Institute of Soil Science and Soil Geography, University of Bayreuth and Empresa Brasileira de Pesquisa Agropecuaria - Amazônia Ocidental (EMBRAPA)

> SHIFT Project ENV 45/2 BMBF No. 0339641 5A

Water and nutrient fluxes as indicators for the stability of different land use systems on the Terra firme near Manaus

Annual Report 1999

7) Single tree-effects on denitrification and soil microbial biomass in agroforestry systems and natural forests of the Amazon region

Oleg Menyailo, Johannes Lehmann, Oliver Dünisch, Manoel da Silva Cravo, Josef Bauch, Wolfgang Zech

Soil microorganisms are the dominant processors of soil C and N as well as dominant global sources of N₂O and major sources of CO₂. Variation of soil microbial biomass and its activity may to a large extent control actual emission of greenhouse gases. In order to predict fluxes of greenhouse gases from soils, knowledge of the microbial biomass will be of importance. Tropical forest ecosystems are one of the main natural source of CO₂ and N₂O. Whereas enhanced N₂O and CO₂ fluxes after conversion of tropical forests to grassland were reported by many authors, the effect of conversion to agroforestry an plantation forestry is much less studied. The aim of the present study was to find the effect of tree species used in agroforestry system in Amazonian region and natural forests on the total biomass of heterotrophic microorganisms (BH), which is mainly responsible for CO₂ emission, and on the biomass of denitrifiers (BD), which control N₂O emission. Both biomasses were studied using the kinetic method. Using trees-mediated soil changes we intended to explain variation of microbial biomasses by variation of soil properties.

Conversion of tropical forests to agroforestry in Amazonian region caused changes in different groups of soil microbial community. Most commonly used fruits species cupuaçu (*Theobroma grandiflorum*) and annatto (*Bixa orellana*) increased BD 2-3 times. Development of secondary forests with the dominant species *Vismia* spp also increased BD. The difference between the timber tree species *Andiroba* and *Ceiba pentandra* was not significant, and these species did not significantly change BD compared to the primary forest species.

The BH was also affected by tree species. The highest BH was found in soil samples beneath *Ceiba pentandra* compared to all other tree species (P<0.05). The lowest BH was found in soil samples beneath cupuaçu, annatto and *Eschweilera*. Cupuaçu and annatto did not differ significantly in their effect on both biomasses studied. The effect of *Eschweilera* on BH was significantly different from that of *Andiroba* (P<0.03) and *Vismia* (P<0.05).

We also wanted to find relationships between the biomasses studied and soil microbial activities. The BD was negatively related to the net N mineralization and basal respiration rates, and positively to net nitrification and denitrification rates (P<0.05). BH was positively related to the net N mineralization, basal and substrate-induced respiration rates. As the two measured biomasses were oppositely related to

the processes related to the production of greenhouse gases, we calculated the ratio of BD to BH (D/H ratio) and made all further calculations with this ratio. The D/H ratio has shown stronger relationships to almost all of the microbiological activities. The D/H ratios were negatively related to the net N mineralization, basal and substrateinduced respiration rates. Also significant relationship was found between D/H ratios and denitrification, the relationship was even stronger than between denitrification and BD. The latter suggested that the D/T ratio should be taken into account for modeling or predicting greenhouse gases emission from the studied soils.