Documentos 109

Cálculo de Misturas Minerais para Bovinos

Maria Luiza Franceschi Nicodemo

Campo Grande, MS

Exemplares desta publicação podem ser adquiridos na:

Embrapa Gado de Corte
Rodovia BR 262, km 4, CEP 79002-970 Campo Grande, MS
Caixa Postal 154
Fone: (67) 3682064
Fax: (67) 3682180
http://www.cnpgc.embrapa.br
E-mail: sac@cnpgc.embrapa.br

Comitê de Publicações da Unidade

Presidente: Cacilda Borges do Valle
Secretário-Executivo: Osni Correa de Souza
Membros: Ecila Carolina Nunes Zampieri Lima, Ezequiel
Rodrigues do Valle, José Raul Valério, Manuel Cláudio Motta
Macedo, Maria Antonia Martins de Ulhôa Cintra, Tênisson
Waldow de Souza, Valéria Pacheco Batista Euclides
Supervisor editorial: Ecila Carolina Nunes Zampieri Lima
Revisor de texto: Lúcia Helena Paula do Canto
Normalização bibliográfica: Maria Antonia M. de Ulhôa Cintra
Tratamento de ilustrações: Paulo Roberto Duarte Paes
Foto(s) da capa: Arquivo Embrapa Gado de Corte
Editoração eletrônica: Ecila Carolina Nunes Zampieri Lima

1ª edição
1^{13} impressão (2001): 1.000 exemplares
Todos os direitos reservados.
A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei № 9.610).
CIP-Brasil. Catalogação-na-publicação.
Embrapa Gado de Corte.
Nicodemo, Maria Luiza Franceschi
Cálculo de misturas minerais para bovinos / Maria Luiza Franceschi Nicodemo. -- Campo Grande: Embrapa Gado de Corte, 2001.

25 p. ; 21 cm. -- (Documentos / Embrapa Gado de Corte, ISSN 1517-3747 ; 109)

```
ISBN 85-297-0109-7
```

1. Bovino de corte - Suplemento mineral. 2. Nutrição animal. 3. Mistura mineral - Cálculo. I. Embrapa Gado de Corte (Campo Grande, MS). II. Título. III. Série.

CDD 636.085 (21. ed.)

- Embrapa 2001

Autores

Maria Luiza Franceschi Nicodemo

Zootecnista, Ph.D., CRMV-MS № 100/Z, Embrapa Gado de Corte, Rodovia BR 262 km 4, Caixa Postal 154, CEP 79002-970 Campo Grande, MS. Enderec̣o eletrônico: luiza@cnpgc.embrapa.br

Sumário

Resumo 7
Abstract 9
Introduc̣ão 9
Exigências nutricionais 10
Consumo de alimento 11
Deficiências minerais de bovinos em pastejo no Brasil Central 13
Fontes de elementos minerais 13
Biodisponibilidade 13
Palatabilidade 13
Contaminantes 14
A questão do flúor 14
Quanto suplementar? 15
Exemplo do cálculo da mistura mineral 15
A relação $\mathrm{Ca}: \mathrm{P}$ está adequada? 18
Consumo das misturas minerais 19
Referências bibliográficas 20
Anexo 1 25

Cálculo de Misturas Minerais para Bovinos

Maria Luiza Franceschi Nicodemo

Resumo

Abstract

A suplementação mineral propicia a correção de deficiências e desequilíbrios na dieta de bovinos. Para que a mistura seja formulada corretamente são necessárias informações sobre as características da região, exigências nutricionais, estimativas de consumo e qualidade da dieta. As fontes de minerais utilizadas devem ser palatáveis, de boa biodisponibilidade e relativamente livres de contaminantes tóxicos. O consumo adequado de mistura mineral de boa qualidade é indispensá vel para o sucesso da suplementação.

Palavras-chave: bovino de corte, cálculo, mistura mineral.

Mineral Mixture's Calculation for Beef Cattle

Abstract

Mineral supplements are able to correct disbalances and deficiencies of cattle's diets. In order to calculate the mineral supplement correctly, information about local characteristics, nutritional requirements, estimates of feed intake and quality of diet is required. The sources used in the formulation should be of high biological availability, palatability and free of toxic contaminants. The adequate intake of a good quality mineral mixture is crucial to the success of the supplementation.

Key-words: beef cattle, formulation, mineral supplement

Introduc̣ão

As misturas minerais propiciam a correção de desequilíbrios e deficiências de elementos minerais na dieta. Para a formulação de misturas minerais adequadas, é necessário conhecer os dados sobre deficiências e desequilíbrios minerais na região, as exigências nutricionais da categoria suplementada, estimar a quantidade e qualidade do alimento ingerido/dia e conhecer a composição das fontes de minerais e sua disponibilidade biológica.

Exigências nutricionais

As exigências nutricionais (Tabela 1) de alguns minerais, especialmente de macroelementos, podem ser calculadas pelo método fatorial (Agricultural Research Council - ARC, 1980), no qual os requisitos líquidos (do tecido) são calculados a partir de estimativas de armazenamento do elemento nos tecidos e secreção no leite durante o crescimento, gestação e lactação, somados às perdas endógenas. Esse total é corrigido pela eficiência de absorção, que representa a estimativa de quanto do elemento presente na dieta é absorvido. As tabelas de exigências americanas são bastante usadas no nosso meio, mas algumas universidades desenvolvem há anos trabalhos objetivando preparar tabelas adaptadas às condic̣ões brasileiras.

Tabela 1. Requisitos nutricionais de bovinos de corte.

Mineral	Unidade	Grescimento e terminação	Novihas e vacas²		Niveis máximos
			Gestação	Lactação	
Cálcio	\%	Variável ${ }^{1}$	0,24-0,35	0,23	-
Cloro	\%	-	-	-	-
Cromo	$\mathrm{mg} / \mathrm{kg}$	-	-	-	1.000
Cobalto	$\mathrm{mg} / \mathrm{kg}$	0,1	0,1	0,1	10
Cobre	$\mathrm{mg} / \mathrm{kg}$	10	10	10	100
lodo	$\mathrm{mg} / \mathrm{kg}$	0,5	0,5	0,5	50
Ferro	$\mathrm{mg} / \mathrm{kg}$	50	50	50	1.000
Magnésio	\%	0,10	0,12	0,20	0,40
Manganês	$\mathrm{mg} / \mathrm{kg}$	20	40	40	1.000
Molibdênio	$\mathrm{mg} / \mathrm{kg}$	-	-	-	5
Níquel	$\mathrm{mg} / \mathrm{kg}$	-	-	-	50
Fósforo	\%	Variável ${ }^{1}$	0,14-0,20	0,16	-
Potássio	\%	0,6	0,6	0,7	3
Selênio	$\mathrm{mg} / \mathrm{kg}$	0,1	0,1	0,1	2
Sódio	\%	0,06-0,08	0,06-0,08	0,10	9^{3}
Enxofre	\%	0,15	0,15	0,15	0,40
Zinco	$\mathrm{mg} / \mathrm{kg}$	30	30	30	500

${ }^{1}$ Tabela 2
${ }^{2}$ Cálculo: vaca nelore adulta $=450 \mathrm{~kg}$; produc̣ão leiteira máxima $=4 \mathrm{~kg}$; bezerro $=30 \mathrm{~kg}$
${ }^{3}$ NRC (1980)
Fonte: National Research Council - NRC (1996), adaptada.

As categorias animais mais exigentes são fêmeas em produção (novilhas > vacas) e animais jovens com altas taxas de ganho de peso. Os requisitos nutricionais de cálcio e fósforo variam muito em função da idade e produção (Tabela 2).

Tabela 2. Requisitos de cálcio e fósforo para recria e engorda.

Ganho de peso	0,2 kg/dia		$1 \mathrm{~kg} / \mathrm{dfa}$	
Peso vivo, kg	200	400	200	400
Ca, g/dia ${ }^{1}$	11,80	16,50	32,40	30,30
(\% na matéria seca)	$(0,30)$	$(0,21)$	$(0,65)$	$(0,30)$
P, g/dia ${ }^{1}$	7	11,10	15,30	16,70
(\% na matéria seca)	$(0,18)$	$(0,14)$	$(0,31)$	$(0,17)$
Consumo de matéria seca, kg/dia	4	8	5	10

${ }^{1}$ NRC (1996).

Como a taxa de crescimento ósseo é maior nos animais jovens, um animal mais maduro requer relativamente menos Ca e P para cada kg de ganho: um novilho de 400 kg deposita $7,3 \mathrm{~g}$ de Pe 18 g de $\mathrm{Ca} / \mathrm{kg}$ ganho, enquanto um animal de 200 kg deposita 10,6 g de Pe26,2 g de Ca em cada kg de ganho, ou seja, cerca de 30% a mais. Quanto maior o nível de produção, maiores são as exigências. Assim, um novilho de 200 kg de peso vivo, ganhando $0,20 \mathrm{~kg} / \mathrm{dia}$, precisa de cerca de $7 \mathrm{~g} /$ dia de fósforo, enquanto aquele ganhando $1 \mathrm{~kg} / \mathrm{dia}$ precisa de $15,3 \mathrm{~g} / \mathrm{dia}$, o dobro.

Consumo de alimento

O consumo de matéria seca é uma informação difícil de ser obtida para animais em pastejo. Muitos fatores podem afetar a ingestão de forragem, entre eles tamanho corporal, produção de leite, condição corporal, qualidade e disponibilidade de forragem, quantidade e tipo de suplemento e fatores ambientais (Rasby et al., 1995). Estimativas de consumo médio das forrageiras podem ser obtidas com o uso de equações baseadas nas relações existentes entre peso corporal, qualidade da forragem e ingestão de matéria seca (Tabela 3). Esses valores servem de orientação quanto à faixa de consumo.

Tabela 3. Estimativa do consumo da matéria seca da forragem.

Qualidade da forragem	Tipo de animal	Consumo de matéria seca
Baixa	Vaca seca, novilho Vaca lactante	1,5\% do peso vivo 2\% do peso vivo
Boa	Vaca seca, novilho Vaca lactante	2\% do peso vivo 2,3\% do peso vivo
Excelente	Vaca seca, novilho Vaca lactante	2,5\% do peso vivo 2,7\% do peso vivo

Fonte: Rasby et al. (1995).

Quando os animais são suplementados em campo, pequenas quantidades de suplemento ($<0,2 \%$ do peso vivo) em geral podem ser somadas ao consumo de forrageira; o efeito de substituição pode ocorrer quando maior quantidade de concentrado é fornecida (0,3 a $1,0 \%$ do peso vivo). Neste caso, pode-se considerar que para cada 250 g de matéria seca suplementada, o animal deixe de comer 300 g de matéria seca da forragem (Herd, s.d.).

A contribuição da água para o atendimento dos requisitos nutricionais é modesta. Entretanto, em algumas situações, a água pode fornecer níveis significativos de minerais como ferro, sódio e cálcio (Virgens et al., 1983; Nicodemo, 1988), o que devem ser levados em consideração nos cálculos das misturas minerais. A ingestão de águas das lagoas salinas no Pantanal de Nhecolândia é parcialmente responsável pelo baixo consumo de misturas minerais naquela região (Brum \& Sousa, 1985). O controle cuidadoso da quantidade de cloreto de sódio na mistura mineral, associado ao uso de palatabilizantes (melaço, farelo de algodão etc.), pode ser necessário para contornar o problema (McDowell, 1985).

A ingestão de solo pode contribuir para a ingestão significativa de alguns elementos, como o ferro e alumínio, especialmente em condic̣ões em que a quantidade de matéria seca disponível é baixa.

Deficiências minerais de bovinos em pastejo no Brasil Central

A composição da forrageira pode variar em função de fertilidade do solo, temperatura, umidade, espécie, grau de maturidade, interação solo-planta etc. Devido ao pastejo seletivo dos bovinos, a qualidade do alimento ingerido é, em geral, superior à média disponível no pasto. Os minerais mais deficientes na região dos Cerrados do Brasil Central são: $\mathrm{P}, \mathrm{Na}, \mathrm{Cu}, \mathrm{Co} \mathrm{e} \mathrm{Zn}$. Existem também indicações de deficiência de selênio, iodo e enxofre. Deficiências de Fe, K, Mg e Mn não têm sido observadas (Tokarnia et al., 1988; Lopes et al., 1997). Níveis de cálcio são considerados adequados nas forrageiras. No Pantanal, existem indicações de deficiência de cálcio, fósforo e de magnésio nas sub-regiões de Nhecolândia (Pott et al., 1987) e Paiaguás (Brum et al., 1987a), estando também zinco e cobre em concentrações consideradas deficientes (Brum et al., 1987b; Pott et al., 1989).

Fontes de elementos minerais

As principais fontes de elementos minerais e sua composição média são listados no Anexo 1. O valor biológico das diversas fontes de minerais varia em função da concentração do elemento de interesse, disponibilidade biológica, palatabilidade, presença de elementos tóxicos ou contaminantes etc.

Biodisponibilidade

O conteúdo total de um determinado elemento na fonte precisa ser qualificado por um fator que indique a disponibilidade biológica. O elemento precisa passar pelos processos de digestão, absorção e transporte até ficar disponível para exercer suas funções. A biodisponibilidade pode ser considerada como uma medida da habilidade de um determinado suplemento suportar os processos fisiológicos do animal (McGillivray, 1978). Valores médios (relativos) para a biodisponibilidade das principais fontes são dados no Anexo 1.

Palatabilidade

Misturas minerais contendo 30% ou mais de sal comum são bem consumidas. Farinha de ossos autoclavada, de boa qualidade, é considerada muito palatável, embora seja menos estável que fosfatos inorgânicos. A utilização de farinha de osso autoclavada está, no momento, proibida no Brasil.

Contaminantes

Minerais presentes na rocha que deu origem ao fosfato podem aparecer como contaminantes. O alumínio e o ferro, por exemplo, podem complexar o fósforo, reduzindo sua disponibilidade biológica (Ammerman et al., 1957; International Minerals and Chemical Corporation - IMCC, 1982). As rochas fosfáticas brasileiras apresentam níveis baixos de flúor e metais pesados (Ballio, 1986, citado por Lopes, 1996). Em estudo recente (Lopes et al., 1996), as concentrações de chumbo foram $3,82 \mathrm{mg} / \mathrm{kg}$ e $2,55 \mathrm{mg} / \mathrm{kg}$ no fosfato bicálcico e superfosfato triplo (obtido a partir do fosfato de Tapira), respectivamente. As concentrações de cádmio nos fosfatos testados ficaram abaixo do limite de detecção ($0,1 \mathrm{mg}$ / kg). Bovinos recebendo misturas minerais contendo 70 g de P / kg na forma de fosfato bicálcico ou superfosfato triplo durante cerca de dois anos apresentavam níveis aceitáveis de arsênico, cádmio, mercúrio e chumbo na carne, fígado e rim.

A questão do flúor

A legislação em vigor (Portaria MAA-SRD no 06 de 4 de fevereiro de 2000) proíbe a comercialização de misturas minerais com flúor acima de 2.000 ppm ($\mathrm{mg} / \mathrm{kg}$). Os mais importantes minerais que contêm flúor são fluorita, fluorapatita e fosfato de rocha sedimentar. Flúor também está presente em menor quantidade em compostos de cálcio, como a calcita e aragonita (NRC, 1974). A concentrac̣ão de flúor nos fosfatos alimentares depende em grande parte da origem e processamento. Exemplos da concentrac̣ão média de flúor em alguns compostos estão na Tabela 4.

Tabela 4. Concentração média de flúor em alguns fosfatos e no gesso.

Fonte	$\%$ F	P/F
Fosfato bicálcico	0,08	225
Fosfato monoamônico (alimentar)	0,21	114
Fosfato monoamônico (fertilizante)	Até 1	23,5
Superfosfato triplo (fertilizante)	0,57	36
Sulfato de cálcio (gesso)	$0,6-1$	-

Os efeitos tóxicos do flúor têm caráter acumulativo e dependem da quantidade ingerida, duração e continuidade da ingestão, solubilidade da fonte de flúor, espécie animal, idade, nutrição e presença de antagonistas. Como fósforo e flúor participam da mesma molécula de apatita, as disponibilidades biológicas de ambos estão interligadas. Níveis máximos toleráveis na dieta de bovinos variam de 40 ppm para novilhas a 100 ppm para bovinos em terminação (NRC, 1974).

Quanto suplementar?

As exigências nutricionais devem ser atendidas pela ingestão de forragem, água, solo e suplementos. Assim, busca-se fornecer na mistura mineral aqueles nutrientes inorgânicos presentes em quantidades inadequadas no resto da dieta, corrigindo também desequilíbrios, quando for o caso.

A deficiência de sódio é generalizada, e a mistura mineral em geral busca atender a 100% dos requisitos nutricionais deste elemento. Os animais apresentam apetite específico por sal comum, que é utilizado como veículo para a ingestão de outros minerais. Misturas contendo pelo menos 30% a 40% de sal comum são bem consumidas (McDowell, 1985). Os requisitos de sal comum para um bovino adulto estão ao redor de $27 \mathrm{~g} /$ cabeça/dia, mas a ingestão voluntária com freqüência excede as exigências mínimas. O sal comum não é um regulador preciso da ingestão, e alguns animais toleram mais sal que outros. Podem ser necessários alguns ajustes para obtenção do consumo apropriado da mistura, pela elevação do teor de NaCl , ou inclusão de palatabilizantes. O sal comum também tem sido utilizado para limitar o consumo de alimentos muito palatáveis, como grãos e suplementos. Nestas circunstâncias, a ingestão voluntária diária vai ser de cerca de $100 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~kg}$ de peso vivo para a maioria das categorias do rebanho (Rich \& Gill, 1996). Bovinos podem tolerar uma alta concentração de sal na dieta desde que tenham água de boa qualidade a disposição. Níveis tóxicos de sal comum na dieta de bovinos situa-se por volta de 9\% (NRC, 1980).

No caso de macroelementos, é possível estimar a ingestão por meio da dieta e ajustar quanto deve ser suplementado via mistura mineral. Como regra geral, aconselha-se suplementar de 50\% a 150% dos requisitos dos microelementos reconhecidamente deficientes na região. Alguns autores acreditam que a suplementac̣ão de pelo menos 25% a 50 \% dos requisitos nutricionais seriam adequados na ausência de informações mais precisas (Houser et al., 1976).

Exemplo do cálculo da mistura mineral

Considerando-se um rebanho de vacas de cria, em pastagens de capim Brachiaria brizantha na região dos Cerrados, solos de baixa fertilidade:

Peso vivo adulto: 450 kg
Consumo de matéria seca: 2% do peso vivo $\rightarrow 9 \mathrm{~kg}$ de matéria seca/dia.
Concentração média (na estação chuvosa) de $\mathrm{Ca}=0,28 \%$ e $\mathrm{P}=0,11 \%$ na matéria seca da forragem.

Requisitos nutricionais médios para $\mathrm{Ca}=23 \mathrm{~g} / \mathrm{dia}$ e $\mathrm{P}=15 \mathrm{~g} / \mathrm{dia}$ (NRC, 1996).

Tabela 5. Quantidades estimadas de Ca e P (g/dia) fornecidas pela forrageira.

Discriminação	Ca	P
Forragem	25,2	9,9
Requisitos	23	15
Diferenc̣a	$+2,2$	$-5,1$

A mistura mineral deve suplementar cerca de 5 g de $\mathrm{P} / \mathrm{dia}$ (Tabela 5), estando Ca adequado.

Considerando a possível deficiência de Cu, Zn, Co, I, Se e Na nessas condições, estes elementos serão também suplementados. Os requisitos nutricionais desses elementos encontram-se na Tabela 6.

Tabela 6. Nível de suplementação de nutrientes por meio da mistura mineral.

Elemento	Nivel suplementado	Cálculo	Ingestâo do Elemento/dla
Fósforo	-	-	5 g
Sódio	$0,1 \%$	$(0,1 \times 9) / 100$	9 g
Cobalto	$0,1 \mathrm{mg} / \mathrm{kg}$	$(0,1 \times 9)$	$0,9 \mathrm{mg}$
Cobre	$10 \mathrm{mg} / \mathrm{kg}$	(10×9)	90 mg
lodo	$0,5 \mathrm{mg} / \mathrm{kg}$	$(0,5 \times 9)$	$4,5 \mathrm{mg}$
Selênio	$0,1 \mathrm{mg} / \mathrm{kg}$	$(0,1 \times 9)$	$0,9 \mathrm{mg}$
Zinco	$40 \mathrm{mg} / \mathrm{kg}$	(40×9)	360 mg

Para calcular a quantidade do elemento na dieta do animal, considere que a vaca ingere 9 kg de matéria seca/dia. Usando regra de três:
$0,1 \mathrm{~kg}$ de sódio $\rightarrow 100 \mathrm{~kg}$ de matéria seca
A kg de sódio $\rightarrow 9 \mathrm{~kg}$ de matéria seca da dieta
$A=(9 \times 0,1) / 100=0,009 \mathrm{~kg}$, ou 9 g de sódio/dia

E no caso dos requisitos estarem expressos como $\mathrm{mg} / \mathrm{kg}$ de matéria seca (ppm), o cálculo é o que segue:
$0,1 \mathrm{mg}$ de cobalto $\rightarrow 1 \mathrm{~kg}$ de matéria seca
B $\quad \mathrm{mg}$ de cobalto $\rightarrow 9 \mathrm{~kg}$ de matéria seca da dieta
$B=(9 \times 0,1) / 1=0,9 \mathrm{mg}$ de cobalto/dia

A Tabela 6 mostra os cálculos das quantidades a serem suplementadas para os demais elementos minerais.

A quantidade da fonte de minerais que deve ser suplementada é calculada usando a seguinte fórmula:

100 x ingestão desejada do elemento (g/dia)
porcentagem do elemento na fonte

Por exemplo,

Fosfato bicálcico $=18 \% \mathrm{P}$
Ingestão desejada $=5 \mathrm{~g} / \mathrm{dia}$
Cálculo $=(100 \times 5) / 18=27,778 \mathrm{~g} / \mathrm{dia}$

A Tabela 7 mostra este cálculo para todos os elementos suplementados e a composição final da mistura mineral (kg da fonte de mineral/100 kg mistura mineral, ou \%).

Tabela 7. Cálculo e composição final da mistura mineral usada como exemplo. *

| Elemento | Fonte | \% do
 elemento | Cálculo | Fonte
 (g/dia) | kg da
 fonte/
 100 kg |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fósforo | Fosfato bicálcico | 18 | $(100 \times 5) / 18$ | $27,778 \mathrm{~g}$ | 51,415 |
| Sódio | Cloreto de sódio | 37 | $(100 \times 9) / 37$ | $24,324 \mathrm{~g}$ | 45,022 |
| Cobalto | Sulfato de cobalto | 24 | $(100 \times 0,9) / 24$ | $0,004 \mathrm{~g}$ | 0,007 |
| Cobre | Sulfato de cobre | 26 | $(100 \times 90) / 26$ | $0,346 \mathrm{~g}$ | 0,640 |
| lodo | lodato de potássio | 59 | $(100 \times 4,5) / 59$ | $0,008 \mathrm{~g}$ | 0,015 |
| Selênio | Selenito de sódio | 45 | $(100 \times 0,9) / 45$ | $0,002 \mathrm{~g}$ | 0,004 |
| Zinco | Sulfato de zinco | 23 | $(100 \times 360) / 23$ | $1,565 \mathrm{~g}$ | 2,897 |
| Total | | | | $54,027 \mathrm{~g}$ | 100 |

* Estima-se que uma vaca seca, adulta, deva consumir cerca de $54 \mathrm{~g} / \mathrm{dia}$ da mistura.

Cálculo da composição final:
(Ingestão da fonte, g/dia $\times 100$)/ consumo diário da mistura,

Dessa forma, a participação do fosfato bicálcico em 100 kg de mistura mineral: $(27,778 \times 100) / 54,027=51,415 \mathrm{~kg}$, e assim por diante.

A relac̣ão $\mathrm{Ca}: \mathrm{P}$ está adequada?

É importante lembrar que bovinos apresentam uma grande tolerância à ingestão de cálcio em excesso às suas necessidades, desde que os requisitos de P estejam atendidos (Technical Committee on Responses to Nutrients - TCORN 1991). Relações Ca:P acima de 8:1 podem comprometer o desempenho. Não há relatos de deficiência de cálcio em bovinos mantidos em pastagens da região dos Cerrados, estando os níveis de Ca nas forrageiras geralmente adequados.

Algumas forrageiras tropicais podem apresentar níveis altos de oxalato ($>1,0 \%$) e baixa razão Ca/oxalato ($<0,3$) (Nunes et al., 1990), mas bovinos têm a capacidade de degradar oxalatos no rúmen. Níveis altos de oxalato podem
reduzir a biodisponibilidade do cálcio da forrageira em cerca de 20\% (Blaney et al., 1982). Intoxicação por oxalato foi descrita em vacas lactantes, subalimentadas, pastejando setária (Schenk et al., 1982). Alguns nutricionistas preferem suplementar Ca quando o fosfato não fornece este elemento (como o fosfato monoamônico), mantendo uma relação na mistura de 1:1, que é o nível mínimo de Ca:P aceito nas misturas minerais pela legislac̣ão em vigor.

Consumo das misturas minerais

Muitos fatores afetam a ingestão da mistura mineral, entre eles a fertilidade do solo, tipo de forragem consumida, disponibilidade de suplementos protéicoenergéticos, variação individual, salinidade da água, palatabilidade da mistura mineral, disponibilidade do suplemento em boas condições físicas e forma física da mistura mineral. Esses fatores foram revisados por Pamp et al. (1976), Rosa (1985) e McDowell (1985), entre outros.

Recomenda-se a avaliação periódica do consumo de misturas minerais, de forma que ajustes possam ser feitos para garantir ingestão apropriada do suplemento. Animais deficientes tendem a ingerir uma quantidade exagerada de mistura mineral durante o período inicial de suplementação. É aconselhável esperar cerca de duas semanas antes de serem tomadas medidas para controle do consumo. Como foi comentado, as concentrações de sal no suplemento e na dieta são importantes na regulação da ingestão da mistura mineral. A inclusão de 5\% a 15% de melaço, grãos e farelos encoraja o consumo. Processos visando à redução de poeira também podem contribuir para melhorar o consumo das misturas minerais (Herd, s.d).

Recomenda-se muito cuidado com os suplementos protéico e/ou energéticos utilizando sal como regulador do consumo. Sal comum, e moído grosseiramente, deve ser utilizado com essa finalidade. Quando é necessária a inclusão de microelementos no suplemento, garantir que a ingestão dos mesmos se dê nos níveis recomendados, evitando o consumo excessivo que possa provocar desequilíbrios e intoxicações (Rich \& Gill, 1996).

Referências bibliográficas

AGRICULTURAL RESEARCH COUNCIL (London. England). The nutrient requirements of ruminant livestock. Slough: Commonwealth Agricultural Bureaux, 1980. 351p.

AMMERMAN, C. B.; FORBES, R. M.; GARRIGUS, V. S.; NEWMAN, A. L.; NORTON, H. W.; HATFIELD, E. E. Ruminant utilization of inorganic phosphates. Journal of Animal Science, Champaign, v. 16, n. 4, p. 796-810, 1957.

BLANEY, B. J.; GARTNER, R. J. W.; HEAD, T. A. The effects of oxalate in tropical grasses on calcium, phosphorus and magnesium availability to cattle. Journal of Agricultural Science, Cambridge, v. 99, n. 3, p. 533-539, 1982.

BRUM, P. A. R.; SOUSA, J. C. Níveis de nutrientes minerais em lagoas ("Baías" e "Salinas") no pantanal sul-matogrossense. Pesquisa Agropecuária Brasileira, Brasília, v. 20, n. 12, p. 1451-1454, 1985.

BRUM, P. A. R.; SOUSA, J. C.; COMASTRI FILHO, J. A.; ALMEIDA, I. L. Deficiências minerais de bovinos na sub-região dos Paiaguás, no pantanal matogrossense. 1. Cálcio, fósforo e magnésio. Pesquisa Agropecuária Brasileira, Brasília, v. 22, n. 9/10, p. 1039-1048, 1987a.

BRUM, P. A. R.; SOUSA, J. C.; COMASTRI FILHO, J. A.; ALMEIDA, I. L. Deficiências minerais de bovinos na sub-região dos Paiaguás, no pantanal matogrossense. II. Cobre, zinco e ferro. Pesquisa Agropecuária Brasileira, Brasília, v. 22, n. 9/10, p. 1049-1060, 1987b.

HERD, D. B. Mineral supplementation of beef cows in Texas. Disponível: site HyperNet Business Web Page (s/d). http://zeta.hpnc.com/~sharonw/Ranching. Consultado em 12/11/1997.

HOUSER, R. H.; M DOWELL, L. R.; FICK, K. R.; VALLE, L. Avaliação de suplementos minerais para ruminantes. In: SIMPÓSIO LATINO-AMERICANO SOBRE PESQUISA EM NUTRIÇÃO MINERAL DE RUMINANTES EM PASTAGENS, Belo Horizonte, 1976. Anais... Belo Horizonte, UFMG, Escola de Veterinária, 1976. p. 181-192.

INTERNATIONAL MINERALS AND CHEMICAL CORPORATION. Calcium and phosphorus in animal nutrition. [S.I.], 1982. 55 p.

LOPES, H. O. S.; PEREIRA, E. A.; SOARES, W. V.; PEREIRA, G.; COSTA, M. F. V. da; SANCHES, R. L.; AQUINO, D. K. dos S.; ABDALLA, A. L.; VITTI, D. M. S. S.; GOMES, A. C. Metais pesados e flúor em tecidos de bovinos recebendo superfosfato triplo. In: SIMPÓSIO SOBRE O CERRADO, 8.; INTERNATIONAL SYMPOSIUM ON TROPICAL SAVANNAS, 1., 1996, Brasília. Biodiversidade e produc̣ão sustentável de alimentos e fibras nos cerrados. Anais. Planaltina: EMBRAPA-CPAC, 1996. p. 479-483.

LOPES, H. O. S.; PEREIRA, E. A.; SOARES, W. V.; SANZONOWICZ, C.; PEREIRA, G.; ALMEIDA, A. D. Suplementação mineral para gado de corte no estado do Tocantins. Planaltina: EMBRAPA-CPAC, 1997. 7 p. (EMBRAPACPAC. Comunicado Técnico, 71).
$\mathrm{M} _$DOWELL, L. R. Nutrition of grazing ruminants ruminants in warm climates. Orlando, Academic Press, 1985. 443 p.

M GILLIVRAY, J. J. Biological availability of phosphorus sources. In: ANNUAL INTERNATIONAL MINERALS CONFERENCE, 1. 1978. St. Petersburg Beach. Anais. St. Petersburg Beach, IMC, 1978. p. 73-86.

NATIONAL RESEARCH COUNCIL. Committee on Animal Nutrition (Washington, DC, USA). Effects of fluorides in animals. Washington: National Academy of Sciences, 1974. 70 p.

NATIONAL RESEARCH COUNCIL. Subcommittee on Beef Cattle Nutrition. (Washington, DC, USA). Nutrient requirements of beef cattle, 7. ed., Washington: National Academy Press, 1996. 242 p.

NATIONAL RESEARCH COUNCIL. Subcommittee on Mineral Toxicity in Animals (Washington, DC, USA). Mineral tolerance of domestic animals. Washington: National Academy of Sciences, 1980. 577 p.

NICODEMO, M. L. F. Efeito de diferentes fontes de fósforo na suplementação mineral em novilhas azebuadas em pastejo. Belo Horizonte: UFMG, 1988. 162 p. Dissertação de mestrado.

NUNES, S. G.; SILVA, J. M.; QUEIROZ, H. P. Avaliação de gramíneas forrageiras para eqüinos. Campo Grande: EMBRAPA-CNPGC, 1990. 5 p. (EMBRAPA- CNPGC. Pesquisa em Andamento, 45).

PAMP, D. E.; GOODRICH, R. D.; MEISKE, J. C. A review of the practice of feeding minerals. World Review of Animal Production, Edinburg, v. 12, n. 4, p. 13-18, 1976.

POTT, E. B.; ALMEIDA, I. J.; BRUM, P. A. R.; COMASTRI FILHO, J. A.; POTT, A.; DYNIA, J. F. Nutrição mineral de bovinos de corte do pantanal matogrossense. 2. Micronutrientes na Nhecolândia (parte central). Pesquisa Agropecuária Brasileira, Brasília, v. 24, n. 1, p. 109-126, 1989.

POTT, E. B.; BRUM, P. A. R.; ALMEIDA, I. L.; COMASTRI FILHO, J. A.; DYNIA, J. F. Nutric̣ão mineral de bovinos de corte no pantanal mato-grossense. I. Levantamento de macronutrientes na Nhecolândia (parte central). Pesquisa Agropecuária Brasileira, Brasília, v. 22, n. 9/10, p. 1093-1109, 1987.

RASBY, R.; RUSH, I. G.; ADAMS, D. Feeding the beef cow herd-Part II Managing the feeding program. G95-1262-A. Disponível: site NebGuide (September 1995) http://www.ianr.unl.edu/pubs/beef/g1262.htm. Consultado em 30/04/1998.

RICH, T. D.; GILL, D. R. Limiting feed intake with salt. G76-324-A. Disponível: site NebGuide (June 1996) http://www.ianr.unl.edu/pubs/beef/g324.htm. Consultado em 30/04/1998.

ROSA, I. V. Técnicas de avaliação de suplementos minerais. In: SIMPÓSIO SOBRE NUTRIÇÃO DE BOVINOS, 3., 1985. Piracicaba. Anais... Piracicaba: FEALQ, 1985. p. 99-112.

SCHENK, M. A. M.; FARIA FILHO, T. T.; PIMENTEL, D. M.; THIAGO, L. R. L. S. Intoxicação por oxalatos em vacas lactantes de Setária. Pesquisa Agropecuária Brasileira, Brasília, v. 17, n. 9, p. 1403-1407, 1982.

SOUSA, J. C. Aspectos da suplementac̣ão mineral de bovinos de corte. Campo Grande: EMBRAPA-CNPGC, 1981. 50 p. (EMBRAPA-CNPGC. Circular Técnica, 5).

TECNICAL COMMITTEE ON RESPONSES TO NUTRIENTS. A reappraisal of the calcium and phosphorus requirements of sheep and cattle. Nutrition Abstracts and Reviews, Ser. B, Farnham Royal, v. 61, p. 573-612, 1991.

TOKARNIA, C. H.; DOBEREINER, J.; MORAES, S. S. Situação atual e perspectivas da investigação sobre nutrição mineral em bovinos no Brasil. Pesquisa Veterinária Brasileira, Brasília, v. 8, n. 1/2, p. 1-16, 1988.

VIRGENS, N. C.; BAUTISTA, A. R. P. L.; PENNA, A. P.; RODRIGUES, F. M; SUZART, J. C. C.; COSTA, J. B. Limitações da ingestão de fósforo pela presença excessiva de sódio em aguadas e forrageiras no trópico semi-árido baiano. In: REUNIÃO DA SOCIEDADE BRASILEIRA DE ZOOTECNIA. 20., 1983. Pelotas. Anais... Pelotas: SBZ, 1983. p. 164.
Anexo 1. Características médias das principais fontes de elementos minerais.

Elemento	Fonte	Fórmula	Elemento (\%)	Forma física	Biodisponibilidade
Cálcio	Carbonato de cálcio	CaCO_{3}	40	Pó branco	Média
	Calcário calcítico	CaCO_{3}	35	Pó insolúvel	Média
	Calcário dolomítico	$\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$	22,3	Pó insolúvel	Média
	Farinha de ostra	$\mathrm{CaCO}_{3} . \mathrm{Cax}$	38	Granulada	Média
	Fosfato monocálcico	$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	15,9	Cristais brancos	Alta
	Fosfato bicálcico	$\mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	23,3	Cristais brancos	Alta
	Fosfato tricálcico	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	38,6	Pó branco	-
	Sulfato de cálcio diidratado (gesso)	$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	22	Pó branco	-
	Farinha de ossos autoclavada	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} . \mathrm{CaX}$	26	-	Alta
	Farinha de ossos calcinada	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{CaX}$	36	-	Alta
Fósforo	Fosfato monocálcico	$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	24,6	Cristais brancos	Alta
	Fosfato bicálcico	$\mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	18	Cristais brancos	Média
	Fosfato tricálcico	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	20	Pó branco	Média
	Farinha de ossos autoclavada	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{CaX}$	14,5	-	Alta
	Farinha de ossos calcinada	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} . \mathrm{CaX}$	15,5	-	Alta
	Ácido fosfórico	$\mathrm{H}_{3} \mathrm{PO}_{4}$	24	-	Alta
	Fosfato monoamônico	$\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{PO}_{4}$	23,5	Pó branco	Alta
Sódio	Cloreto de sódio	NaCl	37	Cristais brancos	Alta
Magnésio	Óxido de magnésio	MgO	60,3	Pó branco	Alta
	Carbonato de magnésio	MgCO_{3}	28,8	Cristais brancos	Alta
Potássio	Cloreto de potássio	KCl	50	Pó ou cristal branco	Alta
	Sulfato de potássio	KSO_{4}	41	Pó ou cristal branco	Alta

Anexo 1. Continuação
Enxofre Flor de enxofre
Sulfato de amônio

Anexo 1. Continuação					
Enxofre	Flor de enxofre	S^{0}	96	Pó amarelo	Baixa
	Sulfato de amônio	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	24	-	Média
	Sulfato de cálcio diidratado (gesso)	$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	18	Pó branco	Baixa
Ferro	Sulfato ferroso anidro	FeSO_{4}	36,7	Pó solúvel	Alta
	Óxido de ferro	FeO	46-60	Pó preto	Indisponível
	Carbonato ferroso	$\mathrm{FeCO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	41,7	Pó ligeiramente solúvel	Média
Cobalto	Sulfato de cobalto	$\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	24,8	Cristais vermelhos	a
	Carbonato de cobalto	CoCO_{3}	49,5	Cristais vermelhos	a
	Cloreto de cobalto	$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	24,7	Cristais vermelho-escuros	a
Iodo	lodato de potássio	KIO_{3}	59	Cristais brancos	Alta
	lodeto de potássio	KI	76	Cristais brancos	Alta ${ }^{\text {b }}$
	lodato de cálcio	$\mathrm{Ca}\left(1 \mathrm{O}_{3}\right)_{2}$	62	Cristais brancos	Alta
Manganês	Sulfato de manganês	$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	32,5	Cristais avermelhados	Alta
	Óxido de manganês	MnO	77,4	Cristais verdes	Alta
	Carbonato de manganês	MnCO_{3}	47,8	Pó avermelhado	Média
Cobre	Sulfato de cobre	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	25,5	Cristais azuis	Alta
	Óxido de cobre	CuO	80	Pó preto	Baixa
	Cloreto de cobre	$\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	37,2	Cristais verdes	Alta
Zinco	Sulfato de zinco	$\mathrm{ZnSO} 4.7 \mathrm{H}_{2} \mathrm{O}$	22,7	Cristais brancos	Alta
	Óxido de zinco	ZnO	80,3	Pó branco	Alta
	Cloreto de zinco	ZnCl 2	48	Cristais brancos	Média
	Carbonato de zinco	ZnCO_{3}	52,1	Cristais brancos	Alta
Selênio	Selenito de sódio	$\mathrm{Na}_{2} \mathrm{SeO}_{3}$	45	Cristais brancos	Alta

Sulfato ferroso anidro
Óxido de ferro
Carbonato ferros
Sulfato de cobalto
Carbonato de cobalto
Carbonato de cobalto
Cloreto de cobalto
lodato de potássio
lodeto de potássio
lodato de cálcio
Sulfato de manganês

Sulfato de cobre
Sulfato de cobre
Óxido de cobre
Cloreto de cobre
Sulfato de zinco
Óxido de zinco
Cloreto de zinco
Carbonato de zinco

afetivo: ${ }^{\text {b }}$ Composto instável
a Efetivo; ${ }^{\text {b }}$ Composto instável
Fontes: Sousa (1981), McDowell (1985), Nicodemo (1988), NRC (1996).

