministério da Agricultura, Pecuária e Abastecimento

Documentos 149

Análise de dados de RNA-Seq utilizando o Galaxy

Adhemar Zerlotini Neto Leandro Carrijo Cintra

Embrapa Informática Agropecuária Campinas, SP 2016

Embrapa Informática Agropecuária

Av. André Tosello, 209 - Barão Geraldo Caixa Postal 6041 - 13083-886 - Campinas, SP Fone: (19) 3211-5700 www.embrapa.br/informatica-agropecuaria SAC: www.embrapa.br/fale-conosco/sac/

Comitê de Publicações

Presidente: Giampaolo Queiroz Pellegrino

Secretária: Carla Cristiane Osawa

Membros: Adhemar Zerlotini Neto, Stanley Robson de Medeiros Oliveira, Thiago Teixeira Santos, Maria Goretti Gurgel Praxedes, Adriana Farah Gonzalez, Carla Cristiane Osawa

Membros suplentes: *Felipe Rodrigues da Silva, José Ruy Porto de Carvalho, Eduardo Delgado Assad, Fábio César da Silva*

Supervisão editorial: Stanley Robson de Medeiros Oliveira, Suzilei Carneiro

Revisão de texto: Adriana Farah Gonzalez

Normalização bibliográfica: Maria Goretti Gurgel Praxedes

Capa e editoração eletrônica: Suzilei Carneiro

Imagens capa: http://recipes.genomespace.org/view/54 <acesso em 8 de fevereiro de 2017> http://www.polyomics.gla.ac.uk/images/HighResWithText.png <acesso em 8 de fevereiro de 2017>

1ª edição

publicação digitalizada 2016

Todos os direitos reservados.

A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).

Dados Internacionais de Catalogação na Publicação (CIP) Embrapa Informática Agropecuária

Zerlotini Neto, Adhemar.

Análise de dados de RNA-Seq utilizando o Galaxy / Adhemar Zerlotini Neto, Leandro Carrijo Cintra.- Campinas : Embrapa Informática Agropecuária, 2016.

36 p. : il.: cm. - (Documentos / Embrapa Informática Agropecuária, ISSN 1677-9274; 149).

1. Biologia molecular computacional. 2. Pipeline. 3. Processamento distribuído. 4. Genes. 5. Workflow. I. Zerlotini Neto, Adhemar. II. Cintra, Leandro Carrijo. III. Embrapa Informática Agropecuária. IV. Título. V. Série.

CDD 572.80285 © Embrapa, 2016

Autores

Adhemar Zerlotini Neto

Cientista da computação, Doutor em Bioinformática Pesquisador da Embrapa Informática Agropecuária, Campinas, SP

Leandro Carrijo Cintra

Cientista da Computação, Doutor em Bioinformática Analista da Embrapa Informática Agropecuária, Campinas, SP

Apresentação

Os equipamentos de sequenciamento de nova geração nos possibilitam mensurar a quantidade de RNA transcrito e, consequentemente, identificar modulações na expressão dos genes correlacionadas com diferentes estágios de desenvolvimento ou condições experimentais dos mais diversos organismos vivos. Esta metodologia, o RNA-Seq, é hoje a técnica mais utilizada para identificação de expressão diferencial de genes, pois possibilita ainda a obtenção da sequência completa do RNA e a identificação de diferentes formas de *splicing*.

Esses equipamentos produzem milhões de sequências pequenas, variando entre 100pb e 250pb, e o processamento desses dados geralmente requer uma considerável infraestrutura computacional. A Bioinformática é a área do conhecimento que busca superar tais desafios, por meio da congregação de métodos da computação, biologia, matemática e estatística. O Linux é o sistema operacional adotado pela comunidade de Bioinformática e diversos softwares foram desenvolvidos para análise de dados de RNA-Seq neste sistema.

Cientistas de áreas como a Biologia enfrentam grandes dificuldades no processamento desses dados, uma vez não possuem treinamento formal na utilização do sistema operacional Linux, bem como em paralelização de processos em clusters de computadores.

Neste documento, serão apresentados métodos computacionais para facilitar o processo de análise de dados de RNA-Seq, por meio de ferramentas acessíveis via navegadores. Esta metodologia possibilita o processamento distribuído e o compartilhamento de grandes volumes de dados de RNA-Seq, com o objetivo de efetivamente identificarmos as diferenças de expressão de genes para elucidar mecanismos biológicos ligados à produtividade e a doenças.

Silvia Maria Fonseca Silveira Massruhá Chefe-geral Embrapa Informática Agropecuária

Sumário

1. Introdução	9
1.1. Análise de dados de RNA-Seq	9
1.2. Galaxy	11
1.3. Instância do Galaxy no LMB	11
2. Caso de uso	11
2.1. Conjunto de dados	11
2.2. Página inicial do Galaxy	13
2.3. Carregamento de arquivos	14
2.4. Mapeamento no genoma de referência	18
2.5. Identificação de genes e transcritos	20
2.6. Organização do histórico	22
2.7. Workflows	24
2.8. Construção do transcriptoma de referência	30
2.9. Análise de expressão diferencial	31
3. Conclusão	36
4. Referências	36

Análise de dados de RNA-Seq utilizando o Galaxy

Adhemar Zerlotini Neto Leandro Carrijo Cintra

1. Introdução

1.1. Análise de dados de RNA-Seq

A tecnologia de sequenciamento de RNA, RNA-Seq, possibilita a identificação de genes e transcritos diferencialmente expressos entre amostras biológicas. O volume e a complexidade deste tipo de dados exige programas eficientes e escaláveis. Neste artigo, serão apresentados programas de código fonte aberto que nos permitem analisar grandes conjuntos de dados de RNA-Seq para identificar novos genes, formas de splicing alternativo e comparar genes e transcritos de duas ou mais condições experimentais. Os programas utilizados foram desenvolvidos pelo grupo de pesquisa do Dr. Cole Trapnell, do Center for Computational Biology, na Johns Hopkins University. Este grupo tem publicado regularmente artigos científicos e textos online relativos às ferramentas para análise de dados de RNA-Seq (TRAPNELL et al., 2012).

A análise de dados de RNA-Seq que será apresentada consiste no mapeamento das sequências de RNA em um genoma de referência, sua quantificação e aplicação de testes estatísticos para determinação de expressão 10

diferencial entre as amostras. As ferramentas utilizadas para esta análise, estão descritas na figura Figura 1.

Como especificado no artigo (TRAPNELL et al., 2012), as ferramentas devem ser utilizadas em um terminal do Linux em modo texto. O Galaxy possibilita utilizá-las diretamente na interface gráfica por meio de um navegador web.

Figura 1. Ferramentas de análise de dados de RNA-Seq. Fonte: Trapnell et al. (2012).

1.2. Galaxy

O Galaxy (GIARDINE et al., 2005) é uma plataforma web de código fonte aberto para pesquisas biomédicas que analisam grandes volumes de dados. Seja utilizando o servidor público (usegalaxy.org) ou instalando sua própria instância local (galaxyproject.org), você pode executar, reproduzir e compartilhar análises de dados.

O objetivo do Galaxy é tornar a análise de grandes volumes de dados mais acessível, transparente e reprodutível, por meio de um ambiente web, em que os usuários podem executar análises computacionais complexas e ter todos os detalhes de cada etapa da execução registrados para posterior inspeção, publicação ou reutilização.

1.3. Instância do Galaxy no LMB

A instância do Galaxy para análises de bioinformática, instalada no servidor do Laboratório Multiusuário de Bioinformática da Embrapa (LMB), pode ser acessada no seguinte endereço web: https://www.lmb.cnptia.embrapa. br/galaxy. O acesso é restrito por senha e a criação de um usuário de acesso deve ser solicitada pelo formulário disponível em: https://www.lmb. cnptia.embrapa.br/web/lmb/politicas-de-uso.

2. Caso de uso

A análise de dados de RNA-Seq que será demonstrada neste documento foi extraída de um exercício proposto por um membro da equipe de desenvolvimento do Galaxy em: https://usegalaxy.org/u/jeremy/p/galaxy-rna--seq-analysis-exercise. Este exercício introduz as ferramentas necessárias para a execução completa de uma análise de dados de RNA-Seq utilizando-se um genoma de referência e conceitos gerais da plataforma Galaxy.

2.1. Conjunto de dados

Os arquivos de entrada são amostras extraídas do projeto Illumina

BodyMap 2.0 (http://www.ensembl.info/blog/2011/05/24/human-bodymap-2--0-data-from-illumina/). São arquivos no formato fastq (https://www.ncbi. nlm.nih.gov/pmc/articles/PMC2847217/) que contém pares de sequências de 50 nucleotídeos. Essas amostras contêm sequências localizadas em uma região de 500 nucleotídeos do cromossomo humano 19, provenientes de dois tecidos: cérebro (*brain*) e glândula suprarrenal (*adrenal*).

Existe ainda, neste conjunto de dados, um arquivo que contém características dos genes humanos contidos no cromossomo 19, que será utilizado em etapas posteriores da análise.

Os arquivos se chamam: adrenal_1.fastq, adrenal_2.fastq, brain_1.fastq, brain_2.fastq e 'iGenomes UCSC hg19, chr19 gene annotation'. Todos os 5 arquivos devem ser baixados do link do exercício de RNA-Seq para posterior processamento, utilizando-se o link representado por um disquete (Figura 2).

RNA-seq Analysis Exercise

Galaxy provides the tools necessary to creating and executing a complete RNA-seq analysis pipeline. This exercise introduces these tools and guides you through a simple pipeline using some example datasets. Familiarly with Galaxy and the general concepts of RNA-seq analysis are useful for understanding this exercise. This exercise should take 1-2 hours. You can check your work by looking at the history and visualization at the bottom of this page, which contain the datasets for the completed exercise.

Input Datasets

Below are small samples of datasets from the lilumina BodyMap 2.0 project; specifically, the datasets are paired-end 50bp reads from adrenal and brain tissues. The sampled reads map mostly to a 500Kb region of chromosome 19, positions 3-3.5 million (chr19:3000000:3500000).

Here's a history containing all five datasets; click on the green plus to import (copy) it into your workspace. Use this history to complete the exercise.

Figura 2. Fonte de dados e descrição da análise que será realizada.

2.2. Página inicial do Galaxy

A página inicial do Galaxy é composta de uma barra superior e três painéis, conforme a Figura 3. A barra superior contém um menu que possibilita acesso às análises (*Analyze Data*), *workflows*, dados compartilhados (*Shared Data*), visualizadores genômicos (*Visualization*), administração (*Admin*), ajuda (*Help*) e configurações de usuário (*User*).

O painel da esquerda, chamado Tools (Ferramentas), contém uma ferramenta de busca de programas de bioinformática (*search tools*) e links para os programas separados em categorias. O ícone de upload, no canto superior direito desse painel, possibilita carregamento de arquivos. Arquivos carregados no Galaxy serão exibidos no painel da direita.

O painel da direita, chamado *History* (Histórico), possui uma ferramenta de busca nos itens do histórico (*search datasets*) e uma lista de arquivos que foram carregados ou gerados por meio da execução de ferramentas. Ao clicar no texto *Unnamed History* é possível dar um nome para o histórico atual. Históricos adicionais podem ser criados a partir do link representa-do por uma engrenagem no canto superior direito desse painel, além de outras opções relativas aos históricos.

Por último, o painel central que é utilizado para visualização dos formulários de opções dos programas contidos na barra de ferramentas e do conteúdo e informações dos arquivos contidos na barra histórico.

Figura 3. Página inicial do Galaxy implementado no Laboratório Multiusuário de Bioinformática.

2.3. Carregamento de arquivos

No canto superior direito do painel de ferramentas (Figura 4) há um ícone de carregamento de arquivos (*upload*). Esta ferramenta também pode ser acessada por meio do link *Get Data > Upload File*.

Ao abrir a ferramenta de carregamento de arquivos será disponibilizada uma janela, na qual é possível arrastar arquivos de um gerenciador de arquivos diretamente para ela (Figura 5). Nesta janela, arquivos podem ser submetidos de três formas: arquivos do seu computador (*Choose local*

Figura 4. Link para carregamento de arquivos.

Galaxy	Analyze Data Workflow Shared Data - Visualization - Admin Help - User -		Using 8.2 TB
Tools			2 * I
search tools	Download data directly from web or upload files from your disk		asets 🛛
Get Data			story
Send Data			🗹 📎 🗩
Lift-Over			anuis ampty You can load
Text Manipulation			i data or get data from an
Filter and Sort			source
Join, Subtract and Group			
Convert Formats			
Extract Features			
Fetch Sequences			
Fetch Alignments			
Get Genomic Scores			
Statistics			
Wavelet Analysis			
Graph/Display Data			
Regional Variation			
Evolution		Ψ.	
Motif Tools	You can Drag & Drop files into this box.		
Multiple Alignments			
FASTA manipulation			
NGS: QC and manipulatio	Choose local file Choose FTP file Paste/Fetch data Start Pause Reset Clo	se	
NGS: Mapping			
NGS: RNA Analysis			
NGS: SAM Tools			

Figura 5. Arquivos podem ser carregados do próprio computador, de um link de FTP, de uma URL ou colado em uma caixa de textos.

file), arquivos enviados previamente por um servidor de FTP (*Choose FTP file*) e colar/digitar conteúdo ou URL de um arquivo (*Paste/Fetch data*).

A primeira opção é, geralmente, a mais utilizada, porém existe uma limitação de tamanho máximo de aproximadamente 2Gb. Quando arquivos excedem este limite, precisam ser enviados previamente para um servidor FTP disponibilizado pelo administrador local do Galaxy, ou seja, para enviar arquivos por este método é necessário contatar o administrador e obter instruções específicas de conexão no servidor FTP.

A opção de colar o conteúdo ou uma URL de um arquivo é particularmente interessante. Esta opção facilita a inserção de dados manualmente, como uma lista de identificadores ou um conjunto pequeno de sequências (*primers*, adaptadores, ...). Ela possibilita ainda carregar arquivos diretamente de um endereço da web, facilitando baixar arquivos de sequência de sites como o NCBI, Kegg, Uniprot, e outros.

Os arquivos fastq e gtf baixados anteriormente deverão ser carregados utilizando o botão *Choose local file* ou arrastando os mesmos para a janela (Figura 6)

Figura 6. Para a análise de dados de RNA-Seq deste documento, serão necessários os arquivos selecionados (azul).

Antes de clicar no botão *Start* para início do carregamento dos arquivos é muito importante definir o seu formato utilizando a coluna *Type*. O sistema de carregamento de arquivos tentará detectar o formato automaticamente, porém existem diferentes tipos de arquivos fastq e este sistema irá selecionar o formato genérico fastq. As ferramentas de bioinformática disponíveis no Galaxy exigem que os arquivos de sequência estejam em um formato fastq específico conhecido como fastqsanger.

Arquivos no formato fastq (https://en.wikipedia.org/wiki/FASTQ_format) são constituídos de uma ou mais entradas compostas por 4 linhas, sendo elas: o identificador da sequência e uma descrição; a sequência de nucleotídeos; o sinal +; e uma sequência de caracteres que representa a qualidade de cada nucleotídeo. A principal variação existente entre arquivos fastq está na linha de qualidade da sequência, que pode ser computada subtraindo-se 33 do valor ASCII de cada caractere (tipo Sanger) ou 64 (tipo Solexa). Os arquivos produzidos por sequenciadores Illumina, como os utilizados neste documento, possuem valores de qualidade Sanger e para informarmos ao Galaxy dessa característica, é necessário selecionar a opção fastqsanger na coluna *type* de cada um dos arquivos de sequência conforme a figura Figura 7.

- Galaxy		Analyze Data	Workflow Shared Da	ita + Visualization +	Admin Help+	User v		Using 8.2 TB
Tools	Download data directh	from web or	upload files from ve	ur dick				2 0 []
search tools	Download data directly	ITOIN WED OF	upioau mes nom ye					asets 🛛 🗙
Get Data	· · · · · · · · · · · · · · · · · · ·							story
Send Data	Name	Size	Туре	Genome	Settings	Status	i i	🗹 📎 🗩
Lift-Over Text Manipulation Filter and Sort	Galaxy2- [adrenal_1.fastq].fastqsa ger	8.2 MB	Auto-detect v Q	unspecified (?)	× \$	0%	Ê	ory is empty. You can <u>load</u> 1 data or <u>get data from an</u> source
Join, Subtract and Group Convert Formats Extract Features	Galaxy4- [brain_1.fastq].fastqsanq r	6.2 MB	<u>fastqsanger</u>	unspecified (?)	× 0		Ê	
Fetch Sequences Fetch Alignments Get Genomic Scores	Galaxy3- [adrenal_2.fastq].fastqsa ger	8.2 MB	Auto-detect v Q	unspecified (?)	× \$		8	
Statistics Wavelet Analysis Graph/Display Data	Galaxy5- [brain_2.fastq].fastqsang r	6.2 MB	Auto-detect 💌 Q	unspecified (?)	× 0		Ê	
Regional Variation Evolution	Galaxy1- LiGenomes_UCSC_hg:	6.2 MB	Auto-detect v Q	unspecified (?)	× ¢		Ê	
Motif Tools Multiple Alignments		Yo	added 5 file(s) to the queue	Add more files or click	Start' to proceed.			
NGS: QC and manipulation NGS: Mapping NGS: RNA Analysis			Choose local file	Choose FTP file	Paste/Fetch data	Start Pause	Reset Close	

Figura 7. É imprescindível selecionar o tipo 'fastqsanger' no campo '*type*' nos arquivos com extensão .fastq uma vez que as ferramentas reconhecem apenas este formato.

Existem também variações nos formatos de arquivos de anotação, gtf (http://www.ensembl.org/info/website/upload/gff.html), e, por segurança,

devemos selecionar a opção gtf na coluna type do arquivo '*iGenomes UCSC hg19, chr19 gene annotation*' conforme Figura 8.

Figura 8. É imprescindível selecionar o tipo 'gtf' no campo '*type*' nos arquivos com extensão .gtf.

Ao clicar no botão *Start* os arquivos serão carregados no Galaxy e aparecerão entradas no histórico (Figura 9). Inicialmente elas aparecerão na cor cinza a qual indica que o comando para carga dos dados foi disparado. Logo que entrar em execução, a entrada mudará sua cor para amarelo. Ao fim da execução a cor mudará para verde em caso de sucesso, ou vermelho em caso de erro. Cada uma dessas entradas podem ser expan-

Figura 9. Os arquivos carregados aparecem no painel '*History*'. Os itens deste painel tem cores diferentes indicando os estados: espera (cinza), execução (amarelo), concluído (verde) e erro (vermelho).

didas com um clique para obtenção de informações adicionais como pré--visualização do conteúdo, detalhes da execução e parâmetros utilizados e relatório de erros.

2.4. Mapeamento no genoma de referência

A ferramenta utilizada para mapear sequências de RNA-Seq em um genoma de referência se chama Tophat (TRAPNELL et al., 2009). No painel de ferramentas (*Tools*) podemos localizar o Tophat usando a busca ou abrir a categoria *NGS: RNA Analysis*. Os parâmetros da ferramenta selecionada serão exibidos no painel central conforme a Figura 10.

Figura 10. O painel '*Tools*' contém um campo chamado '*search tools*' que possibilita localizar ferramentas.

O primeiro parâmetro a ser configurado no Tophat é o tipo do conjunto de dados: *single-end* ou *paired-end*. Os arquivos carregados são *paired-end* onde adrenal_1.fastq e brain_1.fastq são sequências 5' (*forward*) e adrenal_2.fastq e brain_2.fastq são sequências 3' (*reverse*). Inicialmente iremos mapear a amostra *adrenal* indicando os arquivos adrenal_1.fastq em *RNA-Seq FASTQ file, forward reads* e adrenal_2.fastq em *RNA-Seq FASTQ file, forward reads* e adrenal_2.fastq em *RNA-Seq FASTQ file, reverse reads* conforme Figura 11. O texto original do exercício nos informa que a distância média entre os pares de sequências é 110 nucleotídeos e essa informação deve ser informada no campo *Mean Inner*

Distance between Mate Pairs.

Todas as outras opções serão mantidas como padrão exceto o genoma de referência que deverá ser selecionado no campo *Use a built in reference genome or own from your history*. Como não foi feito o carregamento de um genoma de referência, devemos selecionar a opção *Use a built in genome*. Será exibido um novo campo chamado *Select* a reference genome no qual deve ser selecionada a opção *Human (Homo sapiens)*: hg19. Para iniciar a execução desta ferramenta basta clicar no botão *Execute* ao final do painel central. Uma vez concluída a execução, serão gerados 5 novos arquivos no histórico. O Galaxy utiliza um formato específico para nomear arquivos de resultados de análise composto pelo nome do programa, os números dos conjuntos de dados e um título em caso de múltiplos resultados. Os arquivos gerados por meio da execução do Tophat terão nomes

Tools	Fophat Gapped-read mapper for RNA-seq data (Galaxy Tool Version 0.9)	History	2 ♥ □
(tophat 🔞)		search datasets	0
NGS: RNA Analysis	Is this single-end or paired-end data?	Unnamed history	
Tophat Gapped-read mapper for	Paired-end (as individual datasets)	33.4 MB	S D
RNA-structure Cufflinky transcript assembly and FPKM (RPKM) estimates for RNA-	RNA-Seq FASTQ file, forward reads Single dataset Ø Multiple datasets D Dataset collection	<u>5: Galaxy1-[IGenomes U</u> <u>CSC hg19, chr19 gene a</u> nnotation].qtf	• / ×
Seq data <u>edgeR</u> - Estimates differential gene expression for short read sequence count using methods appropriate for	Galaxy2-[adrenal_1:fastigl:astigsanger Must have Sanger-scaled guality values with ASCII offset 33 RN-Seg FASTO file, reverse reads	4: Galaxy5-[brain 2.fastq].f astqsanger	• / ×
count data	🗋 Single dataset 🖉 Multiple datasets 🗅 Dataset collection	<u>3: Galaxy3-[adrenal_2.fast</u> <u>q].fastqsanger</u>	• / ×
Workflows All workflows	3: Galaxy3-[adrenal_2:fastq]:fastqsanger Must have Sanger-scaled quality values with ASCII offset 33	- 2: Galaxy4-[brain 1.fastq].f astqsanger	• / ×
	Mean Inner Distance between Mate Pairs	1: Galaxy2-[adrenal 1.fast g].fastgsanger	• / ×
	110	<u>qrasquarger</u>	
	 -tr-mate-inner-dist; This is the expected (mean) inner distance between mate pairs. For, example, for paired end runs with fragments selected at 300bp, where each end is 50bp, you should set -r to be 200. The default is 50bp. Strf Dev for Distance between Mate Dairs 		
	20	_ ∎	
	-mate-std-dev; The standard deviation for the distribution on inner distances between mate pairs. The default is 200p. Benort discordant pair alignments?		
	Yes	-	
	no-discordant		
	Use a built in reference genome or own from your history		
	Use a built-in genome	-	
	Built-ins genomes were created using default options		
	Select a reference genome		
	Human (Homo sapiens): hg19	-	
	If your genome of interest is not listed, contact the Galaxy team		
	TopHat settings to use		
	Use Defaults	•	
	You can use the default settings or set custom values for any of Tophat's parameters.		
	No	-	
	✓ Execute		
	Execute: Tophat		

Figura 11. O Tophat é uma ferramenta para mapear sequências de RNA-Seq em genomas de referência.

iniciados por *Tophat on data 3 and data 1: título*, onde título pode ser *align_summary, insertions, deletions, splice_junctions e accepted_hits*.

Para visualizar o conteúdo destes resultados, basta clicar no ícone representado por um olho no canto superior direito de cada arquivo conforme Figura 12. O arquivo *align_summary*, por exemplo, é um relatório do número de sequências mapeadas e o Dentre os arquivos produzidos pelo Tophat, o mais importante se chama accepted_hits. Este é um arquivo no formato .bam (https://samtools.github.io/hts-specs/SAMv1.pdf) que contém todas as informações de alinhamento das sequências dos arquivos fastq no genoma de referência.

Tools	1	Left reads:	History	€ ✿ 🗆
search tools	0	Mapped : 48296 (96.4% of input) of these: 1343 (2.8%) have multiple alignments (11 have >20)	search datasets	8
<u>Get Data</u> <u>Send Data</u> <u>Lift-Over</u> Text Manipulation		Right reads: Input : 50121 Mapped : 45958 (01.7% of input) of these: 1278 (2.0%) have multiple alignments (11 have >20) 94.0% overall read mapping rate.	Unnamed history 14 shown, 1 <u>hidden</u> 41.4 MB	•
Filter and Sort Join, Subtract and Group		Aligned pairs: 44159 of these: 1254 (2.8%) have multiple alignments 1204 (2.7%) are discordant alignments	<u>15: Cufflinks on data 10 an</u> <u>d data 5: Skipped Transcri</u> <u>pts</u>	® / ×
Convert Formats Extract Features Fetch Sequences		us./% concordant pair alignment rate.	13: Cufflinks on data 10 an d data 5: assembled transc ripts	● / ×
Fetch Alignments Get Genomic Scores Statistics			12: Cufflinks on data 10 an d data 5: transcript expres sion	• / ×
Wavelet Analysis Graph/Display Data			11: Cufflinks on data 10 an d data 5: gene expression	• / ×
Regional Variation Evolution Motif Tools			10: Tophat on data 3 and d ata 1: accepted hits	• / ×
Multiple Alignments FASTA manipulation			<u>9: Tophat on data 3 and da</u> ta 1: splice junctions	• / ×
NGS: QC and manipulation NGS: Mapping			ta 1: deletions	• • •
NGS: RNA Analysis NGS: SAM Tools			ta 1: insertions	• / ×
NGS: Peak Calling NGS: Simulation			ata 1: align summary	iew data

Figura 12. O arquivo '*align summary*', resultante do processamento do Tophat, apresenta um resumo do número de *reads* mapeadas.

2.5. Identificação de genes e transcritos

A ferramenta utilizada para efetuar a identificação de genes e transcritos por meio da evidência de alinhamento de sequências de RNA-Seq mapeadas se chama *Cufflinks* (TRAPNELL et al., 2010). No painel de ferramentas (*Tools*) podemos localizar o *Cufflinks* usando a busca ou abrir a categoria *NGS: RNA Analysis.* Os parâmetros da ferramenta selecionada serão exibidos no painel central conforme Figura 13.

O primeiro parâmetro a ser configurado no Cufflinks, SAM or BAM file of

aligned RNA-Seq reads, é o arquivo de entrada no formato SAM ou BAM. Como efetuamos o mapeamento da amostra adrenal utilizando o Tophat, temos apenas uma opção a escolher, *Tophat on data 3 and data 1: accepted hits.* Todas as outras opções deverão ser mantidas como padrão exceto o parâmetro *Reference Annotation.* Neste campo deve ser selecionado o arquivo de anotação *'iGenomes UCSC hg19, chr19 gene annotation'*, para que o *Cufflinks* atribua os mesmos identificadores para os genes encontrados por evidência de sequências de RNA-Seq mapeadas no genoma.

Para iniciar a execução desta ferramenta basta clicar no botão *Execute* ao final do painel central. Uma vez concluída a execução, serão gerados 5 novos arquivos no histórico. Como mencionado anteriormente, o Galaxy

Figura 13. O *Cufflinks* é uma ferramenta para identificação de genes e transcritos por meio da localização das sequências de RNA-Seq no genoma de referência.

irá criar arquivos com nomes específicos, iniciados por *Cufflinks on data 20 and data 5: título*, onde título pode ser *Skipped Transcripts, assembled transcripts, transcript expression e gene expression.*

Para visualizar o conteúdo destes resultados, basta clicar no ícone representado por um olho no canto superior direito de cada arquivo conforme Figura 14. Dentre os arquivos produzidos, o mais importante se chama *assembled transcripts*. Este é um arquivo no formato .gtf que contém as informações dos transcritos encontrados.

Para visualizar o conteúdo destes resultados, basta clicar no ícone representado por um olho no canto superior direito de cada arquivo conforme Figura 14. Dentre os arquivos produzidos, o mais importante se chama assembled transcripts. Este é um arquivo no formato .gtf que contém as informações dos transcritos encontrados.

🗧 Galaxy			Anal	yze Data	Norkflow	Shared Data	▼ Vi	sualiza	ation -	Admin Help+	User -		Using 8.2 TB
Tools	1	Seqnames	Source	Feature	Start	End	Score	Strand	Frame	Attributes	ŕ	History	C 🕈 🗆
		chr19	Cufflinks	transcript	60951	70966	1	-		gene_id "WASH5P	"; transcript_id "NR_033;		
search tools	0	chr19	Cufflinks	exon	60951	61894	1			gene_id "WASH5P	"; transcript_id "NR_033;	search datasets	8
Get Data		chr19	Cufflinks	exon	66346	66499	1	-	1.0	gene_id "WASH5P	"; transcript_id "NR_033;	Unnamed history	
Send Data		chr19	Cufflinks	exon	70928	70966	1	-		gene_id "WASH5P	"; transcript_id "NR_033:	14 shown, 1 hidden	
Lift-Over		chr19	Cufflinks	transcript	76220	77690	1		1.0	gene_id "FAM138F	F"; transcript_id "NR_026	41.4 MB	🗹 📎 🗩
Text Manipulation		chr19	Cufflinks	exon	76220	76783	1	-		gene_id "FAM138F	F"; transcript_id_NR_026		
Filter and Sort		chr19	Cufflinks	exon	76886	77090	1	-		gene_id "FAM138F	"; transcript_id "NP_026	15: Cufflinks on data 10 a	in 💿 🖋 🗙
Join Subtrast and Group		chr19	Cufflinks	exon	77330	77690	1			gene_id "FAM138F	F"; transcript_id "NR_025	nts	<u>n</u>
Join, Subtract and Group		chr19	Cufflinks	transcript	110679	111596	1	+		gene_id "OR4F17"	; transcript_id "NM_0010	100	
Convert Formats		chr19	Cufflinks	exon	110679	111596	1	÷		gene_id "OR4F17"	; transcript_id "NM_0010	13: Cufflinks on data 10	a 🗶 🖋 🗙
Extract Features		chr19	Cufflinks	transcript	305575	344791	1			gene id "MIER2";	transcript id "NM 01755	nd data 5: assembled tra	an Moundata
Fetch Sequences		chr19	Cufflinks	exon	305575	306711	1	-		gene id "MIER2";	transcript id "NM 01755	scripts	view data
Fetch Alignments		chr19	Cufflinks	exon	307119	307536	1			gene id "MIER2":	transcript id "NM 01755	12: Cufflinks on data 10 a	un 🐵 🧨 🗙
Get Genomic Scores		chr19	Cufflinks	exon	308577	308665	1			gene_id "MIER2": 1	transcript id "NM 01755	d data 5: transcript expre	15
Statistics		chr19	Cufflinks	exon	308801	308925	1			gene id "MIER2";	transcript id "NM 01755	sion	

Figura 14. O arquivo '*assembled transcripts*', produzido pelo Cufflinks, contém a localização dos transcritos e seus exons.

2.6. Organização do histórico

Os nomes automaticamente gerados pelo Galaxy, apesar de indicarem com precisão a ferramenta e o conjunto de dados que foram utilizados, não contém o nome original da amostra. A medida que executarmos essas ferramentas para amostras adicionais, iremos nos deparar com um histórico poluído visualmente, que pode nos levar a cometer erros no agrupamento de amostras em etapas posteriores da análise.

Uma solução para este tipo de problema é renomear os arquivos de resultados. Para isso basta clicar no ícone representado por um lápis

- Galaxy	Analyze Data Workflow Shared Data + Visualization + Admin Help + User +		Using 8.2 TB
Tools	Attributes Convert Format Datatype Permissions	History	0 0 0
search tools (3)		search datasets	0
Get Data	Eur Aundures	Unnamed history	
Send Data Lift-Over	Tophat on data 3 and data 1: accepted_h	41.4 MB	S
Text Manipulation	Info:	25: Cufflinks on data	1 . ×
Filter and Sort Join, Subtract and Group	Log: tool progress	and data 5: Skipped Tra cripts	15
Convert Formats	Annotation / Notes:	23: Galaxy4-[brain 1	.fa 👁 🖋 🗙
Extract Features Fetch Sequences		stq].gtf	
Fetch Alignments	Add an annotation or notes to a dataset; annotations are available when a history is viewed.	② 22: Cufflinks on data and data 5: transcript ex	20 👁 🖋 🗙 pr
Get Genomic Scores	Database/Build:	ession	
Statistics Wavelet Analysis	Human (Homo sapiens): hg19 v	21: Cufflinks on data and data 5: gene express	20 👁 🖋 🗙
Graph/Display Data	Save	n	212
Regional Variation	Auto-detect	:: 20: Galaxy4-[brain_1	la 🕑 🖋 🗙
Evolution Motif Tools	This will inspect the dataset and attempt to correct the above column values if they are not accurate.	stqj.bam	
mont rooto		:": 19: Tophat on data 4	an 👁 🥒 🗙

Figura 15. Cada item do painel '*History*' contém um ícone de um lápis que permite alterar informações ou formatos e incluir anotações. Um dos principais arquivos gerados pelo Tophat se chama '*tophat on data 3 and data 1: accepted hits*'. Recomenda-se renomear este arquivo para conter o nome da amostra (eg. adrenal.bam).

contido em cada entrada do painel histórico (*History*). Como informado anteriormente, o principal resultado do Tophat é o arquivo *accepted_hits* e do Cufflinks, *assembled transcripts*. Devemos editar os atributos destes arquivos para que os nomes contenham o nome da amostra e sua identificação seja imediata ao buscá-los no painel histórico (*History*). Desta forma, o arquivo do Tophat, *accepted_hits*, passaria a se chamar adrenal. bam (Figura 15) e o arquivo do Cufflinks, *assembled transcripts*, adrenal.gtf (Figura 16).

🗧 Galaxy	Analyze Data Workflow Shared Data - Visualization - Admin Help - User -	===	Using 8.2 TB
Tools	Attributes Convert Format Datatype Permissions	History	2 🌣 🗆
Search tools	Edit Attributes	search datasets	0
Send Data	Name:	23 shown, 2 hidden	
Lift-Over	Cuminks on data 10 and data 5; assembl	41.4 MB	۲ کې چې
Text Manipulation	Info:	25: Cufflinks on data	20 👁 🖋 🗙
Join, Subtract and Group	cufflinks v2.2.1 cufflinks -qno-update-check -l	and data 5: Skipped Tran	<u>15</u>
Convert Formats	Annotation / Notes:	23: Galaxy4-[brain 1.	.fa 💿 🖋 🗙
Extract Features		stq].gtf	
Fetch Alignments	Add an annotation or notes to a dataset; annotations are available when a history is viewed.	22: Cufflinks on data and data 5: transcript ex	20 🗶 🖋 🗶
Get Genomic Scores	Database/Build:	ession	-
Statistics Wavelet Analysis	Human (Homo sapiens): hg19 v	21: Cufflinks on data	20 👁 🖋 🗙
Graph/Display Data	Number of comment lines:	<u>n</u> <u>n</u>	510
Regional Variation		20: Galaxy4-[brain 1.	ta 💿 🖋 🗙
Evolution Motif Tools	Save	stq].bam	
Multiple Alignments	Auto-detect	19: Tophat on data 4 d data 2: splice junctions	an 💿 🖋 🗙 🕯
FASTA manipulation	This will inspect the dataset and attempt to correct the above column values if they are not accurate.	18: Tophat on data 4	an an ar an
NGS: QC and manipulation		d data 2: deletions	

Figura 16. Um dos principais arquivos gerados pelo Cufflinks se chama '*cufflinks on data 10 and data 5: assembled transcripts*'. Recomenda-se renomear este arquivo para conter o nome da amostra (eg. adrenal.gtf).

2.7. Workflows

Em um experimento tradicional de análise de dados de RNA-Seq são analisadas várias bibliotecas. Cada uma dessas bibliotecas precisa ser mapeada no genoma de referência (sessão 2.4) e, posteriormente, utilizar os dados de mapeamento para identificação dos transcritos (sessão 2.5). O Galaxy possibilita a execução automatizada dessas etapas da análise para cada uma das bibliotecas, garantindo que sejam utilizados exatamente os mesmos parâmetros.

Os *workflows* podem ser acessados a partir do item '*Workflow*' na barra de menu superior, sendo possível gerenciá-los: criar novos, alterar, excluir ou importar. Para criar um *workflow*, o Galaxy oferece uma interface gráfica que possibilita inserir as diferentes ferramentas que compõem determinada análise, e conectá-las. Também é possível criar um novo *workflow* a partir de um histórico.

Para criar um novo *workflow* a partir de um histórico basta clicar na engrenagem no canto superior do painel histórico (*History*) e selecionar a opção '*Extract workflow*' conforme a Figura 17. No painel principal serão exibidos todos o itens do histórico, possibilitando eliminar arquivos de entrada ou programas antes de criar o *workflow* (Figura 18). Existe um campo chamado '*Workflow name*' que nos possibilita atribuir um novo nome ao *workflow* que será criado. Iremos colocar o nome *TophatAndCufflinks* para identificar o *workflow* que contém as análises executadas no nosso histórico (Tophat e Cufflinks). Para prosseguir, devemos clicar no botão '*Create workflow*'.

No painel central será exibida uma tela de resultado da criação do *work-flow* (Figura 19) com duas opções 'edit' e 'run', para editar ou executar o *workflow* recém criado, respectivamente. Antes de executar, iremos editar o *workflow* para nos certificarmos das etapas e parâmetros desta análise. Para editar o *workflow* basta clicar no link '*edit*'.

Na tela de edição de *workflows* serão exibidas caixas representando arquivos de entrada ou ferramentas conforme o que havia sido executado no painel *History* (histórico) Figura 20 ilustra tal situação. As caixas identificadas por *Input dataset* representam os arquivos de entrada e são exibidas 5 caixas representando os 5 arquivos que foram carregados (sessão 2.3). As análises que efetuamos (sessões 2.4 e 2.5) processaram apenas 3 arqui-

Figura 17. No topo do painel '*History*' há um ícone de uma engrenagem que permite acessar configurações deste painel. Dentre as opções disponíveis, a '*Extract Workflow*' permite criar um passo a passo das análises executadas.

=_ Galaxy		Analyze Data Workflo	w Shared Data v	Visua	alization 👻 🛛 A	dmin Help	✓ User ✓		Usin	g 8.2 '	тв
Tools	The following li	st contains each tool that w	as run to create the	datasets	s in your curren	it history. Plea	se select those that you wish	History	4	C 🗘	
search tools	Tools which ca	nnot be run interactively an	d thus cannot be inco	orporate	id into a workflo	w will be show	wn in gray.	search datasets			8
Get Data	Workflow na	me						Unnamed history			
Send Data	TophatAndC	ufflinks						14 shown, 1 hidden			
Lift-Over								41.4 MB		3 🔊	•
Text Manipulation	Create Work	flow Check all Uncl	heck all					15: Cufflinks on data 10 a	n a		
Filter and Sort	Tool			Hist	tory items crea	ated		d data 5: Skipped Transc	i i	~ ~	-
Join, Subtract and Group								<u>pts</u>			
Convert Formats	Lipload File			1:0	Galaxyz-ladrei	nai_1.tastqj.ti	astqsanger	13: Cufflinks on data 10 a	n a		
Extract Features	This test seen	at he used is used flows		•				d data 5: assembled trans	SC		
Fetch Sequences	This toor canno	or be ased in worknows			Treat as input	dataset		ripts			
Fetch Alignments								12: Cufflinks on data 10 a	n e		×
Get Genomic Scores				2: 0	C la v4-[brain	n_1.fastq].fast	tqsanger	d data 5: transcript expre	5		
Statistics	Upload File		,	•	<u>' \</u>			sion			
Wavelet Analysis	This tool canno	ot be used in workflows			Troot on innut	otocot		11: Cufflinks on data 10 a	in 🧹	9 <i>1</i>	×
Graph/Display Data					rieat as input	laser		d data 5: gene expression			
Regional Variation				3: 0	Galaxy3-[adrei	nal_2.fastq].f	astqsanger	10: Tophat on data 3 and	d		
Evolution	Upload File							ata 1: accepted hits		~ ~	-
Motif Tools	This tool canne	ot be used in workflows						0: Tophet on data 2 and d			
Multiple Alignments				2	Treat as input	dataset		ta 1: splice junctions	a (• •	×
FASTA manipulation				4.0	Galavu5.Ibrain	2 faetral faet	taeanaer				
NGS: QC and manipulation	Upload File				ouncy's forum		upunger	8: Tophat on data 3 and d	8 <	• 1	×
NGS: Mapping	This tool canni	ot he used in workflows						ta a. deletiona			
NGS: RNA Analysis					Treat as input	dataset		7: Tophat on data 3 and d	<u>a</u> <	9	×
NGS: SAM Tools								ta 1: insertions			
NGS: Peak Calling				5:0	Galaxy1-	C hall ob	r10 gone ennetation] att	6: Tophat on data 3 and d	a	9 I	×
NGS: Simulation	Upload File			L	Genomes_002	30_lig19,_cli	119_gene_annotationj.gu	ta 1: align_summary			
Phenotype Association	This tool cann	ot be used in workflows						5: Galaxy1-[iGenomes U	1	9 /	×
VCF Tools					Treat as input	dataset		CSC hg19, chr19 gene	8		
NGS: Picard								nnotation].gtf			
Metagenomic Analyses				6:1	Tophat on data	a 3 and data 1	1: align_summary	4: Galaxy5-[brain 2.fastq	11	Ð 🖋	×
NGS: VCF Tools				7:1	Tophat on data	a 3 and data 1	1: insertions	astqsanger			
NGC: BCF Tools	Tophat							3: Galaxy3-[adrenal_2.fas	t e	» /	×
Functional Analysis	Include "Te	obot" in workflow		8:1	Tophat on data	a 3 and data 1	1: deletions	<u>q].fastqsanger</u>			
NGS: GATK	a include id	phat in worknow		9:1	Tophat on data	a 3 and data 1	1: splice junctions	2: Galaxv4-fbrain 1.fasto	Lt a		
SNV analysis								astqsanger			
Interproscan functional predictions of				10:	: Tophat on dat	ta 3 and data	1: accepted_hits	1: Galaxy2-fadrenal 1 fas			
ORFs Interproscan functional					Cuttlinks on a	data 10 and d	lata El gono expression	g].fastgsanger			-
predictions of ORFs					. outinities offic	unit 10 and u	and of gene expression				
Workflows				12:	Cufflinks on a	data 10 and d	lata 5: transcript				
All workflows	Cufflinks			ext	pression						
	Constant and	Western Providence		13:	Cufflinks on a	data 10 and d	lata 5: assembled				
	Include "Ci	uttiinks in workflow		tra	nscripts						

Figura 18. Ao criar um 'workflow' a partir dos itens do painel 'History' é possível selecionar itens.

vos ('adrenal_1.fastq', 'adrenal_2.fastq' e '*iGenomes UCSC hg19, chr19 gene annotation*'), desta forma, apenas 3 caixas estão conectadas nas caixas de ferramentas Tophat e Cufflinks. Em outras palavras, para efetuar as análises de mapeamento e identificação de transcritos precisaremos apenas de 3 caixas *Input dataset* e, portanto, podemos eliminar as caixas

Figura 19. Após a criação de um 'workflow' por meio da ferramenta 'Extract Workflow' podemos editá-lo ou executá-lo.

Figura 20. A ferramenta gráfica de edição de '*workflows*' possibilita inserir ou excluir itens, bem como acessar seus parâmetros. Neste exemplo, gerado automaticamente por meio da função '*Extract Workflow*', pode-se perceber que existem itens que não estão ligados e, portanto, podem ser excluídos.

que não estão ligadas a lugar algum. Dessa forma, teremos um *workflow* que representa a análise de mapeamento e identificação de transcritos que é constituída de 3 arquivos de entrada e as ferramentas Tophat e Cufflinks.

Ao clicar em qualquer caixa do *workflow* temos acesso aos parâmetros no painel do lado direito chamado '*Details*' (Detalhes) conforme a Figura 21. Se selecionarmos a ferramenta *Tophat*, por exemplo, podemos observar que os mesmos parâmetros utilizados anteriormente (sessão 2.4) já estão selecionados.

💳 Galaxy	Analyze Data Workflow Shared Data - Visualization - Admin Help - User -	Using 8.2 TB
Tools	Workflow Canvas TophatAndCufflinks	Details
search tools		Tool: Tophat
Get Data		Version: 0.9
Send Data	output RNA-Seq FASTQ file, forward	
Lift-Over	reads	Is this single-end or paired-end
Text Manipulation	Input dataset X RNA-Seq FASTQ file, reverse	Paired-end (as individual dat: *
Filter and Sort	output	
Join, Subtract and Group	align_summary (xt)	RNA-Seq FASTQ file, forward
Convert Formats	fusions (tabular)	Data input 'input1' (fastgsanger)
Extract Features	insertions (bed)	PNA-Ser EASTO file reverse reads
Fetch Sequences	deletions (bed)	Data input 'input2' (fastosanger)
Fetch Alignments	junctions (bed)	Mean Inner Distance between Mate
Get Genomic Scores	accounted bits (here)	Pairs: v
Statistics	accepted_mis (bain)	110
Wavelet Analysis	unmapped (bam)	
Graph/Display Data		Std. Dev for Distance between Mate Pairs: v
Regional variation		20
Evolution	Cuttlinks ×	
Motif Tools	SAM or BAM file of alloned RNA-Seg	Report discordant pair
FACTA manipulation	reads	augnments 7: V
NGS: OC and manipulation	Input dataset × Reference Annotation	Tes V
NGS: Manning	Output Global model (for use in Tracketer)	Use a built in reference genome or
NGS: RNA Analysis		Lise a built in genome
NGS: SAM Tools	genes_expression (tabular)	ose a buildin genome
NGS: Peak Calling	transcripts_expression (tabular) 🔅 🔊	Select a reference genome: v
NGS: Simulation	assembled_isoforms (gtf) 🛛 🔊	Human (Homo sapiens): hg1 🔻
Phenotype Association	total map mass (txt)	TopHat settings to use:
VCF Tools	skinned (ntf)	Use Defaults
NGS: Picard	and how (Bu)	Specify read group?:
Metagenomic Analyses		No V
NGS: VCE Tools		

Figura 21. Ao selecionar o item Tophat, pode-se observar que todos os seus parâmetros são exibidos no painel '*Details*'.

No painel *Details* é possível também incluir uma etapa para renomear os arquivos de resultado, eliminando a necessidade de fazê-la manualmente como na sessão 2.6. Para isso, devemos rolar até a sessão *Edit Step Actions* e selecionar *Rename Dataset* (Figura 22). Logo abaixo, devemos selecionar o arquivo de resultado a ser renomeado, neste caso *accepted_hits*, e clicar no botão *Create*. Será exibida um novo campo chamado *Rename Dataset on accepted_hits* que nos permite inserir uma expressão que renomeia o arquivo utilizando o nome do arquivo de entrada. No Tophat, os arquivos de entrada se chamam *input1* e *input2*, conforme exibido abaixo da caixa *New output name* em *Available inputs are*. Para utilizar esses nomes, devemos utilizar a seguinte notação: #{input1} ou #{input2}. O Galaxy permite ainda nos livrarmos da extensão do arquivo usando o parâmetro |basename. Desta forma, ao utilizar a notação #{input1|basename} em um arquivo chamado brain_1.fastq, obteríamos o resultado: brain_1.

💳 Galaxy	Analyze Data Workflow Shared Data → Visualization → Admin Help → User →	Using 8.2 TB
Tools	Workflow Canvas TophatAndCufflinks	Details
search tools		Edit Step Actions
Get Data	Input dataset × Tophat ×	Rename Dataset
Send Data	output RNA-Seq FASTQ file, forward	accepted hits Create
Lift-Over	reads	
Text Manipulation	Input dataset X RNA-Seq FASTQ file, reverse	Rename Dataset
Filter and Sort	output	on accepted_nits
Join, Subtract and Group	align_summary (bt)	New output name:
Convert Formats	fusions (tabular)	#{input1 basename}.bar
Extract Features	insertions (bed)	Available inputs are:
Fetch Sequences	delations (hert)	singlePaired input1,
Fetch Alignments		singleParedinputz
Get Genomic Scores	junctions (bed)	This action will rename the result
Statistics	accepted_hits (barn)	dataset. See the wiki for usage
Wavelet Analysis	unmapped (bam)	Information.
Graph/Display Data		Add actions to this step; actions are
Regional Variation		applied when this workflow step
Evolution	Cuttining	completes.
Motif Tools		Edit Step Attributes
Multiple Alignments	SAM or BAM file of aligned RNA-Seq	Annotation / Notes:
FASTA manipulation	Teads	Annound in A
NGS: QC and manipulation	Reference Annotation	
NGS: Mapping	output Global model (for use in Trackster)	
NGS: RNA Analysis	genes expression (tabular)	Add an annotation or notes to this
NGS: SAM Tools	transcrints everassion (tabular)	step; annotations are available
NGS: Peak Calling		Tophat Quantion
NGS: Simulation	assembled_isoforms (gtr)	Tophat Overview
Phenotype Association	total_map_mass (txt) 🛛 🔊	<u>IOPHAI</u> IS a fast splice junction mapper for RNA-Seg reads. It aligns RNA-Seg reads
VCF Tools	skipped (gtf) 🛛 🔿	to mammalian-sized genomes using the
NGS: Picard		ultra high-throughput short read aligner

Figura 22. No painel '*Details*' é possível incluir um passo adicional para renomear o arquivo, de forma que ele contenha o nome da amostra.

Iremos renomear alguns arquivos de entrada da mesma forma que fizemos na sessão 2.6. O arquivo de resultados *accepted_hits* produzido pelo Tophat será renomeado para #{input1|basename}.bam ao incluirmos esta expressão dentro do campo *New output name*.

O mesmo deve ser feito para o arquivo de resultado *assembled_transcript*, utilizando a notação #{input|basename}.gtf, na caixa do Cufflinks (Figura 23).

Detalhes a respeito das possibilidades de utilização da ferramenta *Rename Dataset* podem ser obtidos em:

https://wiki.galaxyproject.org/Learn/AdvancedWorkflow/variablesEdit?action =show&redirect=Learn%2FAdvancedWorkflow%2FVariables.

Ao final, basta clicar no ícone representado por uma engrenagem no canto direito superior do painel central e clicar em *Save*. Uma boa prática é clicar em *Save* várias vezes ao longo da edição do *workflow*. Para executar este *workflow*, basta clicar na engrenagem e depois em *Run* (Figura 23).

Na tela de execução de *workflow* (Figura 24) serão exibidos todos os passos do *workflow*, sendo que os campos referentes a arquivos de entrada de dados, *Input dataset*, deverão ser utilizados para indicar os arquivos que serão processados. Como já executamos as amostras adrenal, devemos selecionar as amostras brain. No primeiro *Input Dataset* devemos selecionar brain_1.fastq, no segundo brain_2.fastq e no terceiro o arquivo de anotação '*iGenomes UCSC hg19, chr19 gene annotation*'. Para executar basta clicar no botão *Run workflow*.

Figura 23. No ícone de engrenagem disponível no painel central é possível gravar e executar o 'workflow'.

- Galaxy	Analyze Data Workflow Shared Data - Visualization - Admin Help - User -		Using 8.2 TB
Tools	Bunning workflow "TophatAndCufflinks"	History	C 🕈 🗆
search tools	Stop 1: Jonut defendet	search datasets	0
Get Data	Input Dataset 🕜	Unnamed history 14 shown, 1 hidden	
Lift-Over	2: Galaxy4-[brain_1.fastq].fastqsanger	41.4 MB	8 8
Text Manipulation Filter and Sort		15: Cufflinks on data 10 a d data 5: Skipped Transc	an 👁 🖋 🗙
Join, Subtract and Group	Step 2: input dataset	<u>pts</u>	
Convert Formats Extract Features Fetch Sequences	Input Dataset 4: Galaxy5(brain_2.fastq).fastqsanger	13: Cufflinks on data 10 a d data 5: assembled tran ripts	an 👁 🖋 🗙 sc
Fetch Alignments Get Genomic Scores	Step 3: Input dataset	12: Cufflinks on data 10 a d data 5: transcript expre	an 👁 🖋 🗙
Statistics	Input Dataset 🗊	sion	
Graph/Display Data	5: Galaxy1-[_iGenomes_UCSC_hg19,_chr19_gene_annotation].gtf	d data 5: gene expressio	
Regional Variation Evolution		10: Tophat on data 3 and ata 1: accepted hits	<u>d</u> 👁 🖋 🗙
Motif Tools	Step 4: Tophat (version 0.9)	9: Tophat on data 3 and o	ia 💿 🖉 🗙
Multiple Alignments	Step 5: Cufflinks (version 2.2.1.0)	ta 1: splice junctions	
NGS: QC and manipulation	Send results to a new history	8: Tophat on data 3 and o ta 1: deletions	<u>ia</u> 👁 🖋 🗙
NGS: Mapping NGS: RNA Analysis	Run workflow	7: Tophat on data 3 and o ta 1: insertions	<u>ia</u> 👁 🖋 🗙

Figura 24. Ao executar um 'workflow' será exibido um formulário para selecionar os arquivos de entrada. Parâmetros podem ser alterados ao clicar na barra de título de cada passo (bege).

2.8. Construção do transcriptoma de referência

Nesta etapa da análise iremos criar um transcriptoma de referência por meio da união dos transcritos encontrados nas amostras *adrenal* e *brain*. Para recapitular, o arquivo .gtf de transcritos da amostra *adrenal* foi obtido por meio da execução do Tophat (sessão 2.4) e do Cufflinks (sessão 2.5) e os da amostra *brain* foi obtido por meio da execução do Tophat e do Cufflinks dentro do *workflow* (sessão 2.7).

A ferramenta utilizada para unir os arquivos de transcriptoma se chama Cuffmerge (TRAPNELL et al., 2010). No painel de ferramentas (*Tools*) podemos localizar o Cuffmerge usando a busca ou abrir a categoria *NGS: RNA Analysis*. Os parâmetros da ferramenta selecionada serão exibidas no painel central conforme a Figura 25.

O primeiro parâmetro a ser configurado no Cuffmerge é o de seleção dos arquivos gerados pelo Cufflinks: *GTF file(s) produced by Cufflinks*. Deverão ser selecionados os arquivos de transcritos adrenal.gtf e brain.gtf (segurar o CTRL para selecionar múltiplos arquivos).

O Cuffmerge possibilita anotar os transcritos encontrados com informa-

ções de um transcriptoma de referência. Para isso, iremos selecionar Yes em *Use reference annotation* e selecionar o arquivo de anotação 'iGenomes UCSC hg19, chr19 gene annotation' no campo *Reference Annotation*. Todas as outras opções serão mantidas como padrão. Para executar o Cuffmerge basta clicar no botão *Execute*.

Figura 25. A ferramenta Cuffmerge possibilita gerar um arquivo de transcriptoma contendo transcritos encontrados em todas as amostras e também anotá-los por meio de um transcriptoma de referência.

2.9. Análise de expressão diferencial

Nesta etapa da análise iremos quantificar o número de *reads* de RNA-Seq que foram mapeadas nos transcritos que constituem nosso transcriptoma de referência (sessão 2.8) e efetuar o cálculo para identificação de expressão diferencial entre as amostras.

A ferramenta utilizada para fazer a análise de expressão diferencial se chama Cuffdiff (TRAPNELL et al., 2010). No painel de ferramentas (Tools) podemos localizar o Cuffdiff usando a busca ou abrir a categoria . Os parâmetros da ferramenta selecionada serão exibidas no painel central conforme a Figura 26.

Figura 26. A ferramenta Cuffdiff permite a análise de expressão diferencial de amostras de RNA-Seq.

O primeiro parâmetro a ser configurado no Cuffdiff é o de seleção do transcriptoma de referência: *Transcripts*. Deverá ser selecionado o arquivo de transcritos gerado pelo Cuffmerge.

O segundo parâmetro, *Condition*, é destinado ao delineamento experimental, ou seja, quais são as condições experimentais e réplicas. Por padrão, o Cuffdiff apresenta uma tela com duas condições experimentais. Devemos preencher os campos *Name* com os valores: Adrenal e Brain. Na réplica da primeira condição devemos selecionar o arquivo adrenal.bam e na réplica da segunda condição o arquivo brain.bam.

Todas as outras opções serão mantidas como padrão. Para executar o Cuffdiff basta clicar no botão *Execute*.

Após a execução serão criados 15 arquivos de três tipos diferentes: *FPKM tracking, differential expression testing* e *read group tracking.* A especificação do formato dos arquivos, bem como a descrição do seu conteúdo está detalhada em: https://cole-trapnell-lab.github.io/cufflinks/cuffdiff.

Tomemos, por exemplo, os arquivos relacionados a genes. Os arquivos *FPKM tracking* contém os valores de FPKM de cada gene por amostra, ou seja, o número de fragmentos dividido por milhares bases dividido por milhões de reads. Os arquivos *read group tracking* contém a contagem de sequências mapeadas em cada gene por amostra. Por último, o arquivo *differential expression testing* contém o resultado o teste de expressão diferencial dos genes entre as condições experimentais. Neste documento iremos examinar apenas os arquivos *differential expression testing*.

Para visualizar o resultado do teste de expressão diferencial dos transcritos identificados devemos clicar no ícone representado por um olho no canto superior direito do arquivo *transcript differential expression testing* conforme Figura 27. No painel central será exibido o conteúdo do arquivo que possui 14 colunas. As colunas de 1 a 4 identificam o transcrito (test_id, gene_id, gene e locus). As colunas 5 e 6 identificam as condições experimentais comparadas (sample_1 e sample_2). A coluna 7 (status) irá apresentar OK caso o teste tenha sido bem sucedido. As colunas 8 e 9 (value_1 e value_2) contém o valor de FPKM em cada condição experimental. Por fim, as colunas 10 a 14 contém o resultado da análise de expressão diferencial, destacando-se log2(fold_change) (o valor do log2 da divisão de FPKMy por FPKMx, onde x é a amostra 1 e y a amostra 2), p (o valor p do teste estatístico) e q (o valor p corrigido por FDR, correção em comparações de múltiplas hipóteses). A última coluna (*significant*) irá apresentar yes quando o valor q for menor que o FDR (0,05).

Para visualizar apenas os genes diferencialmente expressos, podemos utilizar a ferramenta 'Filter' para selecionar apenas as linhas que contém 'yes' na última coluna. No painel de ferramentas (*Tools*) podemos localizar a ferramenta 'Filter' usando a busca ou abrir a categoria *Filter and sort*. Os parâmetros da ferramenta selecionada serão exibidos no painel central conforme a Figura 28. O primeiro parâmetro a ser configurado é o de seleção do resultado do arquivo *transcript differential expression testing*.

-	Galaxy			Analyze Data	Workflow	Shared Data -	· Visualiza	tion v Admi	in Help v U	ser 🔻		Using 8.2 TB
1		2	3	4		5	3	7	8	9 10	History	C 🗘 🗆
test	id	gene_id	gene	locus		sample_1	sample_2	status	value_1	value_2 log2		
TCC	NS_0000001	XLOC_000001	OR4F17	chr19:110678	111596	Adrenal	Brain	NOTEST	0	0	search datasets	
TCC	NS_0000002	XLOC_000002	MADCAM1	chr19:496489	505343	Adrenal	Brain	NOTEST	0	0	Unnamed history	
TCC	NS_0000003	XLOC_000002	MADCAM1	chr19:496489	505343	Adrenal	Brain	NOTEST	0	0	23 shown, 2 hidden	
TCC	NS_0000004	XLOC_000003	TPGS1	chr19:507496	519654	Adrenal	Brain	NOTEST	0	0	60.1 MB	S 🔊 🗩
TCC	NS_0000005	XLOC_000004	CDC34	chr19:531732	542087	Adrenal	Brain	NOTEST	0	0		
TCC	NS_0000006	XLOC_000005	GZMM	chr19:544026	549919	Adrenal	Brain	NOTEST	0	0	42: Cuffdiff for cummeR	● 🖋 🗙
TCC	NS_0000007	XLOC_000006	BSG	chr19:571324	583493	Adrenal	Brain	NOTEST	29.4751	0	0 and data 26: transcrint	EPKM tracki
TCC	NS_0000008	XLOC_000006	BSG	chr19:571324	583493	Adrenal	Brain	NOTEST	0	0	ng	
TCC	NS_0000009	XLOC_000006	BSG	chr19:571324	583493	Adrenal	Brain	NOTEST	0.0749417	0		
TCC	NS_0000010	XLOC_000007	HCN2	chr19:589892	617159	Adrenal	Brain	NOTEST	0	0	A1: Currain for cumme Rhund on data 20, data	🗶 🖋 🗙
TCC	NS_0000011	XLOC_000008	FGF22	chr19:639925	643604	Adrenal	Brain	NOTEST	0	0	10, and data 26: trans	/lew data ntia
TCC	NS_0000012	XLOC_000009	FSTL3	chr19:676388	683392	Adrenal	Brain	NOTEST	0	0	l expression testing	
TCC	NS_0000013	XLOC_000010	PALM	chr19:708952	748330	Adrenal	Brain	NOTEST	0		40: Cuttditt for cummeR	
TCC	NS_0000014	XLOC_000010	PALM	chr19:708952	748330	Adrenal	Brain	NOTEST	0	0	bund on data 20, data 1	• • •
TCC	NS_0000015	XLOC_000011	C19orf21	chr19:751145	764318	Adrenal	Brain	NOTEST	0	0	0, and data 26: gene FPK	M tracking
TCC	NS_0000016	XLOC_000012	PTBP1	chr19:797391	812327	Adrenal	Brain	NOTEST	0	0	20: Cuttditt for ourses	
TCC	NS_0000017	XLOC_000012	PTBP1	chr19:797391	812327	Adrenal	Brain	NOTEST	0	0	bund on data 20, data 1	● / ×
TCC	NS_0000018	XLOC_000012	PTBP1	chr19:797391	812327	Adrenal	Brain	NOTEST	0	0	0, and data 26: gene diffe	erential expre
TCC	NS_00000019	XLOC_000012	PTBP1	chr19:797391	812327	Adrenal	Brain	NOTEST	0	0	ssion testing	
TCC	NS_0000020	XLOC_000012	MIR4745	chr19:797391	812327	Adrenal	Brain	NOTEST	0	0	38: Cuffdiff for cummeR	
TCC	NS_0000021	XLOC_000013	MIR3187	chr19:812517	821952	Adrenal	Brain	NOTEST	0	0	bund on data 20, data 1	
TCC	NS_0000022	XLOC_000014	AZU1	chr19:827830	832017	Adrenal	Brain	NOTEST	0	0	0, and data 26: TSS grou	ps FPKM tra
TOO		10.00.000005	00710	1 10 0 1000 1	040475		0.1	HOTFOT	0	0	cking	

Figura 27. Arquivo de resultado do Cuffdiff que lista informações dos genes e o teste estatístico de expressão diferencial.

Figura 28. Utilizando-se a ferramenta '*Filter*' é possível selecionar apenas os genes diferencialmente expressos, ou seja, os que tem a palavra 'yes' na coluna 14. O segundo parâmetro, With following condition, deverá ser preenchido com a expressão: c14=='yes', onde c14 é a especificação da última coluna do arquivo. Logo abaixo dos parâmetros existem duas sessões, *Syntax* e *Example*, que detalham como criar expressões de filtros. Para executar o Filter basta clicar no botão *Execute*.

O arquivo gerado pelo *Filter* contém as mesmas colunas do arquivo original, porém estão contidas apenas as linhas que passaram no filtro, conforme Figura 29.

Este filtro nos possibilitou identificar os transcritos diferencialmente expressos entre as amostras. Para identificar os genes diferencialmente expressos, devemos repetir os passos anteriores, selecionando o arquivo de genes na ferramenta *Filter*. Para visualizar estes arquivos, basta clicar o ícone de olho no canto superior direito de cada arquivo conforme Figuras 29 e 30.

	- Galaxy			Analyze Data	Workflow	Shared	l Data -	· \	/isualization	- /	\dmin	Help 🗸 🔰	User v			Using 8.2 TB
Γ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	History	C 🕈 🗆
L	TCONS_0000089	XLOC_000061	CELF5	chr19:3224700-3297391	Adrenal	Brain	OK	0	6423.39	inf	-nan	5e-05	0.00075	yes		
L	TCONS_00000090	XLOC_000061	CELF5	chr19:3224700-3297391	Adrenal	Brain	OK	0	3419.83	inf	-nan	0.00045	0.0045	yes	search datasets	8
	TCONS_0000092	XLOC_000061	CELF5	chr19:3224700-3297391	Adrenal	Brain	ОК	0	5123.63	inf	-nan	5e-05	0.00075	yes	Unnamed his pry	
L															23 shown, 2 hidden	
															60.1 MB	
															43: Filter on data 41	@ / X
L															42. 0	Maw data
L															bund on data 20, data 1	×
L															0, and data 26: transcri	pt FPKM tracki
															ng	
'n		Tranca	ritaa	diferenciele	aanta	~.vr				~~	ntra	dee	ala (

Figura 29. Transcritos diferencialmente expressos encontrados pelo Cuffdiff.

=_ Galaxy	Analyze Data Workflow	Shared Data - Visualizatio	ion≁ Admin Help≁ User≁		Using 8.2 TB
1 2 3 4	5 6	7 8 9 1	10 11 12 13 14	History	2 0 🗆
XLOC_000061 XLOC_000061 CELF5 dv1932	4700-3297391 Adrenal Br	rain OK 0 15659.2	int -nan 5e-05 0.00075 yes	Search Intasets Unnamed his pr 23 shown, 2 histori 60.1 MB 44: Fitter on data 32 43: Fitter on data 41 42: Cuffdiff for cummeR bund on data 20, data 1 0, and data 20, transcript bg	C C C C C C C C C C C C C C

Figura 30. Gene diferencialmente expresso encontrado pelo Cuffdiff.

3. Conclusão

O conjunto de ferramentas apresentado nos possibilita a identificação de genes e transcritos diferencialmente expressos entre amostras de RNA-Seq utilizando-se um genoma de referência. Os autores destas ferramentas publicam artigos científicos e textos online com regularidade, apresentando novas funcionalidades e detalhes sobre cada programa e parâmetros.

A utilização da plataforma Galaxy possibilita atualizações de ferramentas regularmente, de forma transparente ao usuário. O Galaxy possibilita ainda maior facilidade de visualização de tabelas e gráficos, o que o tornam uma alternativa interessante, principalmente para pesquisadores que não têm experiência com a execução de comandos na interface texto.

A técnica de análise de dados de RNA-Seq está sendo aperfeiçoada continuamente e o pesquisador que for analisar tal tipo de dado deve estar atento às publicações recentes e constantes.

4. Referências

GIARDINE, B.; RIEMER, C.; HARDISON, R. C.; BURHANS, R.; ELNITSKI, L.; SHAH, P.; ZHANG, Y.; BLANKENBERG, D.; ALBERT, I.; TAYLOR, J.; MILLER, W.; KENT, WJ.; NEKRUTENKO, A. Galaxy: a platform for interactive large-scale genome analysis. **Genome Research**, v. 15, n. 10, p. 1451-1455, 2005.

TRAPNELL, C.; PACHTER, L.; SALZBERG, S. L. TopHat: discovering splice junctions with RNA-Seq. **Bioinformatics**, v. 25, n. 9, p. 1105-1111, 2009.

TRAPNELL, C.; ROBERTS, A.; GOFF, L.; PERTEA, G.; KIM, D.; KELLEY, D. R.; PIMENTEL, H.; SALZBERG, S. L.; RINN, J. L.; PACHTER, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. **Nature Protocols**, v. 7, n. 3, p. 562-578, 2012. DOI: 10.1038/nprot.2012.016

TRAPNELL, C.; WILLIAMS, B. A.; PERTEA, G.; MORTAZAVI, A.; KWAN, G.; BAREN, M. J. van; SALZBERG, S. L.; WOLD, B. J.; PACHTER, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. **Nature Biotechnology**, v. 28, n. 5, p. 511-515, 2010.

