
Boletim de Pesquisa 36
e Desenvolvimento ISSN 1677-9266

December, 2014

A comparison between three different
approaches to omplement a system
dynamic model: an assessment by a
multidisciplinary team

Boletim de Pesquisa
e Desenvolvimento

A comparison between three
different approaches to
implement a system dynamic
model: an assessment by a
multidisciplinary team
Mateus Castelani Freua
Luís Gustavo Barioni
Raphael Gustavo d’Almeida Vilamiu
Fernando Rodrigues Teixeira Dias

36

Embrapa Agriculture Informatics
Campinas, SP
2014

Brazilian Corporation of Agricultural Research
Embrapa Agriculture Informatics
Ministry of Agriculture, Livestock and Food Supply

ISSN 1677-9266
December, 2014

A comparison between three different approaches to implement a system
dynamic model : an assessment by a multidisciplinary team / Freua,
Mateus Castelani... [et al.]. - Campinas : Embrapa Agriculture
Informatics, 2014.

	 19 p. il.: 14.8 cm x 21.0 cm. - (Boletim de pesquisa e desenvolvimento
/ Embrapa Agriculture Informatics, ISSN 1677-9266; 36).

	 1. Dynamic model. 2. Mathematic model. I. Freua, Mateus Castelani.
II. Barioni, Luís Gustavo. III. Vilamiu, Raphael Gustavo d’Almeida. IV. Dias,
Fernando Rodrigues Teixieira. V. Embrapa Agriculture Informatics. VI. Title.
VII. Serie.

CDD 21 ed 003.3

© Embrapa 2014

Contents

Embrapa Agriculture Informatics
Avenida André Tosello, 209 - Barão Geraldo
C. Postal 6041 - 13083-886 - Campinas, SP
Telefone: (19) 3211-5700
www.embrapa.br/informatica-agropecuaria
sac: www.embrapa.br/fale-conosco/sac/

1st edition
on-line 2014

Unauthorized reproduction of this publication, in whole or in part,
constitutes a violation of copyright (Law nº 9610).

International Data of Publication Cataloging (CIP)

Publication Committee
President: Silvia Maria Fonseca Silveira Massruhá
Secretary: Carla Cristiane Osawa
Members: Adhemar Zerlotini Neto, Stanley Robson de Medeiros Oliveira,
Thiago Teixeira Santos, Maria Goretti Gurgel Praxedes, Adriana Farah Gonzalez,
Neide Makiko Furukawa, Carla Cristiane Osawa
Substitute members: Felipe Rodrigues da Silva, José Ruy Porto de Carvalho,
Eduardo Delgado Assad, Fábio César da Silva
Editorial supervisor: Stanley Robson de Medeiros Oliveira, Neide Makiko Furukawa
Text reviewer: Adriana Farah Gonzalez
Bibliographic standardization: Maria Goretti Gurgel Praxedes
Electronic editing/cover page: Neide Makiko Furukawa
Photos: www.ventanasystems.co.uk ; httpwww.aquaphoenix.
comlecturematlab8page3.html

Abstract... 	 5

Resumo .. 	 7

1	 Introduction... 	 9

2	 Research methodology.. 	 10

3	 Results... 	 12

4	 Discussion and conclusions... 	 15

5	 References.. 	 18

A comparison between
three different approaches
to implement a system
dynamic model: an
assessment by a
multidisciplinary team

In the last few decades, application of system dynamics models (SDM)
has disseminated through the agricultural sciences. Modeling groups are
now much more multidisciplinary once the models currently developed
are applied to larger frameworks. The literature has been inconclusive
with regard to empirical evidence of the trade-offs between different
paradigms to implement SDMs. In order to gain insight on the advantages
and disadvantages between the paradigms we simulated a working group
environment with seven researchers coming from various educational
backgrounds where they had to implement a process-based SDM

Mateus Castelani Freua1

Luís Gustavo Barioni2
Raphael Gustavo d’Almeida Vilamiu3

Fernando Rodrigues Teixeira Dias4

Abstract

1	BS in Animal Science, MS candidate, College of Animal Science and Food
Engineering, University of São Paulo, Pirassununga, SP, Brazil

2	BSc in Agricultural Science, Ph.D. in Animal Science and Pasture Production,
researcher at the Computational Mathematics Laboratory, Embrapa Agriculture
Informatics, Campinas, SP

3	BSc in Physics, PhD in Applied Mathematics, external collaborator, professor at
Cefet-RJ on campus Angra dos Reis, RJ

4	Electronics engineer, Master of Business Administration, researcher at Embrapa
Pantanal, Corumbá, MS, Brazil

7A comparison between three different approaches to implement a system dynamic ...6 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

and fill in a questionnaire scoring characteristics of the paradigms and
implementation process. The participants were divided into three groups
according to their expertise: NAA, formed by procedural programming
experts that performed the exercise in MATLAB®; OOA, formed by
objected-oriented programming experts that performed the exercise in a
C++ simulation framework; and GDA, the domain expert that performed
the exercise in Vensim®. The approaches were ranked NAA > OOA >
GDA for mathematical expressiveness, GDA > OOA > NAA for visual
expressiveness, OOA > NAA = GDA for scalability and code reuse, and
NAA = OOA > GDA for software integration. Based on the questionnaire
and group discussions, a descriptive framework of what should be
considered to identify the most appropriate implementation strategy for
a SDM was developed. We suggest that the choice of what strategy to
use should be driven by a combination of variables related to the model
characteristics, group member’s expertise and the properties intrinsic to
each programming paradigm. Further research is needed to extend the
analysis of how the decision on the paradigms should be related to the
SDM characteristics, the time available, and the modeling group members’
expertise.

Keywords: Agricultural models, dynamic models, objected-oriented
programming, MATLAB®, Vensim®

Uma comparação entre
três diferentes abordagens
para a implementação
de um modelo de
sistema dinâmico: um
estudo por uma equipe
multidisciplinar

Nas últimas décadas, a aplicação de modelos de sistema dinâmico (MSD)
disseminou-se através das ciências agrárias. Grupos de pesquisa em
modelagem matemática são, agora, muito mais multidisciplinares, uma vez
que os modelos atualmente desenvolvidos aplicam-se a estruturas mais
abrangentes. A literatura não está definida no que diz respeito à evidência
empírica dos trade-offs entre os diferentes paradigmas para implementar
MSDs. Com o objetivo de identificar vantagens e desvantagens entre os
diferentes paradigmas, grupos de trabalho foram simulados com sete
pesquisadores oriundos de diversas áreas do conhecimento. Cada grupo
implementou um MSD de processos biológicos e cada pesquisador
preencheu um questionário pontuando características dos paradigmas
e do processo de implementação. Os participantes foram divididos em
três grupos de acordo com seus conhecimentos: NAA, formado por
especialistas em programação procedural, que realizaram o exercício em
MATLAB®; OOA, formado por especialistas em programação orientada
a objetos, que realizaram o exercício em um framework de simulação
em C++; e GDA, o especialista de domínio, que realizou o exercício em
Vensim®. As abordagens foram classificadas NAA > OOA > GDA para
expressividade matemática, GDA > OOA > NAA para expressividade
visual, OOA > NAA = GDA para escalabilidade e reutilização de código
e NAA = OOA > GDA para integração de software. Com base nos

Resumo

9A comparison between three different approaches to implement a system dynamic ...8 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

1	 Introduction
System dynamics models (SDM) have become fundamental in agricultural
sciences. Many efforts have been done to develop SDMs that are suitable
for both decision support systems (DSS) and as a sound scientific base for
inference of contemporaneous issues such as mitigation and adaptation
practices in a changing climate. SDMs are usually mechanistic and
describe at a certain degree hierarchies of different entities and processes
in a system (HILLYER et al., 2003). Research projects may include
modeling groups with diverse educational background, and they are often
composed by domain experts, quantitative methods experts (some with
stronger mathematics and statistics background) and computer scientists.
Faced with the programming task, researchers usually have three main
paradigms to implement a model: a) numerical analysis software using
procedural programming (NAA); b) objected-oriented simulation (OOA);
c) graphically oriented model implementation (GDA). The implementation
paradigm influences the way programmers analyze the problem and
design the computing solution. Thus, the way models will be designed,
implemented, calibrated, communicated and transferred may be largely
driven by the modeling tools at hand.

Agricultural and environmental modeling have been done more by domain
experts rather than programmers or mathematicians. Thus, relaxing the
straight relation between computer modeling and programming would
bring benefits to modelers, particularly when programming is not part of
their background. The broad application of SDMs in several disciplines,
whose practitioners are not usually required to have knowledge on
programming and software engineering, has driven the development of
some user-friendly tools for non-programmers (e.g. Vensim®, Stella®,
ExtendSim®, Simile®). Graphically driven modeling tools have also
been part of traditionally procedural programming tools as in the case of
MATLAB®, Simulink® or SAS® Simulation Studio.

The wide range of SMDs with agricultural applications has made the
processes of adaptation, coupling and substitution of previous existing
models a rule rather than an exception. Thus, systems models are
developed iteratively and are increasing in size in hope of handling more
complex problems. In this regard, the efficiency of designing, writing,

questionários e grupos de discussão, foi desenvolvido um quadro
descritivo do que poderia ser considerado para identificar a estratégia de
implementação mais bem apropriada a um MSD. Sugere-se que a escolha
de qual paradigma adotar deve estar fundamentada por uma combinação
de variáveis relacionadas com as características do modelo, a área de
conhecimento dos membros do grupo e as propriedades intrínsecas de
cada paradigma de programação. Mais pesquisas são necessárias para
aprofundar a análise de como a decisão sobre qual paradigma adotar
relaciona-se com as características do MSD, o tempo disponível para
conclusão do projeto e o conhecimento dos membros do grupo.

Palavras-chave: Modelos agrícolas, modelos dinâmicos, programação
orientada a objetos, MATLAB®, Vensim®

11A comparison between three different approaches to implement a system dynamic ...10 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

2	 Research methodology

Seven researchers with various educational backgrounds were recruited
from the Computational Mathematics Laboratory of the Embrapa Agriculture
Informatics. Three of them were familiar with objected-oriented programming
and design, other three were experts in procedural programming (one of
them was also expert in MATLAB®); and the other was a biologist expert on
the model’s domain. The participants were divided into three programming
groups according to their expertise: a) NAA was formed by MATLAB®
and procedural programming experts and performed the exercise in

correcting, maintaining and scaling the models has become paramount for
successful implementation, similarly to what was reported in the software
crisis (RAMAMOORTHY et al., 1984). It is widely believed that objected
oriented programming increases software maintainability, improves
software quality, and simplifies program design and understandability over
more structural methods. Object oriented simulation is often promoted
based on the same principles (JOINES; ROBERTS, 1998). However, the
literature has been inconclusive regarding studies with empirical evidence
of advantages of object oriented programming over other approaches
(EIERMAN; DISHAW, 2007; LIM et al., 2005). Therefore, when it comes
to implement biological models by multidisciplinary teams, the trade-offs
between the paradigms is still a subject for research, once they are related
to gains in efficiency and quality of the computing solutions.

In this paper we report an experiment where both SDM design and
implementation paradigms were evaluated by multidisciplinary team in
order to gain insight on the advantages and disadvantages of procedural,
objected-oriented and graphically-oriented programming. We conclude
by suggesting a decision diagram to help choosing the most appropriate
model implementation strategy considering model properties, paradigm
characteristics and the group members’ expertise.

2.1	 Participants and procedure

MATLAB®; b) OOA was formed by objected oriented programming experts
and performed the exercise in the C++ simulation framework described by
Mancini et al. (2013); c) GDA was the domain expert using Vensim®. Before
the implementation task, each group had time to reasoning out the domain
problem space and the design solution. It is important to stress that although
it is possible to perform objected-oriented programming in MATLAB®, we
chose to use procedural programming because it is the most common
paradigm used within this class of software and to make a clear distinction
from the OOA approach using C++.

The three groups were assigned the same dynamic model as described by
Dijkstra et al. (1992). This model was chosen because it had already been
included in a broader biophysical modeling project with the participation of
the computational laboratory. The model is comprised of seventeen state
variables (ordinary differential equations) representing different substrates
and biochemical processes of rumen fermentation.

Each group only received the model’s documentation with a detailed
description of the equations. After the groups had completed their respective
tasks, the three implementations were shared for a collective appreciation.
Participants were asked to fill in a questionnaire to score according to
their evaluation the characteristics of all three paradigms and model
implementation process. In order to ensure that each model was equally
implemented for consistent comparisons of the three different approaches,
model specification was carried out by the same participant (the domain
expert) for all groups. Since our goal was to assess the implementation
process, model’s results and computational performance were not
compared.

The following variables were scored in order to capture the programmer’s
perceptions for each implementation strategy:

• characteristics of the paradigms: “Design complexity” refers to the effort
required to produce a well designed implementation; “Design support” refers
to diagram or other artifacts that are readily available for a given paradigm;

2.2	 Analysis

13A comparison between three different approaches to implement a system dynamic ...12 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

3	 Results

Figures 1, 2, and 3 present code fragments of the PdPs (degradable
protein to soluble protein) transaction written by the NAA, OOA and GDA
groups, respectively.

“Implementation effort” is related to time per person required to implement
the model; “Intuitiveness” is time and support required to translate model
specification (from the domain expert) into an implementation strategy;
“Multidisciplinary communication” refers to how easily the model concepts
in the implementation can be understood by non-experts; “Mathematical
expressiveness” refers to how close the implementation is to the symbolic
math formulation; “Visual expressiveness” refers to the capacity of code or
diagrams to visually convey the model itself.

• characteristics of the implementation process and results: “Code
reuse” refers to the likelihood that the code can be used again with slight
or no modification for the implementation of a new model; “Code length/
visualization” refers to the number of lines of code (including equation editing
in GDA) and how easy is to visualize the code (i.e. without the need to
navigate through multiple windows and files); “Ease of transcription” refers to
the effort needed to implement the model from the specification in a paper;
“Software integration” refers to the ease to communicate with other software
or to incorporate the model in a simulation application; “Code maintenance”
refers to the ease of modification of the code to correct faults or to improve
the model; “Scalability” refers to the ability to extend the model to cope with
new requirements; “Mathematical analysis support” refers to the capacity of
the tool used for that paradigm to support sophisticated numerical analysis.

3.1	 Example of model component implementation

% calculating the Michaelis-Menten constant
M(Pd,Ps) = Mref(Pd,Ps)*T(Pd)/Tref(Pd);

% calculating velocity for PdPs transaction
v(Pd,Ps) = vmax(Pd,Ps)*(Q(Ma) + Q(Mc))

% calculating the PdPs transaction rate
U(Pd,Ps) = v(Pd,Ps)/(1 +M(Pd,Ps)/C(Pd)); Figure 1. Code fragment of the PdPs

transaction written in MATLAB®.

/*Function calculating main uptake (it is passed to the constructor of the
superclass SRT (simple rumen transaction) in order to allow calculating the
uptake of the main substrate. MM1S(VMax, M, CS) is the standard Michaelis-
Menten function VMax: maximum transaction rate, M: Michaelis-Menten
parameter, CS: substrate concentration*/
double Cls_PdPs::Aux_UMain() {
 return MM1S(par_Vref->Value()*(inp_Ma->Value()+inp_Mc->Value()),par_M-
>Value(), inp_CPd->Value());
}

// Parameter M is calculated before starting the simulation
void Cls_PdPs::Initialize() {
 par_M->Value(par_Mr->Value()*inp_TPd->Value()/par_TrPd->Value());
}

// Constructor
Cls_PdPs::Cls_PdPs(string name_arg, Cls_Model * aOwner_arg) :
Cls_SRT_Transaction(name_arg, aOwner_arg, (functionType_ptr) & Cls_
PdPs::Aux_UMain) {
 inp_CPd->Name(“PdPs_CPd”);
 par_M = AddVariable(“M”, -INFINITY);
 par_Mr = AddVariable(“Mr”, 0.264);
 par_TrPd = AddVariable(“TrPd”, 0.66);
 Par_Vref(0.0576);
 Par_YMain(1.0);
}

Figure 2. C++ code fragment of the PdPs transaction written for the simulation framework.

15A comparison between three different approaches to implement a system dynamic ...14 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

when a modeler or a modeling group needs to decide on what is the most appropriate
implementation strategy for a SDM.

The main advantage of the NAA approach is related to the highly developed mathematical
tools available to implement and simulate complicated models without requiring a deep
background in numerical methods for the solution and simulation of SDMs. In this context, a
group with no specialist in numerical computing can solve fairly complicated SDMs in a
reasonable amount of time. When the numerical computing specialist is present, really
complicated SDMs with detailed scenarios can be easily simulated.

QPd
PPd UPd

QPs
UPs

rate transaction
PdPs

Pd turnover time
(TPd)

QMc

QMa

Figure 3. Fragment of the PdPs transaction as implemented in Vensim®.

A fundamental issue about the NAA approach is what software to use. The financial resources
needed to acquire the licenses for MATLAB® may be impeditive for NAA, and although free
software solutions exist (e.g. Octave®, Maxima®, Scilab®, Sage®), their functionality are not
as good as in commercial solutions. Another fundamental drawback is the impossibility to
generate executable files or, as is the case with MATLAB®, the size for the executable
generated. Very simple applications can generate hundreds of megabytes of executable files.
The choice for NAA can also be precluded by a layman user of an implemented SDM.

When looking at small models, NAA and GDA paradigms seem to be the best strategy for
implementation. Although the design support was ranked equal for the three paradigms
analyzed, the design complexity associated with OOA, perhaps because of the need to define
logic for classes and objects, makes the implementation effort for OOA not appropriate for
small models. OOA seems to be more adequate for large models, where it was found to be
the best strategy in terms of design complexity, design support and implementation effort
according to
the programmers’ perceptions.

For the GDA, better visual
expressiveness comes at the
expense of mathematical
expressiveness. This is perhaps
a feature that can drive
decisions if there is no domain
expert in the group. NAA and
OOA groups would have found
the model difficult to implement
with a graphically-oriented
paradigm only by having access
to the model’s equations. In
Vensim®, it is necessary to
define stocks, flows and
feedbacks between variables,
which require a deeper

Table 1. Average score for characteristics of the
paradigmsA.
 NAA OOA GDA
Design complexity (small models) 4 2 4
Design complexity (large models) 4 5 3
Design support (small models) 4 4 4
Design support (large models) 3 4 2
Implementation effort (small model) 4 2 4
Implementation effort (large model) 4 5 3
Intuitiveness 3 4 4
Multidisciplinary communication 3 3 4
Mathematical expressiveness 5 3 2
Visual expressiveness 2 3 5
Ascore 1 to 5 for the 3 paradigms (5 is better).

3.2	 Questionnaire

The average response for each variable analyzed by the three groups in
the questionnaire is shown in Table 1 and 2. We wanted to capture the
programmers’ perception on the exercise performed in their group and how
the same exercise would perform in a different paradigm.

Figure 3. Fragment of the PdPs
transaction as implemented in Vensim®.

Table 1. Average score for characteristics of the paradigms*.

 NAA OOA GDA
Design complexity (small models) 4 2 4
Design complexity (large models) 4 5 3
Design support (small models) 4 4 4
Design support (large models) 3 4 2
Implementation effort (small model) 4 2 4
Implementation effort (large model) 4 5 3
Intuitiveness 3 4 4
Multidisciplinary communication 3 3 4
Mathematical expressiveness 5 3 2
Visual expressiveness 2 3 5
*score 1 to 5 for the 3 paradigms (5 is better).

Table 2. Average score for characteristics of the model
implementation process and results*.
 NAA OOA GDA
Code reuse 3 5 3
Code length/visualization 4 3 3
Ease of transcription 5 3 4
Software integration 4 4 2
Code maintenance 4 4 3
Scalability 3 5 3
Mathematical analysis support 5 2 1
*score 1 to 5 for the 3 paradigms (5 is better).

4	 Discussion and conclusions
By looking at how programmers and domain experts evaluate their
outcome in comparison to other paradigms, we expected to draw
some conclusions about what should be considered when a modeler
or a modeling group needs to decide on what is the most appropriate
implementation strategy for a SDM.

The main advantage of the NAA approach is related to the highly
developed mathematical tools available to implement and simulate
complicated models without requiring a deep background in numerical
methods for the solution and simulation of SDMs. In this context, a group
with no specialist in numerical computing can solve fairly complicated
SDMs in a reasonable amount of time. When the numerical computing
specialist is present, really complicated SDMs with detailed scenarios can
be easily simulated.

A fundamental issue about the NAA approach is what software to use.
The financial resources needed to acquire the licenses for MATLAB® may
be impeditive for NAA, and although free software solutions exist (e.g.
Octave®, Maxima®, Scilab®, Sage®), their functionality are not as good as
in commercial solutions. Another fundamental drawback is the impossibility
to generate executable files or, as is the case with MATLAB®, the size

17A comparison between three different approaches to implement a system dynamic ...16 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

for the executable generated. Very simple applications can generate
hundreds of megabytes of executable files. The choice for NAA can also be
precluded by a layman user of an implemented SDM.

When looking at small models, NAA and GDA paradigms seem to be the
best strategy for implementation. Although the design support was ranked
equal for the three paradigms analyzed, the design complexity associated
with OOA, perhaps because of the need to define logic for classes and
objects, makes the implementation effort for OOA not appropriate for small
models. OOA seems to be more adequate for large models, where it was
found to be the best strategy in terms of design complexity, design support
and implementation effort according to the programmers’ perceptions.

For the GDA, better visual expressiveness comes at the expense of
mathematical expressiveness. This is perhaps a feature that can drive
decisions if there is no domain expert in the group. NAA and OOA groups
would have found the model difficult to implement with a graphically-
oriented paradigm only by having access to the model’s equations. In
Vensim®, it is necessary to define stocks, flows and feedbacks between
variables, which require a deeper knowledge of the problem domain.
This is also the reason why GDA would require from the NAA and OOA
programmers more multidisciplinary communication. On the other hand,
NAA’s better mathematical expressiveness comes at the expense of
intuitiveness, as OOA and GDA were found to be more intuitive than NAA.
This result is probably related to the fact that both OOA and GDA design
required a better comprehension of the concepts behind the problem
domain in order to define stocks and flows or to design classes and objects.

As the groups had access only to a detailed description of the equations
to be implemented, the greater mathematical expressiveness of the
NAA paradigm favored the transcription of the equations into code. Both
OOA and GDA required a deeper model comprehension to design the
implementation, which made the exercise more demanding in comparison
to the NAA paradigm. This observation seems to be in line with Rosson
and Gold (1989) suggestion that in the earlier phases of the OOA,
understanding the problem is more important than the expertise of the
paradigm.

Based on the questionnaire and group discussions, a descriptive
framework of what should be considered when deciding on what
implementation strategy to follow was developed. We suggest that the
choice of what strategy to use should be driven by a combination of
variables related to the model characteristics, group member’s expertise
and the properties intrinsic to each programming paradigm. From the
diagram (Figure 4), we can recognize two very distinct situations regarding
the mathematical complexity of the SDM. In the case where the model is
mathematically or numerically complex, GDA is excluded from the choices,
given the lack of sophisticated mathematical tools in this approach. The
OOA approach, on the other hand, would be a good choice only if there is
an objected-oriented specialist in the group, the amount of time available
is large and the characteristics of the solution are better attained with the
OOA approach. Furthermore, a domain expert would be necessary in
the case of a structurally complex SDM without an elegant and complete
description.

The second characteristic of the SDM to take into account when the
mathematical complexity is not high is its structural complexity. If this
complexity is low, the decision of what approach to follow is broad and

Figure 4. Descriptive framework to choose what is the most appropriate model implementation
strategy considering model properties, paradigm.

participants and with different software is needed to extend the analysis of how paradigms
relate to the model and group’s different expertise. Such studies would assist researchers in
deciding what would be the most appropriate implementation strategy for each SDM.

Figure 4. Descriptive framework to choose what is the most appropriate model
implementation strategy considering model properties, paradigm

REFERENCES

DIJKSTRA, J.; NEAL, H. D.; BEEVER, D. E.; FRANCE, J. Simulation of nutrient digestion,
absorption and outflow in the rumen: model description. The Journal of Nutrition, v. 122, n.
11, p. 2239-2256, Nov. 1992.

 EIERMAN, M. A.; DISHAW, M. T. The process of software maintenance: a comparison of
object-oriented and third-generation development languages. Journal of Software
Maintenance and Evolution: Research and Practice, v.19, n. 1, p. 33–47, Jan./Feb. 2007.
DOI:10.1002/smr.343.

HILLYER, C.; BOLTE, J.; EVERT, F. van; LAMAKER, A. The ModCom modular simulation
system. European Journal of Agronomy, v. 18, n. 3-4, p. 333–343, Jan. 2003.
DOI:10.1016/S1161-0301(02)00111-9.

JOINES, J. A.; ROBERTS, S. D. Fundamentals of object-oriented simulation, In:
CONFERENCE ON WINTER SIMULATION, 30., 1998, Washington, D.C. Proceedings...
New York: Association for Computing Machinery; Piscataway: IEEE 1998. p. 141-150. DOI:
10.1109/WSC.1998.744909.

 LIM, J. S.; JEONG, S. R.; SCHACH, S. R. An empirical investigation of the impact of
 the object-oriented paradigm on the maintainability of real-world mission-critical software.
 Journal of Systems and Software, v. 77, n. 2, p. 131–138, 2005.

19A comparison between three different approaches to implement a system dynamic ...18 Embrapa Agriculture Informatics. Boletim de Pesquisa e Desenvolvimento, 36

5	 References
DIJKSTRA, J.; NEAL, H. D.; BEEVER, D. E.; FRANCE, J. Simulation of nutrient digestion,
absorption and outflow in the rumen: model description. The Journal of Nutrition, v. 122, n.
11, p. 2239-2256, Nov. 1992.

EIERMAN, M. A.; DISHAW, M. T. The process of software maintenance: a comparison
of object-oriented and third-generation development languages. Journal of Software
Maintenance and Evolution: Research and Practice, v. 19, n. 1, p. 33-47, Jan./Feb. 2007.
DOI:10.1002/smr.343.

HILLYER, C.; BOLTE, J.; EVERT, F. van; LAMAKER, A. The ModCom modular simulation
system. European Journal of Agronomy, v. 18, n. 3-4, p. 333–343, Jan. 2003. DOI:10.1016/
S1161-0301(02)00111-9.

JOINES, J. A.; ROBERTS, S. D. Fundamentals of object-oriented simulation, In:
CONFERENCE ON WINTER SIMULATION, 30., 1998, Washington, D.C. Proceedings...
New York: Association for Computing Machinery; Piscataway: IEEE 1998. p. 141-150. DOI:
10.1109/WSC.1998.744909.

LIM, J. S.; JEONG, S. R.; SCHACH, S. R. An empirical investigation of the impact of the
object-oriented paradigm on the maintainability of real-world mission-critical software. Journal
of Systems and Software, v. 77, n. 2, p. 131-138, 2005.

MANCINI, A. L.; BARIONI, L. G.; LIMA, H. N.; SANTOS, J. W.; SILVA, R. D. R.; SANTOS, E.
H.; DIAS, F. R. T. A compact and flexible C++ framework to support modular development of
hierarchical dynamic systems simulators. In: INTERNATIONAL CONGRESS ON MODELLING
AND SIMULATION, 20., 2013. Adelaide. Proceedings... San Diego: Society for Computer
Simulation International, 2013. Disponível em: <http://dl.acm.org/ft_gateway.cfm?id=2665041
&ftid=1496326&dwn=1&CFID=463709126&CFTOKEN=84911368>. Acesso em: 16 dez. 2014.

RAMAMOORTHY, C. V.; PRAKASH, A.; TSAI, W. T.; USUDA, Y. Software engineering:
problems and perspectives. Computer, v.17, n. 10, p. 191-209, Oct.1984. DOI: 10.1109/
MC.1984.1658970.

ROSSON, M. B.; GOLD, E. Problem-solution mapping in object-oriented design. ACM
Sigplan Notices, v. 24, n. 10, p. 7-10, Oct. 1989. Special issue: Proceedings of the
Conference on object-oriented programming systems, languages and applications, New York,
1989.

should be related to the experts available and the characteristics of the
solution being sought. However, if the structural complexity is high, another
characteristic of the SDM have to be considered: the “elegance” of the
model description. Elegance in this context expresses how much the
model is objectively described and how much of its underlying process
are captured in the description. If the model description is elegant, the
OOA approach is attractive only in the case in which there is plenty of
time available for developing the solution. On the other hand, if the SDM
description lacks elegance, the group will need to incorporate a domain
expert to clarify the underlying model structure in order to develop an OOA
structure, regardless of time and resource constraints.

We have also analyzed the impact of the programmers’ expertise on
their perceptions by calculating an average for each variable analyzed
in the questionnaire, weighted by their level of knowledge reported
for each paradigm. No significant differences were found, suggesting
that the expertise in the paradigm did not have a significant impact on
programmers’ perception of the implementation strategy. This may be
due to the discussions that the three groups were allowed to engage
after the exercise. When the groups compared their implementation
products, a common perception of how each paradigm would perform on
the exercise was built. It is also important to note that, as is the case for
NAA, perceptions of the OOA approach may depend on what software is
available. Here, we used a C++ simulation framework, which was probably
more difficult for a layman to follow than if we had used another computer
language. Further research with different participants, a better balance of
participants and with different software is needed to extend the analysis
of how paradigms relate to the model and group’s different expertise.
Such studies would assist researchers in deciding what would be the most
appropriate implementation strategy for each SDM.

C
G

PE
 1

17
35

Agriculture Informatics

