DINÂMICA SUCESSIONAL DA VEGETAÇÃO EM UM ECOSSISTEMA DE MANGUE SUBMETIDO A ALTERAÇÕES POR CULTIVO DE ARROZ¹

Daniella Martins TOURINHO² João Olegário Pereira de CARVALHO³

RESUMO: Os manguezais são ecossistemas de alta produtividade biológica, cuja função ecológica é fundamental quando se trata da interface terra-água. Embora considerados áreas de preservação, estes ecossistemas são utilizados como fonte de renda para a população local, na pesca de crustáceos, extração de madeira para construções, lenha, carvão e no cultivo de arroz. Este estudo foi conduzido em área de manguezal no Nordeste do estado do Pará com o objetivo de conhecer a estrutura e composição da vegetação em diferentes estágios de sucessão. Uma área de 8 ha foi dividida em estratos de acordo com a idade da vegetação (tempo de repouso). Foram feitas medições da altura de todos os indivíduos e de DAP apenas naqueles com DAP ≥ 2,5 cm. Foram identificadas 21 espécies distribuídas em 15 famílias. A vegetação apresentou um acentuado dinamismo. Em pouco tempo, percebeu-se diferenças em sua composição e estrutura até chegar ao estágio maduro. Alterações neste ambiente possibilitam o estabelecimento de espécies características de áreas alagadiças, como *Bulbostylis paraensis* e *Cynodon* sp., que proliferam rapidamente com o regime de inundações pelas marés. Essa vegetação tende a diminuir naturalmente com o estabelecimento de espécies maiores.

PALAVRAS-CHAVE: Amazônia brasileira, Cultivo de arroz, Vegetação de mangue, Manguezal.

¹ Trabalho apresentado no IV Congresso Interamericano sobre el Medio Ambiente del 08 al 11/12/1997 - Universidad Simón Bolívar, Caracas, Venezuela.

² Mestre em Ciências Florestais pela Universidade Federal Rural da Amazônia-UFRA, Av. Tancredo Neves, 2501, Montese, CP917, CEP 66077-530, Belém-PA, Brasil. varzea@ufra.edu.br

³ Embrapa-Amazônia Oriental, Tv. Enéas Pinheiro, s/n°, Marco, CP 48, CEP 66095-100, Belém-PA, Brasil.

1 INTRODUÇÃO

Os manguezais são ecossistemas de alta produtividade biológica, cuja função ecológica é fundamental quando se trata da interface terra-água, servindo à fauna do estuário e aos ecossistemas adjacentes (SNEDAKER, 1978). Embora considerados áreas de preservação, são utilizados como fonte de renda pelos ribeirinhos: na pesca de crustáceos e peixes, no cultivo de arroz em baixios inundados periodicamente e na extração de madeira para lenha e carvão (GAMA, 1995). Recentemente, na Amazônia são desenvolvidas pesquisas sobre a extração de tanino proveniente da casca de Rhizophora mangle, para utilização em adesivos de madeira (VETTER; BARBOSA, 1995). Conhecer a dinâmica sucessional da vegetação de um ambiente ecologicamente e economicamente estratégico, especialmente em se tratando da interface terra-água, é de grande importância quando levamos em conta o manejo sustentável e a atenção ao desenvolvimento da região. Este estudo foi conduzido com a finalidade de gerar informações sobre a fitologia e a dinâmica sucessional da vegetação de uma área inundável na localidade de Acarajó, Bragança, Pará. Os principais objetivos foram: conhecer a sucessão de uma área inundável, após o cultivo e colheita de arroz; e conhecer a composição florística e a estrutura de diferentes estágios de desenvolvimento dessa vegetação.

2 METODOLOGIA

2 1 ÁREA DE ESTUDO

O estudo foi desenvolvido em uma área inundável, na localidade de Acarajó, nas margens do rio Caeté, a 6 km da cidade de Bragança, no Nordeste paraense (1° 03' 17" latitude Sul e 46° 45'55" longitude Oeste de Grenwich). Esta área é caracterizada por uma baixada chamada de várzea pelos moradores locais, onde eles cultivam o arroz às margens do rio. Em frente à área de plantio há uma faixa de, aproximadamente, 40 m de largura beirando o leito do rio, com uma cobertura vegetal primária com reduzido número de espécies arbóreas. Na área aberta, em consequência do plantio de arroz, há predomínio de espécies vegetais pioneiras. A área total de estudo é de, aproximadamente, 8 ha, sendo: 1 ha com apenas 15 dias em repouso, após colheita de arroz; 1 ha com um ano em repouso; 1 ha

com três anos em repouso; 2 ha onde não se têm dados da idade da vegetação, embora possa estar com 4 a 6 anos em repouso, segundo moradores locais; e 3 ha de mata alta nativa, não explorada para fins madeireiros.

2.2 MÉTODOS

2.2.1 Amostras e medições

A área total foi estratificada de acordo com a idade da vegetação (tempo de repouso). Em cada estrato foram estabelecidas parcelas para medição das plantas da seguinte forma:

Estrato I: área de 1 ha, com plantas de um ano de idade. Nesta área foram demarcadas duas faixas de 50m x 10 m, sendo cada faixa subdividida em 500 parcelas de 1 m². Foram selecionadas em cada faixa 50 parcelas ao azar, utilizando-se uma tabela de números aleatórios. Nas 100 parcelas selecionadas, 50 em cada faixa, foram realizadas a identificação, contagem e medição da altura de todas as plantas ali ocorrentes.

Estrato II: área de 1 ha, com plantas de um ano de idade. Nesta área foi demarcada uma faixa de 50 m x 10 m. Esta foi subdividida em 50 parcelas de 2 m x 5 m. Dez foram selecionadas ao azar, identificadas e tiveram suas alturas medidas.

Estrato III: área de 1 ha, com plantas de 4 anos de idade. Neste estrato, o procedimento para seleção e demarcação de parcela foi semelhante ao utilizado no estrato I. Foi demarcada uma faixa de 100 m x 10 m, que foi subdividida em 20 parcelas de 5 m x 5 m, entre as quais 5 foram selecionadas. Todas as plantas ocorrentes nas 5 parcelas foram identificadas e medidas.

Estrato IV: área de aproximadamente 3 ha de floresta alta, primária. Nesta área foram selecionadas aleatoriamente 5 parcelas de 30 m x 10 m. Todos os indivíduos com diâmetro à altura do peito - DAP ≥ 10 cm foram identificados e tiveram seu diâmetro e altura registrados. Quando se tratava da espécie *Rhizophora mangle*, o DAP era medido acima da

raiz escora mais alta. Os indivíduos mais jovens, com DAP < 10 cm, também foram amostrados. Para estes se demarcou uma subparcela de 5m x 5m no ângulo esquerdo de cada parcela maior (30m x 10 m), onde foi procedida a identificação e medição da altura de todos os indivíduos. As plantas com altura igual ou superior a 3 m também tiveram seus DAP registrados. Para facilitar a análise dos dados coletados, diferenciou-se as parcelas menores como estrato IV – regeneração, e as maiores como estrato IV – adulto.

2.2.2 Identificação das espécies

A identificação das espécies foi realizada no Herbário IAN da Embrapa Amazônia Oriental, Brasil. A nomenclatura das plantas superiores foi atualizada segundo Index (ROYAL BOTANIC GARDEN, 1993) e a das plantas inferiores segundo Cremers e Hoff (1990); a grafía do nome dos autores foi padronizada segundo Brummit e Powell (1992).

2.2.3 Análise de dados

2.2.3.1 Composição florística

Foi elaborada uma lista das espécies identificadas na área de estudo contendo: nome comum, nome científico e família.

2.2.3.2 Estrutura da vegetação

A estrutura de vegetação foi determinada através do cálculo da abundância e frequência para cada uma das espécies presentes nas unidades amostrais. Para a determinação da abundância, dividiu-se o número total de indivíduos da espécie pelo total da área da amostra, e para determinar a frequência, dividiu-se o número de parcelas em que a espécie ocorre pelo total de parcelas na área de amostragem. Os valores da área foram transformados para 1 ha, unidade adotada para efeito de comparação com outros trabalhos.

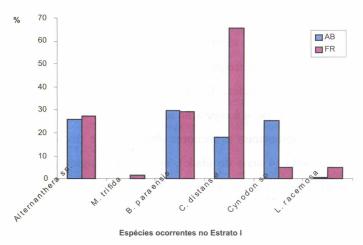
3 RESULTADOS E DISCUSSÃO

3.1 COMPOSIÇÃO FLORÍSTICA

Em toda a área de estudo foram identificadas 21 espécies, distribuídas em 15 famílias. A mais representada foi a família Cyperaceae, com 4 gêneros e 5 espécies (Quadro 1). A alta diversidade verificada no estudo de deve a alterações na área, como o corte da vegetação e preparação do solo para o cultivo de arroz. Em um estudo realizado na várzea do rio Guamá (após 1 ano de repouso), Mascarenhas, Modesto Júnior e Muller (1996) identificaram um total de 59 espécies, divididas em 26 famílias, sendo a Cyperaceae a mais representativa. Os gêneros comuns às duas áreas foram *Cyperus, Desmodium, Montrichardia, Scleria* e *Cynodon*. O número reduzido de espécies, em relação à várzea do rio Guamá, demonstra que as condições específicas encontradas no manguezal funcionam como uma seleção para a colonização de espécies não características de manguezal, e, de certa forma, este número reduzido facilita o manejo.

Poucos são os trabalhos que tratam de etapas sucessivas iniciais (1, 2 e 4 anos de idade), em áreas alteradas de vegetação de mangue, sendo dificil qualquer comparação quanto à composição florística. Jiménez e Soto (1985), em estudos na Costa Rica, agruparam a vegetação em três tipos: vegetação nuclear (reconhecida como vegetação de mangue), vegetação marginal (espécies adjacentes à vegetação nuclear) e vegetação marginal facultativa (associada ao manguezal, mas a maioria ocorre fora deste ambiente). Enquanto das cinco espécies nucleares registradas na Costa Rica, na área deste estudo, ocorreram apenas três: *Avicennia germinans, Laguncularia racemosa* e *Rhizophora mangle*.

Dos 20 gêneros na vegetação marginal, apenas *Machaerium* ocorreu na área de estudo. Também foi registrada a ocorrência dos gêneros *Mouriri* e *Myrcia* não citados pelo autor. De 19 espécies de vegetação marginal facultativa, foi identificada apenas a *Montrichardia arborescens*, a qual, segundo Jiménez e Soto (1985), a presença está associada com áreas de salinidade mais baixa. Do ponto de vista prático, algumas espécies podem ser indicadoras de características do solo, como teor de salinidade, declividade e umidade, já que o manguezal é altamente dinâmico.


Quadro1 - Ocorrência (x) das espécies nos diferentes estágios de sucessão (Estratos I, II, III e IV)

Família	Nome científico	Nome comum	I	II	III	IV
Amaranthaceae	Alternanthera sp.	Caruru-da-água	х	х		
Apocynaceae	Mesechites trifida Muell. Arg.		x	x	X	х
Apocynaceae	Echites valenzuelana A. Rich.				х	
Araceae	Montrichardia arborescens Schott	Aninga				x
Avicenniaceae	Avicennia germinans (L.)Stearn	Siriúba		x	x	х
Combretaceae	Laguncularia racemosa Gaertn. f.	Mangue-branco	х	х	x	
Cyperaceae	Cyperus giganteus Rottb. Ex	Taboa		x		
Cyperaceae	Bulbostylis paraensis C. B. Clarke	Barba-de-paca	x	x		
Cyperaceae	Scleria microcarpa Nees*	Tiririca	-	-		-
Cyperaceae	Cyperus distans L. f.	Pé-de-galinha	x	х	x	
Cyperaceae	Heliocaris ochreata Nees	Junco	x	х	X	
Euphorbiaceae	Alchornea brevistyla Pax & K. Hoffm.	Achornia			х	
Gramineae	Cynodom sp.	Praturá	x	x		
Leguminosae-pap	Desmodium canum Schins & Tellung				x	
Leguminosae-pap	Machaerium altiscandens Ducke*	Malícia	-	-	-	-
Melastomataceae	Mouriri angulicosta Morley	Miraúba				x
Myrtaceae	Myrcia cuprea Kiaersk*	Goiabarana	-	-	-	-
Dennstaedtiaceae	Pteridium aquilinum (L.) Kuhn	Samambaia				х
Blechnaceae	Blechnum serrulatum Rich*	Samambaia	-	-	-	-
Rhizophoraceae	Rhizophora mangle L.	Mangue-vermelho			х	х
Scitamineae	Costus arabicus Aubl.	Cana-brava		x	X	x
	7	10	10	7		

^{*}Espécies não ocorrentes nas parcelas amostradas

3.2 ESTRUTURA DA VEGETAÇÃO

Nas 100 subparcelas da amostra do Estrato I, foram registrados 1095 indivíduos de sete espécies sp.(Quadro 1). *Bulbostylis paraensis* apresentou a maior abundância, seguida de *Alternanthera sp.* e *Cynodon*. Mesmo que *Bulbostylis paraensis* tenha maior abundância, as espécies *Cyperus distans* e *Heliocaris ochreata* se apresentaram mais bem distribuídas, aparecendo em 65, 6 % das unidades da amostra. Depois seguiram *Bulbostylis paraensis* com 29, 3% de frequência e *Alternanthera* sp. com 27, 3% (Figura 1).

Figura 1 - Abundância (AB) e frequência (FR) relativas das espécies identificadas no Estrato I (1 ano de repouso).

No Estrato II foram registrados 1004 indivíduos. Além das espécies registradas no Estrato I, ocorreram outras três espécies: *Avicennia germinans*, *Cyperus giganteus* e *Costus arabicus*. A espécie dominante foi do gênero Cynodon, com uma abundância acentuada, seguida pelo gênero Bulbostylis. Estas espécies ocorreram em 90 % das parcelas (Figura 2). Mascarenhas (1982) cita o gênero Cynodon como um dos que mais se destacou em capacidade de competição, o que coincide com os resultados obtidos neste estudo.

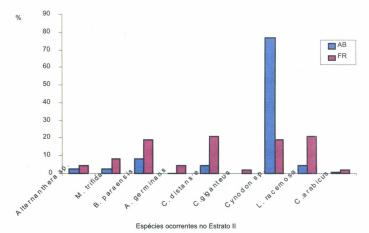


Figura 2 - Abundância (AB) e frequência (FR) relativas das espécies identificadas no Estrato II (2 anos de repouso).

No estrato III, predominaram as espécies arbóreas e arbustivas na seguinte ordem: Laguncularia racemosa, identificada em todas as unidades da amostra; Desmodium canum, com 4,5 % de frequência e Avicennia germinans, também em toda a amostra. Quanto às demais espécies, Mesechites trifida e Echites valenzuelana são trepadoras (escandentes) associadas à vegetação arbórea/arbustiva, e Alchornea brevistyla e Rhizophora mangle apresentaram as menores abundâncias e frequências (Tabela 1). Neste estágio de sucessão (4 anos de idade), as espécies Laguncularia racemosa e Avicennia germinans se estabeleceram, mostrando uma composição mista, predominando a primeira espécie.

No Estrato IV, foram registradas as espécies arbóreas *Rhizophora mangle*, *Avicennia germinans* e *Mouriri angulicosta*, tendo a primeira maior abundância relativa e ocorrendo em todas as parcelas. *Mouriri angulicosta* também ocorreu na área, mas apenas em uma parcela, sendo representada apenas por dois indivíduos (Tabela 1).

De um modo geral, a característica estrutural da área se assemelha à observada por Day et al. (1987) em Boca Chica, Laguna de Mecoacán, onde a floresta ribeirinha se caracterizava com *Rhizophora* dominando a periferia, na borda dos rios e *Avicennia* e *Laguncularia*, dominando o interior.

Quanto à regeneração destas espécies arbóreas, *Avicennia germinans* apresentou maior abundância, seguida por *Rhizophora mangle*. No entanto, a *Rhizophora mangle* apresentou melhor distribuição, com uma frequência de 27, 27% (Tabela 1). Estes resultados foram diferentes dos relatados por McKee (1995), em que plântulas de Rhizophora mostraram maior abundância na área dominada por *Rhizophora mangle* adulta, e não ao contrário, como foi registrado no presente estudo. Entretanto, os dados físico-químicos do solo, que poderiam vir a explicar esta diferença, ainda não foram analisados.

A vegetação de mangue apresentou um dinamismo acentuado, sendo registradas diferenças na composição e estrutura em intervalo de um ou dois anos, continuando com este ritmo até o estágio maduro. As alterações neste ambiente, sejam causadas pelo homem, como o cultivo de arroz na área de estudo, seja pela própria dinâmica natural,

possibilitam o estabelecimento de espécies características de áreas alagadiças (gêneros Bulbostylis e Cynodum), que proliferam rapidamente com o regime de inundações pelas marés

Esta vegetação tende a diminuir naturalmente com o estabelecimento de espécies de maior tamanho. O estrato III, onde as espécies herbáceas diminuíram acentuadamente, está com três anos de repouso.

Observações locais mostraram o estabelecimento dominante de *Machaerium altiscandes* em algumas áreas. Esta espécie foi classificada por Jiménez e Soto (1985) como de vegetação marginal, em solos elevados e de pouca inundação. Com base nos resultados obtidos, será realizada a segunda fase do estudo, a partir da qual se pretende sugerir um melhor aproveitamento das áreas estudadas e similares, contribuindo, assim, ao desenvolvimento daquela região.

Tabela 1 - Abundância e frequência das espécies vegetais identificadas em uma área de mangue em Acarajó, Bragança, Pará, Brasil, em quatro idades diferentes (Estratos I, II, III e IV)

Espécies		Estrato I		Estrato II		Estrato III		Estrato IV				
Especies								Regeneração		Adulto		
		AB %	FR%	AB%	FR%	AB%	FR %	AB %	FR %	AB %	FR %	
Alternanthera sp.	5 e	25,7	27,3	2,3	4,2							
M. trifida		0,02	1,4	2,4	8,3	3,5	18,2	12,5	18,18			
E. valenzuelana						0,5	4,5					
B. paraensis		29,9	29,4	8,5	18,7							
A. germinans				0,4	4,2	11,4	22,7	22,2	18,18	22,91	40	
C. distans e *		18,2	65,6	4,6	20,8	3,5	4,5					
C. giganteus				0,1	2,08							
Cynodum sp.		25,3	4,9	76,8	18,7							
L. racemosa		0,8	4,9	4,3	20,8	61,3	22,7					
R. mangle						0,5	4,5	6,9	27,27	72,91	50	
C. arabicus				0,7	2,08	4,2	13,6	44,4	9,09			
A. brevistyla						0,5	4,5					
D. canum						14,6	4,5					
M. arborescens								11,1	9,09			
M. angulicosta								1,4	9,09	4,16	10	
P. aquilin um								1,4	9,09			

AB % = abundância relativa

FR % = frequência relativa por área

^{* =} C. distans e H. ochreata foram tratadas como uma única espécie na análise estrutural, pois não puderam ser diferenciadas quando os dados foram coletados no campo.

REFERÊNCIAS

BRUMMIT, R. K.; POWELL, C. E. Authors of plant names. Kew: Royal Botanic Gardens, 1992. 731 p.

CREMERS, G.; HOFF, M. L'inventaire taxonomique des plantes de la Guyane Française (première partie: Lês Pteridophytes). In : INVENTARIES de faune et de flore. Paris : Museum National D'Histoire naturelle, 1990. 133 p.

DAY, J. W.; CONNER, W. H., LEY-LOU, F., DAY, R. H.; NAVARRO, A. M. The productivity and composition of mangrove forest, Laguna de Términos, Mexico. **Aquatic Botany**, v.27, p.267-284, 1987.

GAMA, J. R. V. 1995. Comunidades de ribeirinhos no NE paraense. Belém: FCAP - Projeto Várzea, 1995. 5 p. (Nota Técnica, 2).

JIMÉNEZ, J. A.; SOTO, R. Patrones regionales en la estructura y composición florística de los manglares de la Costa Pacífica de Costa Rica. **Rev. Biol. Trop.**, v.33, n.1, p.25-37, 1985.

McKEE, K. L. Seedling recruitmente patterns in a Belizean mangrove forest: effects of stablishment ability and physico-chemical factors. **Oecólogia**, v.101, p.448-460, 1995.

MASCARENHAS, R. E. B. Controle de ervas daninhas com herbicidas no estuário amazônico. **Relatório Técnico Anual do CPATU**, Belém, p.89-90, 1982.

	;	MODESTO	JÚNIOR,	M.	S. ;	MULLER,	N.	R.	M
Levantamento floríst	ico da r	regeneração n	atural em	área	de	várzea do r	io C	Gua	má,
Estado do Pará. Belér	n: Embra	apa.CPATU, 19	996. 30 p. (1	Bolet	im d	e Pesquisa, 1	63)		

ROYAL BOTANIC GARDENS. **Index Kewensis on compact disc. Versão 1.1** Kew: Oxford University Press, 1993. 1 CD-ROM.

SNEDAKER, S. C. Mangroves: their value and perpetuation. **Nature and Resources**, v.4, n.3, p. 6-13, 1978.

VETTER, R. E.; BARBOSA, A. P. R. Mangrove bark: renewable resin source for wood adhesives. **Acta Amazônica**, v. 25, n.1/2, p. 69-72, 1995.