Circular Técnica

Dourados, MS Julho, 2010

Autores

Márcia Mayumi Ishikawa

Médica Veterinária, Dra. Embrapa Agropecuária Oeste, Caixa Postal 661 79804-970 Dourados, MS Fone: (67) 3416-9722 marcia@cpao.embrapa.br

Santiago Benites de Pádua

Acadêmico de Med. Veterinária Faculdade Anhanguera Dourados, MS santiago_psb@hotmail.com

Fabiana Satake

Médica Veterinária, Dra. Unigran - Dourados, MS fabsatake@yahoo.com.br

Pamela Souza de Pietro

Acadêmica de Biologia UEMS - Dourados, MS pampietro@hotmail.com

Hamilton Hisano

Zootecnista, Dr. Embrapa Agropecuária Oeste Fone: (67) 3416-9775 hhisano@cpao.embrapa.br

Procedimentos Básicos para Colheita de Sangue em Peixes

Introdução

O monitoramento do estado de saúde dos peixes é imprescindível para o manejo sanitário da produção, seja de grande ou pequeno porte. A hematologia clínica é uma ferramenta que permite a realização de diagnóstico de patologias e pode atuar como um indicador prognóstico das condições patológicas, especialmente quando se considera as alterações morfológicas nas células sanguíneas (SATAKE et al., 2009). Estas avaliações permitem identificar a resposta dos peixes, quando doentes, de maneira rápida, prática e de baixo custo.

O sangue banha todos os tecidos orgânicos, exceto o epitelial e o cartilaginoso. Devido a essa condição fisiológica, seu estudo torna-se estratégico para avaliação do estado de saúde dos peixes. Com este propósito, vários pesquisadores têm utilizado a hematologia clínica como método de avaliação das exigências nutricionais, tais como requerimentos de minerais para tilápia-nilótica *Oreochromis niloticus* (BARROS et al., 2002; FERRARI et al., 2004; HISANO et al., 2007), e vitaminas para pirarucu *Arapaima gigas* (ANDRADE et al., 2007) e matrinxã *Brycon amazonicus* (AFFONSO et al., 2007). Os parâmetros hematológicos têm sido utilizados também na verificação dos efeitos deletérios de pesticidas em estudos com ictiotoxicologia, como os realizados com a tilápia-nilótica (EI-SAYED et al., 2007; SWEILUM, 2006), jundiá *Rhamdia quelen* (BORGES et al., 2007) e *Labeo rohita* (ADHIKARI et al., 2004), além de estudos com sanidade, principalmente envolvendo parasitos (GHIRALDELLI et al., 2006; MARTINS et al., 2004; RANZANI-PAIVA et al., 2005; TAVARES-DIAS et al., 2007) e bactérias (GARCIA; MORAES, 2009; MARTINS et al., 2008a,b; RANZANI-PAIVA et al., 2004; YU et al., 2010).

No entanto, para utilizar a hematologia no monitoramento sanitário de uma piscicultura é necessário investir no treinamento de pessoal especializado, tanto para a colheita quanto para o processamento e a interpretação dos resultados. O exame hematológico exige que a colheita sanguínea seja realizada de forma rápida e sem causar estresse adicional aos animais, pois a captura, a contenção e a punção do animal realizadas de formas inadequadas podem ocasionar alterações nos parâmetros sanguíneos avaliados.

Este documento tem por objetivo apresentar os procedimentos básicos para colheita sanguínea em peixes, pois constitui o primeiro passo para o sucesso no estudo hematológico. A colheita é composta, basicamente, por quatro procedimentos, que são: captura do animal; contenção, que pode ser química ou mecânica; punção do vaso sanguíneo ou coração e acondicionamento do sangue.

Captura dos Peixes

Os animais devem ser capturados dos viveiros ou tanques com auxílio de redes ou puçás. Não é necessário fazer a despesca total para a colheita de sangue; é realizada com uma amostra que pode ser de dois, cinco, dez ou quantos exemplares forem necessários para o trabalho. A colheita pode ser feita em peixe saudável ou doente, dependendo do objetivo do estudo. Este procedimento exige uma certa habilidade do operador, mas não requer capacitação específica. O peixe deve ser capturado considerando condições adequadas, tanto do ambiente como do animal, ou seja, a temperatura da água não deve estar muito baixa e os peixes devem estar em jejum por pelo menos 12 horas. Deve-se evitar o estresse e cuidar para evitar traumas e retirada do muco do peixe em excesso. Dessa forma, o animal poderá ser reintroduzido ao cultivo após a colheita, sem o risco de morrer.

Contenção dos Peixes

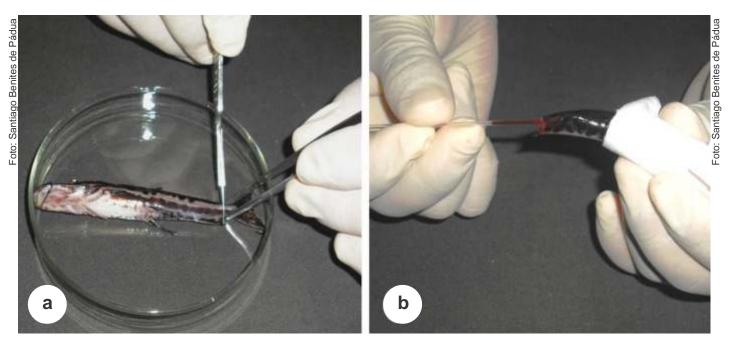
Para a colheita correta do sangue, o peixe deve estar contido adequadamente, de preferência com um pano úmido sobre os olhos (Figura 1). Em alguns casos é indicado o uso de anestésicos para diminuir o estresse nos peixes, mas estes também podem ocasionar alterações hematológicas e, portanto, devem ser utilizados com algumas restrições e na dosagem indicada para cada espécie e idade (BOLASINA, 2006; INOUE et al., 2004; SUDAGARA et al., 2009; VELISEK et al., 2007). Por isso, a contenção mecânica é a mais adequada e prática para este procedimento, sendo necessárias habilidade e rapidez para ser eficiente.

Figura 1. Contenção com pano úmido e venopunção caudal em juvenil de dourado (*S. brasiliensis*) previamente anestesiado com óleo-de-cravo (50 mg L⁻¹).

Punção do Vaso Sanguíneo ou Coração

Entre os acessos existentes para realizar a punção sanguínea, a venopunção de vasos localizados na região caudal tem sido mais explorada. Este método proporciona uma colheita rápida, mas é necessário acertar a localização do vaso corretamente, para que este seja canulado de forma adequada, sem ocasionar muitas lesões no animal. A coluna vertebral facilita a utilização desse acesso, pois a artéria e a veia caudal situam-se em sua face ventral. Utiliza-se, portanto, a coluna vertebral para orientar a localização do vaso sanguíneo.

É necessário utilizar uma seringa com agulha, geralmente banhada em anticoagulante (EDTA 3%). Ela deve ser inclinada em torno de 45° e realizada a penetração em direção à região ventral da coluna vertebral, local onde se localizam a artéria e a veia caudal. A inclinação mais apropriada para realizar esta técnica pode variar de acordo com a espécie, podendo ser realizada até com 90°, orientando-se pela linha medial da região ventral, utilizada principalmente em peixes siluriformes como os surubins (*Pseudoplatystoma* spp.).


Não se deve exercer pressão negativa desnecessária após a canulação do vaso sanguíneo, pois este procedimento implica na ruptura das células vermelhas do sangue, apresentando-se como discreta hemólise após a sedimentação das células sanguíneas.

Esta técnica pode não ser eficiente em peixes ornamentais de pequeno porte e alevinos em geral. Nestas situações, recomenda-se a indução anestésica até o estágio de anestesia cirúrgica e corte completo do pedúnculo caudal com auxílio de bisturi (Figura 2a).

O sangue deverá ser colhido em um capilar para dosagem do percentual de hematócrito (Figura 2b) e extensões sanguíneas deverão ser confeccionadas a partir do sangue contido no capilar. Na primeira gota de sangue, que flui logo após o corte, pode-se realizar a pipetagem de sangue para realizar a contagem de eritrócitos, imprescindível para leucometria e trombometria global realizada por métodos indiretos em peixes. A principal desvantagem desta técnica é a necessidade do sacrifício dos peixes, além da contaminação do sangue com fluidos extracelulares dos tecidos próximos aos que foram cortados.

Entre outros acessos, a punção branquial e a punção intracardíaca também são utilizadas, principalmente em situações em que a venopunção caudal não pode ser realizada ou as peculiaridades anatômicas dos peixes não permitem e/ou dificultam a realização desta técnica.

A punção branquial e a punção intracardíaca têm sido utilizadas em algumas espécies de peixes. Quando realizada a punção cardíaca em surubim híbrido, após penetrar a agulha na região da linha média caudal às brânquias, deve-se inclinar a seringa para o sentido cranial para localizar o coração (Figura 3).

Figura 2. Colheita sanguínea em juvenil de surubim híbrido (*Pseudoplatystoma reticulatum x P. corruscans*) por meio do corte do pedúnculo caudal após estágio de anestesia cirúrgica com óleo-de-cravo (50 mg L⁻¹). a) Corte do pedúnculo caudal com auxílio de bisturi; b) colheita de sangue utilizando um capilar de microhematócrito.

Figura 3. Punção intracardíaca em juvenil de surubim híbrido previamente anestesiado com óleo-de-cravo (50 mg L⁻¹).

Para que seja realizado este tipo de acesso na colheita sanguínea, a utilização de anestésicos torna-se fundamental, a fim de reduzir o sofrimento animal. Por se tratar de um órgão vital, este tipo de colheita sanguínea deve ser realizada de forma correta, para que não resulte em áreas de degeneração e necrose no miocárdio, que pode ser fatal, principalmente em peixes de pequeno porte.

Acondicionamento do Sangue após Colheita Sanguínea

Após o procedimento da punção sanguínea utilizando seringas, o sangue deve ser homogeneizado por inversão e acondicionado em tubos apropriados; geralmente empregando-se microtubos de polipropileno. Para a transferência do sangue contido na seringa, a agulha deve ser retirada e o bico da seringa levado próximo à superfície interna do microtubo; em seguida, deve ser exercida leve pressão sobre o êmbolo para que o sangue seja transferido sem causar turbilhonamento do mesmo, escorrendo pela parede do microtubo (Figura 4).

Logo após a colheita do sangue recomenda-se a confecção das extensões sanguíneas (Figura 5). Estas extensões serão fixadas, coradas e utilizadas posteriormente para contagem diferencial de células

sanguíneas e também para pesquisa de hemoparasitos. Para este procedimento pode-se utilizar o sangue que restou na agulha, o qual encontra-se isento de anticoagulante. Dessa forma, as extensões serão de boa qualidade e as células sanguíneas estarão isentas de alterações determinadas pelos anticoagulantes, bem como pelo armazenamento.

Figura 4. Acondicionamento do sangue em um microtubo de polipropileno.

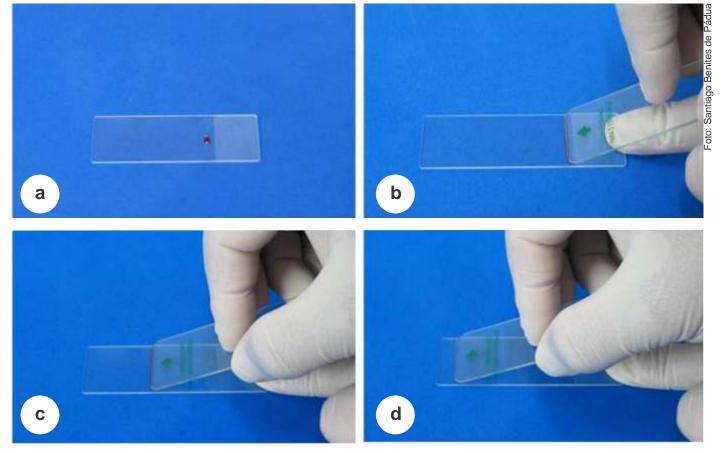


Figura 5. Confecção da extensão sanguínea logo após a colheita do sangue, observada na seguência (a, b, c, d).

O sangue colhido e acondicionado em microtubos deve ser armazenado sob refrigeração (entre 5 °C a 7 °C) desde os primeiros momentos após os procedimentos de venopunção. Para isso, deve estar ao alcance do operador um isopor e/ou caixa térmica com gelo e/ou similares para que o sangue seja imediatamente refrigerado, mas nunca congelado quando se pretende realizar o hemograma, pois no momento em que o sangue for descongelado haverá ruptura das células sanguíneas, apresentando-se visualmente como intensa hemólise. Para evitar o congelamento do sangue, os microtubos devem ser colocados em estantes apropriadas e estas serão acomodadas sobre o gelo; os microtubos não devem ficar em contato direto com o gelo.

O processamento das amostras sanguíneas no laboratório deve ser realizado o mais breve possível, devido a uma série de alterações in vitro que podem interferir nos resultados do hemograma. Portanto, este material deve ser levado ao laboratório em até 12 horas após a colheita.

Considerações Finais

Os procedimentos para colheita sanguínea em peixes são simples e exigem poucos recursos para sua realização; no entanto, requerem alguns cuidados que foram apresentados nesta circular. A hematologia constitui uma importante ferramenta para a realização do monitoramento do estado de saúde dos peixes em uma piscicultura. O processamento laboratorial, bem como a interpretação, exigem conhecimentos e capacitação específica, mas a colheita pode ser realizada por técnico ou funcionário treinado para esses procedimentos básicos. Nesta circular foram apresentados os procedimentos básicos para orientar técnicos, alunos e profissionais de interesse na área sobre colheita de amostras sanguíneas em peixes e, assim, contribuir para viabilizar o recebimento de amostras e o processamento laboratorial de hemogramas de peixes de forma rotineira e eficiente, como observado em laboratórios destinados para mamíferos.

Agradecimentos

Pelo apoio técnico e financeiro, os autores agradecem ao Ministério da Pesca e Aquicultura e à Fundect (Processo: 23/200.321/2008).

Referências

ADHIKARI, S.; SARKAR, B.; CHATTERJEE, A.; MAHAPATRA, C. T.; AYYAPPAN, S. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, *Labeo rohita* (Hamilton). **Ecotoxicology and Environmental Safety**, New York, v. 58, n. 2, p. 220–226, June 2004.

AFFONSO, E. G.; SILVA, E. C.; TAVARES-DIAS, M.; MENEZES, G. C.; CARVALHO, C. S. M.; NUNES, E. S. S.; ITUASSÚ, D. R.; ROUBACH, R.; ONO, E. A. Effect of high levels of dietary vitamin C on the blood responses of matrinxã (*Brycon amazonicus*). **Comparative Biochemistry and Physiology**: part A: molecular & integrative physiology, New York, v. 147, n. 2, p. 383–388, June 2007.

ANDRADE, J. I. A.; ONO, E. A.; MENEZES, G. C.; MARTINS-BRASIL, E.; ROUBACH, R.; URBINATH, E. C.; TAVARES-DIAS, M.; MARCON, J. L.; AFFONSO, E. G. Influence of diets supplemented with vitamins C and E on pirarucu (*Arapaima gigas*) blood parameters. **Comparative Biochemistry and Physiology**: part A: molecular & integrative physiology, New York, v. 146, n. 4, p. 576–580, Apr. 2007.

BARROS, M. M.; PEZZATO, L. E.; KLEEMANN, G. K.; HISANO, H.; ROSA, G. J. M. Níveis de vitamina C e ferro para Tilápia do Nilo (*Oreochromis niloticus*). **Revista Brasileira de Zootecnia**, Viçosa, MG, v. 31, n. 6, p. 2149-2156, 2002.

BOLASINA, S. N. Cortisol and hematological response in Brazilian codling, *Urophycis brasiliensis* (Pisces, Phycidae) subjected to anesthetic treatment. **Aquaculture International**, Andrews, v. 14, n. 6, p. 569-575, Dec. 2006.

BORGES, A.; SCOTTI, L. V.; SIQUEIRA, D. R.; ZANINI, R.; AMARAL, F.; JURINITZ, D. F.; WASSERMANN, G. F. Changes in hematological and serum biochemical values in jundiá *Rhamdia quelen* due to sub-lethal toxicity of cypermethrin. **Chemosphere**, Oxford, v. 69, n. 6, p. 920–926, Oct. 2007.

EL-SAYED, Y. S.; SAAD, T. T.; EL-BAHR, S. M. Acute intoxication of deltamethrin in monosex Nile tilapia, *Oreochromis niloticus* with special reference to the clinical, biochemical and haematological effects. **Environmental Toxicology and Pharmacology**, Amsterdam, v. 24, n. 3, p. 212–217, Nov. 2007.

FERRARI, J. E. C.; BARROS, M. M.; PEZZATO, L. E.; GONÇALVES, G. S.; HISANO, H.; KLEEMANN, G. K. Níveis de cobre em dietas para a tilápia do Nilo, *Oreochromis niloticus*. **Acta Scientiarum**: animal sciences, Maringá, v. 26, n. 4, p. 429-436, Oct./Dec. 2004.

GARCIA, F.; MORAES, F. R. Hematologia e sinais clínicos de *Piaractus mesopotamicus* infectados experimentalmente com *Aeromonas hydrophila*. **Acta Scientiarum**: biological sciences, Maringá, v. 31, n. 1, p. 17-21, Jan./Mar. 2009.

GHIRALDELLI, L.; MARTINS, M. L.; JERONIMO, G. T.; YAMASHITA, M. M.; ADAMANTE, W. de B. Ectoparasites influence on the haematological parameters of Nile tilapia and carp culture in the state of Santa Catarina South Brazil. **Journal of Fisheries and Aquatic Science**, New York, v. 1, n. 2, p. 270-276, 2006.

HISANO, H.; BARROS, M. M; PEZZATO, L. E. Levedura e zinco como pró-nutrientes para tilápia-do-nilo (*Oreochromis niloticus*): aspectos hematológicos. **Boletim do Instituto de Pesca**, São Paulo, v. 33, n. 1, p. 35-42, 2007.

INOUE, L. A. K. A.; HACKBARTH, A.; MORAES, G. Avaliação dos anestésicos 2-phenoxyethanol e benzocaína no manejo do matrinxã *Brycon cephalus* (Günther, 1869). **Biodiversidade Pampeana**, Uruguaiana, v. 2, p. 10-15, 2004.

MARTINS, M. L.; MOURIÑO, J. L. P.; AMARAL, G. V.; VIEIRA, F. N.; DOTTA, G.; JATOBÁ, A. M. B.; PEDROTTI, F. S.; JERÔNIMO, G. T.; BUGLIONE-NETO, C. C.; PEREIRA JUNIOR, G. Haematological changes in Nile tilápia experimentally infected with Enterococcus sp. **Brazilian Journal of Biology**, São Carlos, v. 68, n. 3, p. 631–637, Aug. 2008a.

MARTINS, M. L.; TAVARES-DIAS, M.; FUJIMOTO, R. Y.; ONAKA, E. M.; NOMURA, D. T. Haematological alterations of *Leporinus macrocephalus* (Osteichtyes: Anostomidae) naturally infected by *Goezia leporini* (Nematoda: Anisakidae) in fish pond. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**, Belo Horizonte, v. 56, n. 5, p. 640-646, Oct. 2004.

MARTINS, M. L.; VIEIRA, F. N.; JERÔNIMO, G. T.; MOURIÑO, J. L. P.; DOTTA, G.; SPECK, G. M.; BEZERRA, A. J. M.; PEDROTTI, F. S.; BUGLIONE-NETO, C. C.; PEREIRA JUNIOR, G. Leukocyte response and phagocytic activity in Nile tilápia experimentally infected with *Enterococcus* sp. **Fish Physiology and Biochemistry**, Dordrecht, v. 35, n. 1, p. 219-222, Mar. 2008b.

RANZANI-PAIVA, M. J. T.; FELIZARDO, N. N.; LUQUE, J. L. Parasitological and hematological analysis of Nile tilapia *Oreochromis niloticus* Linnaeus, 1757 from Guarapiranga reservoir, São Paulo State, Brazil. **Acta Scientiarum**: biological sciences, Maringá, v. 27, n. 3, p. 231-237, July/Sept. 2005.

RANZANI-PAIVA, M. J. T.; ISHIKAWA, C. M.; EIRAS, A. C.; SILVEIRA, V. R. Effects of an experimental challenge with *Mycobacterium marinum* on the blood parameters of Nile tilapia, *Oreochromis niloticus* (Linnaeus, 1757). **Brazilian Archives of Biology and Technology**, Curitiba, v. 47, n. 6, p. 945-953, 2004.

SATAKE, F.; PÁDUA, S. B. de; ISHIKAWA, M. M. Distúrbios morfológicos em células sanguíneas de peixes em cultivo: uma ferramenta prognóstica. In: TAVARES-DIAS, M. (Org.). **Manejo e sanidade de peixes em cultivo**. Macapá: Embrapa Amapá, 2009. p. 330-345. 1 CD-ROM.

SUDAGARA, M.; MOHAMMADIZAREJABADA, A.; MAZANDARANIA, R.; POORALIMOTLAGHA, S. The efficacy of clove powder as an anesthetic and its effects on hematological parameters on roach (*Rutilus rutilus*). **Journal of Aquaculture Feed Science and Nutrition**, Faisalabad, v. 1, n. 1, p. 1-5, 2009.

SWEILUM, M. A. Effect of sublethal toxicity of some pesticides on growth parameters, haematological properties and total production of Nile tilapia (*Oreochromis niloticus* L.) and water quality of ponds. **Aquaculture Research**, Oxford, v. 37, n. 11, p. 1079-1089, Aug. 2006.

TAVARES-DIAS, M.; MORAES, F. R.; ONAKA, E. M.; REZENDE, P. C. B. Changes in blood parameters of hybrid tambacu fish parasitized by *Dolops carvalhoi* (Crustacea, Branchiura), a fish louse. **Veterinarski Arhiv**, Zagreb, v. 77, n. 4, p. 355-363, 2007.

VELISEK, J.; WLASOW, T.; GOMULKA, P.; SVOBODOVA, Z.; NOVOTNY, L. Efects of 2-phenoxyethanol anaesthesia on sheatfsh (*Silurus glanis* L.). **Veterinary Medicine**, Bonner Springs, v. 52, n. 3, p. 103-110, 2007.

YU, J. H.; HAN, J. J.; PARK, S. W. Haematological and biochemical alterations in Korean cat?sh, *Silurus asotus*, experimentally infected with *Edwardsiella tarda*. **Aquaculture Research**, Oxford, v. 41, n. 2, p. 295-302, Jan. 2010.

Circular Técnica, 17

Embrapa Agropecuária Oeste Endereço: BR 163, km 253,6 - Caixa Postal 661 79804-970 Dourados, MS Fone: (67) 3416-9700

Fax: (67) 3416-9721

E-mail: sac@cpao.embrapa.br

1ª edição (2010): online

Ministério da Agricultura, Pecuária e Abastecimento

Publicações

Comitê de Presidente: Guilherme Lafourcade Asmus Secretário-Executivo: Harley Nonato de Oliveira Membros: Alexandre Dinnys Roese, Claudio Lazzarotto, Éder Comunello, Josiléia Acordi Zanatta, Milton Parron Padovan, Silvia Mara Belloni e Walder Antonio Gomes de Albuquerque Nunes Membros suplentes: Alceu Richetti e Carlos Ricardo

Fietz.

Expediente

Supervisão editorial: Eliete do Nascimento Ferreira Revisão de texto: Eliete do Nascimento Ferreira Editoração eletrônica: Eliete do Nascimento Ferreira Normalização bibliográfica: Eli de Lourdes Vasconcelos.

Agropecuária Oeste

Ministério da Agricultura, Pecuária e Abastecimento

BR 163, km 253,6 - Trecho Dourados-Caarapó Caixa Postal 661 - 79804-970 Dourados, MS Telefone (67) 3416-9700 Fax (67) 3416-9721 www.cpao.embrapa.br