Comunicado 320 Técnico ISSN 1516-8654 Setembro, 2015 Pelotas, RS

Comparativo de Imagens Orbitais de Média Resolução: Sensores Aster e Landsat – TM

José Maria Filippini Alba¹ Mauro Roxo Nóbrega² Henrique Nogueira da Cunha³

O sensoriamento remoto envolve um conjunto de tecnologias que possibilitam obter informações da superfície terrestre através da captação e do registro da energia eletromagnética que interage com ela. A série de satélites Landsat (JENSEN, 1996) teve início em julho de 1972 com o satélite ERTS-1, mais tarde denominado Landsat -1, lançado com a finalidade de monitorar os recursos naturais da Terra. Este satélite, assim como seu sucessor da mesma série, tinha como principal sistema sensor o Multiespecral Scanner System (MSS), que operava em quatro canais, dois no visível e dois no infravermelho próximo, com campo de visada de 79 m. O sensor Thematic Mapper (TM), disponível a partir do Landsat-4 e lançado em 1982 possui uma tecnologia mais avançada e tem a capacidade de registrar dados em sete canais ou bandas espectrais. Três das sete bandas abrangem o espectro visível, uma o infravermelho próximo, duas o infravermelho médio e uma o infravermelho termal. A resolução espacial é variável com dimensão decamétrica, com a exceção da banda 6 (Tabela 1). As versões 5,

6, 7 e 8 do Landsat foram lançadas em 1984, 1993, 1999 e 2013 respectivamente, incorporando avanços tecnológicos paulatinos como a introdução da banda pancromática com campo de visada de 15 m e maior número de bandas.

Outro satélite com órbita polar semelhante, mas com defasagem de 30 minutos, é o Terra-1, lançado em dezembro de 1999 e precursor do programa EOS (Earth Observing System), gue tem como finalidade disponibilizar informações sobre o planeta, focando a compreensão dos fenômenos naturais e a dinâmica introduzida pelo homem. Dos cinco sensores a bordo do satélite Terra-1 destaca-se o Aster, sigla em inglês que significa "radiômetro espacial avançado para emissão termal e refletância" (ABRAMS et al., 2003), desenvolvido para obter mapas detalhados da temperatura, emissividade, refletância e elevação da superfície terrestre. Possui 14 bandas que variam do visível ao infravermelho termal sendo composto de três subsistemas distintos (Tabela 1). Os três cobrem

¹ Bacharel em Química, D.Sc. em Geociências, pesquisador da Embrapa Clima Temperado, Pelotas, RS

² Tecnólogo Ambiental, bolsista ICT/CNPq IFSul/Embrapa

³ Acadêmico do Curso de Geografia, UFPel, estagiário da Embrapa Clima Temperado, Pelotas, RS

na visada nadir (vertical), uma área de 60 km x 60 km com Resolução Temporal de 16 dias. Cada subsistema possui seu próprio telescópio e, no caso

2

do VNIR, há ainda outro com visada oblíqua (27,6°) para obtenção de pares estereoscópicos na mesma órbita.

Tabela '	1 . Pro	priedades	das	bandas	dos	sensores	especificados
labola		priodudoo	auo	Danado	400	001100100	000000000000000000000000000000000000000

Sensor	Banda	Comprimento de onda	Campo de visada
Landsat-4 e	1	0.45 a 0.52 μm	30 m
5/TM	2	0.52 a 0.60 µm	
	3	0.63 a 0.69 µm	
	4	0.76 a 0.90 µm	
	5	1.55 a 1.75 µm	
	7	2.08 a 2.35 µm	
	6	10.4 a 12.5 µm	120 m
Terra-1/AS-	1	0,52 a 0,60 µm	15 m
TER	2	0,63 a 0,69 µm	
	3	0,78 a 0,86 µm	
	4	1,60 a 1,70 µm	30 m
	5	2,145 a 2,185 µm	
	6	2,185 a 2,225 µm	
	7	2,235 a 2,285 µm	
	8	2.295 a 2,365 μm	
	9	2,360 a 2,430 µm	
	10	8,125 a 8,475 μm	90 m
	11	8,475 a 8,825 µm	
	12	8,925 a 9,275 μm	
	13	10,25 – 10,95 µm	
	14	10,95 – 11,65 µm	

Neste comunicado consideraram-se imagens semelhantes dos sensores descritos previamente, em intervalo de tempo muito estreito (dois dias) na área localizada ao sul de Pelotas, onde as lagoas Mirim e Patos praticamente se encontram. Trata-se de uma região de terras baixas, com paisagem de restinga (influência marítima), onde se destaca a produção de arroz irrigado, junto à ocorrência de inúmeras pequenas lagoas que circundam as já mencionadas.

A imagem Landsat 5 corresponde à cena localizada na órbita 221 ponto 83 do *World Reference System* (WRS), captada em 27/09/2000. Para o sensor Aster utilizou-se uma imagem captada em 26/09/2000. Ambas as imagens foram processadas em falsa cor, com uma banda sensível à vegetação na cor vermelha, sendo apresentadas nas Figuras 1 e 2 respectivamente. A imagem Landsat foi registrada conforme o sistema SAD69 projeção UTM, zona 22, porém para a imagem Aster usou-se o sistema WGS84 com idêntica projeção. Ambas as imagens foram recortadas conforme o quadrilátero de maior abrangência de área, que é diferenciada devido ao tamanho das cenas, que é maior no caso Landsat (180 km x 180 km, Figura 1), sendo aplicado realce linear para aprimorar a qualidade de visualização. Como os sistemas de coordenadas SAD69 e WGS84 são semelhantes, espera-se erro pouco significativo em medidas de distância e área. As medidas de distância apresentaram erro próximo a 60 m, na comparação, sendo que a posição das coordenadas entre pontos equivalentes mostrou diferenças de ordem hectométrica^{*}.

Quando se aumentou o nível de detalhamento das imagens, a maior resolução espacial do sensor Aster (campo de visada menor) ficou destacada

^{*} Explica-se pelas diferenças entre os sistemas SAD69 e WGS84 (IBGE, 2014).

(Figura 3). Repare-se que as bordas dos corpos d'água, o sistema viário, a parte urbana e diversas feições geográficas, como os registros de regressões marinhas (porção inferior da figura) são visualizados com maior nitidez na imagem superior. Considerandose formato A4 (21 cm x 29,7 cm), as imagens da Figura 3 estão representadas em escala aproximada 1:70.000, ou seja, 1 cm na figura representa 700 m na imagem.

Figura 1: Imagem falsa cor das bandas 1, 2 e 3 do sensor Landasat 5 /TM de 27 de setembro de 2000 da região de transição das lagoas Mirim e Patos. Cena inteira. Foto: Engesat

4

Figura 2: Imagem falsa cor das bandas 1, 2 e 3 do sensor Terra/Aster de 26 de setembro de 2000 da região de transição das lagoas Mirim e Patos. Cena inteira. Foto: Engesat.

5

Figura 3: Comparação de um recorte ao sul da cidade de Rio Grande, RS, para os sensores Aster (superior) e Landsat/TM (inferior).. Foto: Engesat

Para aprimorar o caráter quantitativo dos resultados, foram digitalizadas diversas feições geográficas (polígonos) das imagens na porção comum a ambas, sendo avaliada a área e sua diferença em cada caso (Tabela 2). Durante esse processo a digitalização foi efetuada segundo o maior detalhamento possível (zoom) para cada imagem. A área total avaliada (soma) foi maior no caso da imagemTM, algo próximo a 215 mil hectares, conferindo-se esse fato para cada uma das medições, exceto em seis ocasiões, quando a área medida para a imagem Aster foi maior (diferenças com valor negativo). A dimensão da diferença não parece associada às características das feições mapeadas, porém os "corpos d'água" apresentaram grande variabilidade no valor da diferença.

Cobertura	Área	(ha)	Diferença (TM – ASTER)		
	Landsat/TM	Aster	Absoluta (ha)	Relativa (%)	
Banhado 1	32.731	32.609	122	0,4	
Banhado 2	4.551	4.338	213	4,7	
Banhado 3	4.302	3.686	616	14,3	
Cordões litorâneos	51.424	50.573	851	1,7	
Corpo d'agua 1	3.237	3.352	-115	-3,6	
Corpo d'água 2	62	59	3	4,8	
Corpo d'água 3	125	121	4	3,2	
Corpo d'água 4	385	409	-24	-6,2	
Corpo d'água 5	176	120	56	31,8	
Corpo d'água 6	202	191	11	5,4	
Corpo d'água 7	148	147	1	0,7	
Corpo d'água 8	761	682	79	10,4	
Corpo d'água 9	177	185	-8	-4,5	
Corpo d'água 10	119	73	46	38,7	
Corpo d'água 11	330	247	83	25,2	
Corpo d'água 12	900	600	300	33,3	
Corpo d'água 13	26.649	25.425	1.224	4,6	
Corpo d'água 14	68.002	72.014	-4012	-5,9	
Duna 1	1.228	1.317	-89	-7,2	
Duna 2	732	601	131	17,9	
Duna 3	6.249	5.556	693	11,1	
Duna 4	576	719	-143	-24,8	
llha	3.990	3.877	113	2,8	
Polo industrial	1.193	1.064	129	10,8	
Urbano	4.710	4.383	327	6,9	
Soma	214.861	213.614	1.247	0,6	

Tabela 2. Valores de área comparativos para as diversas coberturas considerando-se ambos tipos de imagem.

Sem dúvida existe uma associação entre o tamanho das feições digitalizadas e o valor da diferença, sendo seu valor relativo estável para polígonos com área superior a aproximadamente 5 mil hectares (Figura 4). Uma análise dos dados (Tabela 2) mostrou que a média da diferença relativa é 14%, 13% e 16% para polígonos com área inferior a 200, 400 e 1.000 hectares respectivamente, sendo que, para polígonos com área superior a 1.000 hectares o valor do módulo da diferença relativa cai para 6%. O coeficiente de correlação entre os valores de área para cada sensor foi de 0,999 sendo possível ajustar o seguinte modelo de regressão: L = 0,973 A + 270,0. Sendo "L" o valor em hectares da área medida na imagem Landsat/TM e "A" idem para a imagem Aster. O modelo poderá auxiliar para ajustar valores de área relacionados a uma das imagens do tipo mencionadas em função da outra, nos casos de indisponibilidade por inexistência, interferência do clima, problemas dos sensores, etc.

O trabalho não considerou as diferenças espectrais entre os sensores estudados, mas permitiu avaliar a qualidade das imagens geradas em condições semelhantes, dada a proximidade nas datas de levantamento. Considerando-se as diferenças nos valores de área, o "erro" de digitalização diminui ao se aumentar o tamanho do polígono avaliado. A avaliação no caso do Aster é mais eficiente devido a sua melhor resolução espacial para as primeiras três bandas, porém a comparação é possível. A variabilidade nas informações relativas aos corpos d'agua explica-se pelas diferenças espectrais entre os sensores ou relaciona-se ao processo de digitalização.

Figura 4: Gráfico representativo da variação do módulo da diferença relativa (DR+) em função do tamanho da feição geográfica digitalizada (Landsat/TM).

Agradecimentos

À Fapergs, pelo apoio financeiro na aquisição da imagem Aster.

Referências

ABRAMS, M.; HOOK, S.; RAMACHANDRAN, B. **ASTER User Handbook**. 2003. Disponível em: http://www.ige.unicamp.br/site/publicacoes/87/ASTER.pdf>. Acesso em: 19 mai. 2004. 31p.

JENSEN, J. R. Introductory digital imagery processing: a remote sensing perspective. Upper Saddle River: Prentice Hall, 1996. 316 p.

IBGE, 2014. FAQ ("Frequently asked questions"). Disponível em: <http://www. ibge.gov.br/home/geociencias/geodesia/ pmrg/faq.shtm>. Acesso em: 12 jan. 2014.

Técnico, 320

Comunicado Exemplares desta edição podem ser adquiridos na:

Embrapa Clima Temperado Endereço: BR 392, Km 78, Caixa Postal 403 Pelotas, RS - CEP 96010-971

Fone: (53)3275-8100 www.embrapa.br/clima-temperado www.embrapa.br/fale-conosco

Ministério da Agricultura, Pecuária e Abastecimento

1ª edição

1ª impressão (2015): 30 exemplares

Publicações

Comitê de Presidente: Ana Cristina Richter Krolow Vice - Presidente: Enio Egon Sosinski Júnior Secretária-Executiva: Bárbara Chevallier Cosenza Membros: Ana Luíza Barragana Viegas, Apes Falcão Perera, Daniel Marques Aquini, Eliana da Rosa Freire Quincozes, Marilaine Schaun Pelufê.

Expediente Revisão do texto: Bárbara Chevallier Cosenza Normalização bibliográfica: Marilaine Schaun Pelufê Editoração eletrônica: Rosana Bosenbecker (estagiária)