

Lopes, P. R. C.⁵⁹; Oliveira, J. E. de M.⁵⁹;
Assis, J. S. de⁵⁹; Silva, A. de S.⁵⁹;
Bastos, D. C.⁵⁹; Oliveira, I. V. de M.⁵⁹; Silva, R. R. S. da⁵⁹

A crescente valorização da saúde das pessoas, baseada em uma alimentação rica em vitaminas encontradas em fontes naturais, elevou a demanda do consumo de frutas *in natura* e aumentou a conscientização sobre a importância da ingestão de frutas e seus derivados, isentos de resíduos de agrotóxicos. Como consequência, o mercado internacional passou a sinalizar grandes mudanças nos sistemas de produção de frutas, por meio da adoção de critérios de qualidade, da produção certificada e do cumprimento de normas internacionais relacionadas à inocuidade, à rastreabilidade e ao respeito ao meio ambiente e ao homem. Na Europa, as grandes redes de supermercados passaram a pressionar os produtores e exportadores para a adoção de um sistema de certificação que garantisse a qualidade e segurança de seus produtos. Para atender às demandas internacionais, a Embrapa Semi-Árido e a Associação de Produtores e Exportadores de Hortifrutigranjeiros e Derivados do Vale do São Francisco (Valexport) iniciaram o Projeto de Produção Integrada de Manga.

No final de 2000, por meio do convênio firmado entre o Ministério da Agricultura, Pecuária e Abastecimento (Mapa) e o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), foram aportados recursos para apoiar o início e o desenvolvimento das ações do referido projeto, seguindo as normas estabelecidas pelo Mapa nas Diretrizes Gerais e Normas Técnicas constantes da Instrução Normativa nº 20, de 2001, da Organização

⁵⁹ Empresa Brasileira de Pesquisa Agropecuária- Embrapa Semi-Árido.

Internacional da Luta Biológica (OILB) e protocolos internacionais, associadas às experiências de outros países consumidores e parceiros comerciais do Brasil. O Projeto de Produção Integrada de Manga é uma proposta de agricultura sustentável sob os pontos de vista ecológico, econômico e social que tem melhorado substancialmente o sistema de produção de mangas, principalmente no que diz respeito à racionalização do uso de agrotóxicos. Os indicadores parciais demonstram reduções do uso de agrotóxico na ordem de 64,37%, 57,78% e 87,55% para inseticidas, fungicidas e acaricidas, respectivamente. Ações de capacitação e treinamento têm sido ferramentas importantes no aprendizado de técnicos e agricultores, promovendo um grande avanço tecnológico na região. Atualmente o programa atende a uma área de 10.900 hectares, com uma produção estimada de 155.726 t de manga e o envolvimento de 227 empresas, das quais 11 já certificadas.

Introdução

A globalização dos mercados é uma realidade nos dias atuais. Nos principais países importadores de frutas e hortaliças, é possível encontrar esses produtos procedentes de vários países. Isso exige que os agricultores sejam mais competitivos, adequando os seus produtos aos padrões de qualidade exigidos pelos mercados, bem como aos requisitos de ordem econômica, ecológica e social.

O mercado internacional de frutas e hortaliças está cada dia mais competitivo. Como essa atividade apresenta elevada rentabilidade, muitos agricultores estão substituindo suas áreas de plantio para explorar esses produtos, sendo a produção e a oferta crescentes a cada ano. Apesar de o consumo estar também aumentando, este é menor que a oferta, causando dificuldades na comercialização. Outro fator que está trazendo dificuldades para os agricultores e, de certa forma, aumentando os custos de produção são as exigências internacionais em relação à produção certificada para garantir a qualidade e a segurança dos alimentos.

O cenário do mercado internacional sinaliza para um movimento dos consumidores por frutas mais sadias e sem resíduos de agrotóxicos. Além disso, os distribuidores e as grandes cadeias de supermercados estão pressionando os produtores e exportadores de frutas e hortaliças para que estes deem mais atenção aos aspectos relacionados a níveis de resíduos de agrotóxicos, às questões ambientais e às condições de trabalho, higiene e saúde dos funcionários.

Os consumidores desejam frutas de qualidade, com sabor e maturação adequada, produção certificada de acordo com as normas internacionais, relacionadas à segurança dos alimentos, rastreabilidade, respeito ao ambiente e ao homem. Assim, os agricultores deverão estar atentos a essas exigências e normas, visando a certificar sua produção e estar em sintonia com os principais mercados.

Para que os agricultores possam se tornar competitivos nos mercados globalizados, será necessário que eles melhorem os procedimentos operacionais nas suas fazendas, por meio da incorporação de tecnologias capazes de otimizar os sistemas de produção, bem como procurar conhecer os principais mercados e as vantagens competitivas de sua atividade. A organização em cooperativas ou associações é de grande importância, pois permite aos produtores comercializar melhor o seu produto, ofertar produtos de qualidade ao mercado e ter transparência nos processos de produção mediante o uso de sistemas de rastreabilidade reconhecidos internacionalmente.

A preocupação das agências governamentais internacionais e dos distribuidores e redes de supermercados em relação à segurança dos alimentos é devida ao elevado número de problemas de saúde causados à população por consumirem alimentos contaminados. Dessa forma, é necessário assegurar a integridade física da população, ofertando produtos de qualidade, sadios e sem riscos à saúde do consumidor. Com isso, o mercado deseja adquirir alimentos procedentes de regiões de baixo risco de contaminação, exigindo um sistema de certificação de origem documentada e comprovada, com garantia de qualidade.

As transformações econômicas ocorridas na última década, como a crescente abertura da economia mundial, a criação e a unificação de mercados em blocos regionais e a elevação da concorrência em níveis globais têm determinado que as empresas busquem a aquisição e a manutenção de elevados níveis de competitividade. Essa competitividade está vinculada à manutenção e à ampliação de mercados e resulta de um conjunto de fatores que atuam no âmbito da unidade produtiva, do setor em que atua e da estabilidade da economia de uma forma mais ampla. Para atender a esses requisitos, os países desenvolvidos passaram a utilizar a Produção Integrada de Frutas (PIF).

A Produção Integrada é um sistema de exploração agrícola que produz alimentos e outros produtos de alta qualidade mediante o uso dos recursos naturais, tecnologias apropriadas e mecanismos reguladores capazes de minimizar o uso de insumos, assegurando uma produção sustentável a preços competitivos, respeitando e preservando o meio ambiente. A conservação e melhoria da fertilidade do solo e da diversidade do meio ambiente são componentes essenciais do sistema de produção. Equilibra-se cuidadosamente o uso de métodos biológicos, químicos e técnicos, considerando a produção, o meio ambiente, a rentabilidade e as demandas sociais (TITI et al., 1995).

Segundo Planells (1997), deve-se, por meio da PIF, atingir as seguintes metas.

- Reduzir, ao máximo, a aplicação de insumos agrícolas.
- Utilizar, preferencialmente, tecnologias que não agridam o ambiente.
- Manter a renda da exploração agrícola compatível.
- Reduzir e eliminar a fonte de contaminação ambiental gerada pela agricultura.
- Adotar tecnologias que garantam uma produção sustentável sob os pontos de vista econômico, social e ambiental.

Atualmente, observa-se o uso da PIF em muitos países produtores de frutas, como Alemanha, Áustria, Suíça e Itália, e crescimento elevado na adoção desse sistema na Espanha, Bélgica e Portugal. Nesses países, a fruta obtida com a Produção Integrada (PI) é comercializada com certificação e selo de identificação, sendo preferida pelos grandes canais de comercialização. Com relação à produção de frutas de caroço, a Áustria tem 62% da produção em PI, a Croácia 94%, a Itália 24% e a Alemanha quase 100%. Para as frutas finas ou pequenas, a situação é mais difícil, por causa da utilização de produtos químicos, principalmente no controle de roedores. A Inglaterra lidera, com 37% da produção em PI. No caso da produção de vinho, a Áustria possui 63% de áreas no Sistema de PI e a Itália apresenta, em média, 13%. A Suíça lidera com quase 100% da produção (DICKLER, 2000).

No Brasil, a Embrapa Uva e Vinho iniciou, em 1996, os estudos preliminares para implementação da PI Maçã. Dessa forma, foram estabelecidas ações de pesquisa, difusão e internalização dos conceitos junto aos meios técnico-científicos e ao setor produtivo, para, depois, construir as bases de um projeto de pesquisa para verificar a viabilidade do Sistema de PI Maçã no sul do Brasil e, paralelamente, construir as bases legais do sistema no país.

Em 1999, a Embrapa Semi-Árido, em parceria com a Embrapa Meio Ambiente, a Associação dos Produtores e Exportadores de Hortigranjeiros e Derivados do Vale do São Francisco (Valexport) e outras instituições nacionais e estrangeiras, por meio do projeto "Qualidade Ambiental em Fruticultura Irrigada no Nordeste Brasileiro – Eco-Frutas", possibilitou a elaboração do diagnóstico ambiental da região do Submédio do Vale do São Francisco. Esse diagnóstico foi o ponto de partida para a implantação do sistema de acompanhamento da Produção Integrada de Mangas e Uvas Finas de Mesa nessa região (PESSOA et al., 2000; SILVA et al., 2000).

No final de 2000, por meio do convênio entre o Mapa e o CNPq, foram liberados recursos para apoiar o desenvolvimento de projetos de Produção Integrada para diversas espécies frutíferas, a exemplo das culturas de maçã, uva, manga, mamão, pêssego, banana, caqui, otros, entre outras.

O Brasil tem hoje uma área plantada de 40,4 mil ha de frutas sob o Sistema de Produção Integrada. No Vale do São Francisco são 23.000 ha, dos quais 10.900 ha com a cultura da mangueira, correspondendo a 47% da área total sob o referido sistema.

O sistema de PIF conta com selos de conformidade, contendo códigos numéricos que possibilitam toda a cadeia produtiva obter informações sobre a procedência dos produtos, procedimentos técnicos operacionais adotados e produtos utilizados no processo produtivo. O número identificador estampado no selo reflete os registros obrigatórios das atividades de todas as fases, envolvendo a produção e as condições em que foram produzidas, transportadas, processadas e embaladas.

Além da redução dos custos, o sistema permite aumento da produtividade, alta qualidade da fruta produzida, economia do uso da água de irrigação, aumento da infiltração de água no solo e a consequente elevação do lençol freático. A PIF tem, ainda, como vantagens a diminuição dos processos erosivos e o incremento na diversidade e população de inimigos naturais de pragas e doenças.

Estado da arte da cultura

O cenário mercadológico internacional sinaliza para grandes mudanças nos sistemas de produção de frutas, exigindo dos produtores a adoção de critérios de qualidade, produção certificada e cumprimento de normas internacionais relacionadas a segurança do alimento, rastreabilidade e respeito ao meio ambiente e ao homem. A cada dia aumenta mais a conscientização dos consumidores em relação ao uso de frutas e seus derivados sem resíduos de agrotóxicos. Com isso, as grandes redes de supermercados europeus têm pressionado os exportadores para que estes adotem um sistema de certificação que garanta a qualidade dos seus produtos.

Devido ao uso abusivo de produtos químicos na agricultura, cientistas da área de fitossanidade iniciaram, na década de 1960, ações de pesquisa direcionadas ao Manejo Integrado de Pragas (MIP). O fundamento do MIP foi centrado, basicamente, na redução do uso de agrotóxicos com vistas à saúde humana, à preservação do ambiente e à redução dos custos de produção. Para a consecução daqueles objetivos, programas de pesquisa e desenvolvimento foram estabelecidos em diversas instituições científicas de vários países. Novos conceitos, como sistemas de amostragem de pragas, níveis de dano econômico, níveis de controle, controle biológico e cultural, entre outros, foram introduzidos e pesquisados. Os resultados na agricultura comercial foram altamente satisfatórios, levando-se em consideração a análise da relação custo/benefício.

Nos anos 70, devido aos bons resultados obtidos nas pesquisas com o manejo integrado de pragas, cientistas e agricultores perceberam que o uso do MIP deveria ser integrado às outras praticas agronômicas e ambientais, de forma a permitir um controle de todas as atividades dispensadas no sistema de produção, o que deu início aos Sistemas de Produção Integrada (PI). Segundo a Organização Internacional para Controle Biológico e Integrado contra os Animais e Plantas Nocivas (OICB), a Produção Integrada é um sistema de exploração agrária que produz alimentos e outros produtos de alta qualidade, mediante o uso dos recursos naturais e de mecanismos reguladores para minimizar o uso de insumos e contaminantes, assegurando uma produção agrária sustentável. Por meio dela se equilibra cuidadosamente o uso de métodos biológicos e químicos, considerando a produção, o meio ambiente, a rentabilidade e as demandas sociais.

A Produção Integrada é constituída por um conjunto de práticas agronômicas, selecionadas a partir das tecnologias disponíveis regionalmente, que, no conjunto, assegurem a qualidade e produtividade da cultura de forma sustentável. O uso de diferentes
métodos (biológicos e químicos, entre outros) é cuidadosamente aplicado levando-se
em conta as exigências dos consumidores, a viabilidade econômica da atividade e a
proteção ao meio ambiente.

Dentre as vantagens econômicas advindas da adoção do Sistema de PI, pode-se citar, de forma direta, a diminuição dos custos de produção decorrentes da racionalização no uso

de insumos agrícolas e a crescente demanda da mídia por produtos "saudáveis", os quais são identificados pela sociedade pelos selos de certificação de qualidade.

Como a adoção do sistema de produção para espécies frutíferas, o modelo passou a ser chamado de Produção Integrada de Frutas (PIF). Além dos conceitos do MIP, a PIF incorporou normas estabelecidas pela OILB. Para suprir essa demanda, novas linhas de pesquisa e desenvolvimento, envolvendo toda a cadeia produtiva de frutas, foram incorporadas aos programas institucionais de pesquisa e desenvolvimento de diversos países. Os consumidores de frutas de muitos países logo se conscientizaram e passaram a externar aos países exportadores a idéia de que frutas não deveriam estar contaminadas com substâncias químicas de qualquer natureza, priorizando, portanto, a segurança e a qualidade do alimento.

A implantação e o acompanhamento do Sistema de Produção Integrada de Mangas (Pl Manga) foi iniciada em pomares comerciais do Vale do São Francisco, por meio da parceria entre a Embrapa Semi-Árido, Valexport, Sebrae, Distritos de Irrigação dos Projetos Senador Nilo Coelho, Mandacaru, Maniçoba e Tourão, seguindo os padrões técnicos adotados mundialmente e internalizados no país pelo Mapa/Inmetro (SANHUEZA, 2000).

O Vale do São Francisco é a principal região produtora de manga do país, com cerca de 30.000 mil ha plantados. Apesar da importância econômica que a manga representa nos mercados nacional e internacional, essa cultura ainda não atingiu um nível de exportação que reflita o seu verdadeiro potencial. É uma cultura que ainda necessita de ajuste no seu sistema de produção, com o objetivo de melhorar a qualidade do produto e a sua competitividade nos mercados internacionais. Tendo em vista as condições climáticas peculiares associadas ao uso de irrigação, a região possui possibilidades excepcionais de produção de manga em todos os meses do ano, podendo, assim, suprir os principais mercados importadores em períodos de entressafra dos concorrentes. Além disso, com a crescente organização de produtores, em associações e cooperativas, as possibilidades dessa região em termos de aumento da participação no mercado externo são amplas, principalmente depois da PI Manga na região (INMETRO 2002; EMBRAPA MEIO AMBIENTE, 1999).

A produção de manga no Vale do São Francisco ocorre em todos os meses do ano, porém os meses de melhores oportunidades de produção e exportação são de julho a novembro, quando termina a produção mexicana, principal exportador mundial. O Vale do São Francisco é, hoje, a principal região produtora e exportadora de manga do Brasil, responsável por 92% das exportações brasileiras. A evolução dos volumes exportados de mangas no Vale do São Francisco e no Brasil pode ser vista na Tabela 1.

Tabela 1 - Evolução dos volumes exportados de manga no Vale do São Francisco.

ANO		EM TON.			EM US\$1.000,00)
ANO	VALE	BRASIL	PARTIC.	VALE	BRASIL	PARTIC.
1997	21.500	23.370	92%	18.600	20.182	92%
1998	34.000	39.185	87%	29.750	32.518	91%
1999	44.000	53.765	82%	28.600	32.011	89%
2000	57.200	67.000	85%	37.180	43.550	85%
2001	81.155	94.291	86%	43.443	50.814	85%
2002	93.559	103.598	90%	45.962	50.894	90%
2003	124.620	133.330	93%	68.256	73.394	93%
2004	102.286	111.181	92%	59.158	64.303	92%
2005	104.654	113.758	92%	66.724	72.526	92%
2006	96.600	105.000	92%	69.920	76.000	92%
2007	107.082	116.047	93%	83.281	89.643	93%

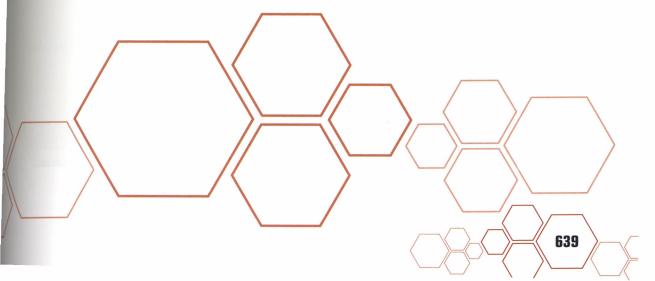
Fonte: Valexport.

A implantação do Projeto de Produção Integrada de Manga no Vale do São Francisco foi de fundamental importância para a melhoria do sistema de produção da referida cultura, sob os pontos de vista agronômico, econômico, social e ambiental. A melhoria contínua do sistema de produção em uso, devido à inserção dos avanços tecnológicos obtidos nos projetos de pesquisa, tem contribuído decisivamente na melhoria da qualidade das mangas produzidas. Outro aspecto positivo do programa é a possibilidade da certificação das frutas, ampliando as possibilidades de exportação.

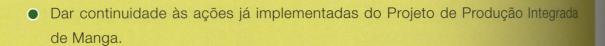
Objetivos gerais

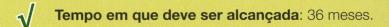
Implementar e consolidar o sistema de Produção Integrada de Manga na região semiárida Brasileira, de acordo com as Diretrizes Gerais estabelecidas pela Instrução Normativa nº 20, do Mapa (BRASIL, 2001), e pelas Normas Técnicas Específicas para a Produção Integrada de Manga (LOPES *et al.*, 2003).

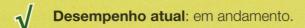
Objetivos específicos


- Diagnosticar as demandas tecnológicas do setor e apoiar as ações de pesquisas capazes de melhorar os sistemas de produção em uso.
- Desenvolver e implantar o sistema de rastreabilidade, mantendo e operando o banco de dados com os históricos de localização e utilização de produtos, exigidos pelo sistema. Adotar a utilização de Caderno de Campo e de Pós-Colheita para permitir a rastreabilidade do sistema.
- Intensificar as ações de monitoramento da ocorrência de artrópodes, patógenos e plantas daninhas, aumentando a segurança dos produtores em relação à adoção das recomendações técnicas.
- Monitorar os parâmetros relacionados à qualidade da água utilizada nos sistemas de irrigação, como a contaminação por agrotóxicos, salinidade e contaminação por metais pesados e micro-organismos.
- Desenvolver um Sistema de Alerta de Pragas e Doenças com base em dados climáticos, ocorrências de insetos e monitoramento de esporos.

continua...




...continuação


- Reduzir o impacto ambiental por meio do uso de práticas racionais de manejo da água, do solo e da planta, manejo integrado de pragas, doenças e plantas daninhas, manejo pré e pós-colheita e uso racional de agrotóxicos.
- Realizar análise do impacto ambiental nos Sistemas de Produção Integrada e Convencional e comparar os resultados.
- Avaliar a qualidade das mangas, com ênfase nas análises de resíduos de agrotóxicos.
- Desenvolver um manual sobre Boas Práticas Agrícolas (BPAs) e um plano de Análise de Perigos e Pontos Críticos de Controle (APPCC) para as empacotadoras.
- Realizar treinamentos de técnicos envolvidos com a produção de mangas, bem como capacitar pesquisadores, extensionistas, técnicos e produtores para a condução do Sistema PI Manga.
- Disponibilizar aos produtores inseridos no programa e àqueles que farão adesão todo o suporte técnico necessário para que possam conduzir bem as atividades indispensáveis.
- Simular auditorias técnicas nas propriedades participantes para ajustar os pontos de não-conformidade, deixando-as aptas à Certificação.
- Elaborar publicações técnicas objetivando divulgar o sistema de Produção Integrada de Manga e dar suporte aos treinamentos.

Metas

- Aferidores da meta: adesão de novos produtores ao Sistema Pl Manga e apoio àqueles que já participam.
- Concluir e publicar as novas diretrizes e normas técnicas específicas para o Sistema Pl Manga.
 - √ Descrição da meta: corrigir e publicar as novas Normas Técnicas Específicas da Pl
 Manga de acordo com as orientações da Coordenação do Programa de Produção
 Integrada de Frutas do Ministério da Agricultura, Pecuária e Abastecimento (Mapa).
 - √ Tempo em que deve ser alcançada: 6 meses.
 - √ Desempenho atual: as novas normas já foram encaminhadas ao Mapa para análise. Aguarda-se o retorno com as sugestões de ajuste.
 - √ Desempenho desejado: fazer os ajustes sugeridos pelo Mapa e encaminhá-las para publicação.
 - √ Aferidores da meta: diretrizes e normas ajustadas e publicadas.

continua...

...continuação

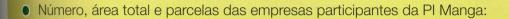
- Avaliar e comparar sistemas de irrigação no programa de Produção Integrada de manga.
 - Descrição da meta: racionalizar o uso e a conservação de água e energia.
 - √ Tempo em que deve ser alcançada: 36 meses.
 - ✓ **Desempenho atual**: muito embora existam tecnologias de irrigação já desenvolvidas para o manejo racional da água na mangueira, tanto por microaspersão quanto por gotejamento, a irrigação vem sendo praticada empiricamente, resultando em maiores custos de produção, em razão de maior uso de água e energia, interferência na eficácia de produtos químicos, além de possíveis impactos ambientais associados à erosão e ao aumento da salinidade.
 - Aferidores da meta: programas de manejo para irrigação, estabelecidos por meio do monitoramento da umidade do solo com tensiômetros, para os sistemas de irrigação por microaspersão e gotejamento.
- Implantar o manejo adequado da fertilização e avaliar a nutrição das plantas.
 - Descrição da meta: correlacionar a fertilização com o estado nutricional da planta, a fim de se indicar o manejo adequado dos fertilizantes e utilizar indicadores da qualidade do solo para fins de sustentabilidade.
 - √ Tempo em que deve ser alcançada: 36 meses.
 - √ Desempenho atual: manejo racional da fertilização pouco aplicado e inexistência de indicadores da qualidade do solo.
 - √ Aferidores da meta: programa de fertilização estabelecido, de acordo com análise química do solo, tecidos vegetais e indicadores de qualidade do solo definido.

continua...

.continuação

- Implantar o processo de avaliação de resíduo de agrotóxicos nas mangas a serem processadas pelas empacotadoras.
 - √ Descrição da meta: avaliar a incidência de resíduos de agrotóxicos nas mangas, por ocasião da colheita.
 - √ Tempo em que deve ser alcançada: 36 meses.
 - √ Desempenho atual: não é feita como rotina.
 - √ Aferidores da meta: sistematizar o processo de análises.
- Avaliar os custos financeiros, econômicos, sociais e ambientais da implementação do Pl Manga.
 - √ Descrição da meta: comparar os sistemas produtivos quanto a rentabilidade, efeitos positivos e negativos do Sistema PI Manga nas dimensões econômica, social e ambiental.
 - √ Tempo em que deve ser alcançada: 36 meses.
 - √ Desempenho atual: esses estudos não são realizados de maneira sistemática.
 - √ Aferidores da meta: estudos comparativos realizados.
- Implementar um plano de Análise de Perigos e Pontos Críticos de Controle (APPCC)
 para o processo de embalagem das frutas.
 - √ Descrição da meta: implantação do sistema APPCC.
 - √ Tempo em que deve ser alcançada: 18 meses.

...continuação


Desempenho atual: não existe, de maneira sistematizada.



Aferidores da meta: sistema APPCC implantado.

- Capacitar técnicos e produtores dentro dos princípios básicos estabelecidos no Sistema de PI Manga, para atuarem nos municípios localizados na região semiárida brasileira.
 - ✓ Descrição da meta: realizar quatro eventos/ano nas cidades de Petrolina (PE), Juazeiro (BA), Livramento de Nossa Senhora (BA) e Ipanguassú (RN), para capacitar 40 pessoas em cada evento.
 - Tempo em que deve ser alcançada: 36 meses.
 - Desempenho atual: os técnicos e produtores necessitam ser atualizados em relação aos avanços tecnológicos e ajustes ocorridos no Sistema PI Manga.
 - √ Aferidores da meta: número de eventos realizados e técnicos capacitados.
- Validar o sistema de produção recomendado no PI Manga nas áreas de atuação do projeto.
 - √ Descrição da meta: implementar o sistema de Produção Integrada de Manga em todas as áreas de abrangência do projeto.
 - √ Tempo em que deve ser alcançada: 36 meses.
 - √ Desempenho atual: não existem sistemas validados para o Sistema PI Manga.
 - √ Aferidores da meta: sistemas implementados e avaliados.

Resultados

√ 10.900 hectares.

1.486 parcelas monitoradas.

- Publicação das Normas Técnicas Específicas da PI Manga (NTE PI Manga).
- Elaboração dos Cadernos de Campo (Seção 1 e Seção 2) e de Pós-Colheita e da grade de agrotóxicos.
- Implantação do Sistema de Avaliação da Conformidade para auditoria da PI Manga;
- Instalação de sete estações climáticas para subsidiar aos agricultores as informações em tempo real e para viabilizar a montagem do sistema de alerta fitossanitário.
- Orientações para construção de depósitos ou armazéns de produtos químicos das empresas que atendem aos requisitos da PI Manga.
- Realização do programa de orientação sobre manejo e destinação das embalagens vazias dos produtos químicos, as quais estão sendo conduzidas à Central de Recolhimento de Embalagens na região.
- Certificação de 11 empresas, participantes do programa PI Manga (Tabela 2).

- Racionalização do uso de agrotóxicos na cultura da mangueira por meio do monitoramento de pragas e doenças, o que permitiu a redução do uso de produtos químicos (Tabela 3).
- Capacitação de técnicos e agricultores no Sistema PI Manga desde o início do programa até abril 2008, um total de 2.768 pessoas, conforme Tabela 4 e publicações de artigos (Tabela 5).

Tabela 2 - Relação das empresas certificadas pelo programa PI Manga.

N°	EMPRESA	ÁREA	OAC	CERTIFICAÇÃO	PAPEL
1	Agropecuária Boa Esperança	117,74	Ibametro	PIF	Empresa
2	Eurico Ribeiro	15	Ibametro	PIF	Produtor
3	Manoel Alexandre de Souza	5,33	BVQI	PIF	Produtor
4	Masakatsu Otsuka	126,5	Ibametro	PIF	Produtor
5	Nova Fronteira	339,01	Ibametro	PIF	Empresa
6	Orildo Mascarello	4,5	BVQI	PIF	Produtor,
7	Paulo Almeida de Carvalho	11,01	Ibametro	PIF	Produtor
8	Pritam Frut Exp. Ltda	65	SGS ICS	PIF	Empresa
9	Timbaúba Agrícola	96,64	SGS ICS	PIF	Empresa
10	Timbaúba Guararapes	234,18	SGS ICS	PIF	Empresa
11	Upa Agrícola	240	SGS ICS	PIF	Empresa
	Total	1.254,91			

Fonte: Inmetro/2008

Tabela 3 - Índices de redução de produtos químicos devido à utilização do sistema de monitoramento de pragas e doenças.

Especificação	2002	2003	2004	2005	2006	2007
Inseticidas (% média de redução)	39,2	43,3	70	73,8	84,97	
Fungicidas (% média de redução)	55,2	60,7	31	65,38	67,32	66,47
Acaricidas (% média de redução)	-	1 2	72	87	99,21	92
Herbicidas (% média de redução)	73	80	95	99,76	100	100

Tabela 4 - Capacitação de engenheiros agrônomos, técnicos agrícolas, estudantes e produtores em Produção Integrada de Manga, com ênfase no monitoramento de pragas e doenças.

Especificação	2001			2002		2003		2004		2005	2006	2007	2008 (Jan/Abr)	Total		
	T*	P*	TeP	Total	Р	TeP	Total	TeP	Total	TeP	Total	TeP	TeP	TeP	TeP	
Técnicos capacitados em PIF	58	226	32	316	189		189	198	198	307	307	112	92	34	20	
Aprovale	-	7		7	-	1	-	31	31	-	-	-	-	-	-	
CAJ-BA	-	-	-	-	-/	09	09	- 1		-	-	-	-	-		
Cefet	-		68	68		95	95	46	46	95	95	82	50	39	39	
Codevasf		-	-	-	-	21	21	63	63	-	-	2	-	-	-	
Curso Especialistas em Auditoria	-		-		2	55	55	86	86		_	2	-			
Curso Monitores em PIF	-	-	7-	-		-14	-	64	64	-		-		-		
DISNO	-	-				49	49	33	33	-	-	-	-	-		
EAJ (Escola Agrotécnica Juazeiro-BA)	-		-	-	-	71	71	-	-	-	-	-	-	-		
Equipe Fitossanidade (bolsistas, estagiários e laboratoristas)	_	-	21	21	-1	-			-	-	÷.	-	-	-	-	
Famesf	-	-	16	16	- 1		1	-	-	1		-	-	-	-17.73	
Palestras em empresas exportadoras	-	159	15	174	169	-	169	1	-		-	-	2	1		
Pequenas empresas com MIP (estagiários, técnicos e produtores)	-	-	15	15	-		-	- 2	-		-	-	-			
SAJ (Secretaria de Agricultura de Juazeiro-BA)	-	-	-		-	21	21	72	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-	-	7	-	_	•	
Syngenta	-	-	-	-	-2	-	-	14	14	1		-		-	-	
Treinamento Ipanguaçú-RN	-	-	-	-	-	35	35	25	25	-	-	-	-	-	-	
Treinamento Jaboticabal-SP	-	-	-		-	18	18	÷	_	-	-	-	-		-	
Treinamento Livramento-BA	-	-	7	-	-	08	08	83	83		-		-			
Total	58	385	167	610	358	382	740	643	643	326	402	194	142	73	59	2.768

^{*}T – teórico

647

^{*}P - prático

Tabela 5 - Trabalhos publicados pelo projeto PI Manga.

PUBLICAÇÕES	Quantidade
Artigo em Periódico	2
Edição de Livro	2
Capítulos Publicados em Livro Nacional	8
Série Documentos	5
Resumos Simples em Congressos Nacionais	17
Periódico Internacional Acta Horticulturae	2
Resumos em Eventos Internacionais	6
Circular Técnica	1
Instruções Técnicas	7
Informe Agropecuário	1

 Divulgação das atividades desenvolvidas no âmbito do Projeto de Produção Integrada de Manga, em jornais, sites, emissoras de rádios e televisão (Tabela 6).

Tabela 6 - Atividades de divulgação do projeto PI Manga realizadas.

ATIVIDADES	Quantidade
Divulgação da PI Manga na mídia	25
Visitas Técnicas realizadas às empresas	230
Palestras proferidas	40
Coordenação de cursos	15
Cursos para agrônomos para Avaliação da Conformidade	02
Reuniões técnicas realizadas	11
Reunião do Comitê Técnico	30
Reunião de coordenadores	5
Anuário Brasileiro da Fruticultura	2
Participação em minicursos	3
Feira Nacional	3
Dia de Campo	12
Workshop	1

Benefícios ambientais

O diagnóstico ambiental das parcelas de produção de mangas foi uma etapa muito importante do projeto, pois possibilitou identificar os procedimentos adotados pelas cadeias produtivas de manga no Vale do São Francisco. Os parâmetros avaliados por ocasião do diagnóstico foram qualidade da água de irrigação e drenagem, fertilidade do solo, salinidade e existência de metais pesados.

O conhecimento técnico dos procedimentos utilizados nas cadeias produtivas de manga foi realizado em escala de parcelas, as quais foram identificadas e georreferenciadas, adotando-se os procedimentos recomendados pelos programas de certificação ISSO 14001, ISSO 9001 e EurepGap. Dessa forma, foi possível desenvolver ações que evitassem desperdícios de matéria e energia nos agroecossistemas, que minimizassem a poluição e contaminação ambiental, de forma a permitir o uso sustentável dos recursos naturais.

Outro grande benefício ambiental da Produção Integrada foi a racionalização do uso de agrotóxicos na cultura da mangueira, por meio do uso do monitoramento de pragas e doenças. Em termos médios, houve redução da ordem de 62,2%, 57,6%, 87,5% e 91,2% para inseticida, fungicida, acaricida e herbicida, respectivamente.

Existe, ainda, certo desconhecimento da abrangência da legislação existente no país, relacionada com as atividades agrícolas e os impactos ambientais. Isso poderá ser também facilmente sanado com a implantação total do programa previsto de Formação de Monitores Ambientais.

Ganhos econômicos

Segundo Araújo (2006), para a avaliação de impacto econômico dessa tecnologia, utiliza-se a fórmula de Redução de Custos, visto que nessa análise se compara a redução do custo de produção da manga obtido com a utilização do método de cultivo de Produção Integrada em relação ao custo típico de produção de manga da região alvo do estudo, o Submédio São Francisco, que é o maior polo de exportação de manga do país. Os custos de produção anterior (sem a metodologia) e atual (com a metodologia) são estimados com base nas informações levantadas junto aos produtores da região do Submédio São Francisco (Tabela 7).

Tabela 7 - Ganhos de redução de custos regionais.

Ano	Unidade de medida (um)	Custo anterior (R\$/um) (A)	Custo atual (R\$/um) (B)	Economia obtida (R\$/um) (C = (A-B))	Participação Embrapa (%) (D)	Ganhos líquidos Embrapa (R\$/um) E = (C*D)/100	Área de adoção (um) (F)	Benefício econômico (R\$) G = (E*F)
2001		7.585.00	7.205.75	379,25	20	75,85	3171	240.520
2002		7.972.00	7.573.40	398,60	20	79,82	3719	296,479
2003		7.972.00	7.573.40	398,60	20	79,82	4462	355.711
2004		7.972.00	7.573.40	398,60	20	79,82	4908	391.266
2005		7.972.00	7.573.40	398,60	20	79,82	5399	430.408
2006		7.972.00	7.573.40	398,60	20	79,82	5938	473.377
2007		7.972.00	7.573.40	398,60	20	79,82	6531	520,651
2008		7.972.00	7.573.40	398,60	20	79,82	7184	572.708
2009		7.972.00	7.573.40	398,60	20	79,82	7902	629.947
2010		7.972.00	7.573.40	398,60	20	79,82	8692	692.926
2011		7.972.00	7.573.40	398,60	20	79,82	9561	762.203
2012		7.972.00	7.573.40	398,60	20	79,82	10517	838.415
2013	Hectare	7.972.00	7.573.40	398,60	20	79,82	11568	922.201
2014		7.972.00	7.573.40	398,60	20	79,82	12724	1.014.357
2015		7.972.00	7.573.40	398,60	20	79,82	13996	1.115.761
2016		7.972.00	7.573.40	398,60	20	79,82	15395	1.227.289
2017		7.972.00	7.573.40	398,60	20	79,82	16934	1.349.978
2018		7.972.00	7.573.40	398,60	20	79,82	18627	1.484.944
2019		7.972.00	7.573.40	398,60	20	79,82	20489	1.633.383
2020		7.972.00	7.573.40	398,60	20	79,82	22537	1.796,650
2021		7.972.00	7.573.40	398,60	20	79,82	24790	1.976.259
2022		7.972.00	7.573.40	398,60	20	79,82	27269	2.173.885
2023		7.972.00	7.573.40	398,60	20	79,82	29995	2.391.201
2024		7.972.00	7.573.40	398,60	20	79,82	32994	2.630.282
2025		7.972.00	7.573.40	398,60	20	79,82	36293	2.893.278

Obs.: Projeções de nível de adoção feitas considerando-se incrementos de 10% ao ano no nível de adoção de tecnologia para o período de 2003-2025.

Mesmo considerando que a maior parte das tecnologias que dão corpo à metodologia de Sistema Integrado de Manga para as condições do polo de produção do Submédio São Francisco foram geradas ou adaptadas, bem como implantadas e acompanhadas pela Embrapa Semi-Árido, nessa análise atribuiu-se a ela uma participação de somente 20% nos resultados obtidos (Tabela 7). O nível de adoção da metodologia de 2001, 2002 e 2003 foi determinado pela equipe de execução do trabalho de monitoramento; a partir de 2004 até 2025 estima-se uma taxa de aumento no nível de adoção da ordem de 10% ao ano (Tabela 7). É interessante argumentar que essa projeção é bastante conservadora, considerando que, a partir de 2004, os grandes mercados internacionais de frutas, como a União Europeia e os Estados Unidos, somente permitirão a entrada em seus mercados de produtos cultivados sob a forma de Produção Integrada, ou metodologia similar. Isso porque os consumidores de tais mercados estão cada vez mais exigentes tanto no tocante aos aspectos salutares dos produtos, quanto no tocante aos níveis de danos que seu processo de fabricação causa ao meio ambiente (ARAÚJO, 2006).

A utilização neste estudo do hectare como unidade de medida está fundamentada no fato de tratar-se de uma metodologia de Sistema de Produção. Nessa situação, a economia rural sempre utiliza tal medida, seja em estudos sobre determinação de custos de produção, seja em pesquisa sobre identificação de itinerários técnicos. Por exemplo, todos os custeios e investimentos para fruticultura financiados pelas redes de bancos oficiais utilizam o hectare como unidade de medida (ARAÚJO, 2006).

O impacto econômico aqui analisado – a redução dos custos de produção – está relacionado, principalmente, com a redução no uso de pesticidas (fungicida, inseticida e herbicida), de fertilizante, de água e de *diesel*. Entretanto, é importante assinalar que, além dos ganhos unitários de redução de custos descritos anteriormente, também existem outros importantes impactos econômicos decorrentes da introdução da Produção Integrada no cultivo da manga, como: permitir que o produto tenha maior penetração no mercado internacional, que cada vez com mais intensidade está exigindo qualidade; e agregar valor ao produto, visto que, como os frutos são mais saudáveis e isentos de resíduos tóxicos, alcançam, consequentemente, melhores preços no mercado do que o produto tradicional (ARAÚJO, 2006).

Ganhos da sociedade em termos de contaminação do produto agrícola

Sempre se comentou que o nível de resíduos de agrotóxicos nas frutas produzidas no Brasil, por meio do sistema de cultivo convencional, estaria muito elevado, sendo o que se concluía a partir de denúncias feitas por meio da mídia quando resultados de algumas análises de produtos, geralmente encomendadas por organizações públicas ou privadas, eram divulgados.

A partir de 2003, após a implementação do Sistema de Produção Integrada de Frutas, o Ceagesp e o Instituto Biológico de São Paulo (IB) realizaram 1.978 análises de resíduos de pesticidas em diferentes produtos hortifrutícolas. O método empregado pelo IB é o de multirresíduos DFG S-19, cuja pesquisa busca identificar e quantificar 91 princípios ativos de interesse no controle químico de pragas e doenças vegetais (IEA, 2008).

Entre as frutas analisadas constavam a maçã, o melão e a uva fina de mesa, produtos que estão hoje praticamente incluídos no sistema de Produção Integrada; os resultados podem ser verificados na Tabela 8, montada a partir dos dados publicados por IEA (2008).

Tabela 8 - Nível de resíduos de agrotóxicos encontrados em frutas produzidas sob Sistema de Produção Integrada.

Produtos	Amost analisa		Sem dete	cção	Abaixo do	LMR	Acima do	Sem registro		
	Número	%	Número	%	Número	%	Número	%	Número	%
Maçã	26	7	3	12	21	81	0	0	2	8
Melão	24	7	17	71	0	0	0	0	7	29
Uvas Finas	5	1	3	60	2	40	0	0	0	0
Pêssego	39	11	18	46	9	23	2	5	10	26

Fonte: Seção do Centro de Qualidade Hortigranjeira - SECQH/Ceagesp.

Pode-se verificar que nos produtos que já se encontravam sob Produção Integrada, como a maçã, o melão e a uva fina de mesa, não foram detectados resíduos acima do Limite Máximo de Resíduos (LMR); contudo, no pêssego, que até 2003 ainda não era produzido sob o sistema de Produção Integrada, em 5% das amostras foram detectados resíduos acima do LMR. Por outro lado, somente em uvas finas não foram detectados resíduos de produtos não registrados, sendo este ainda o grande gargalo que dificulta a implantação plena dos Sistemas de Produção Integrada no Brasil.

Capacitação dos agentes envolvidos

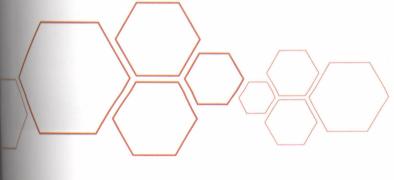
Por meio do projeto PI Manga, foram realizados, para agricultores e estudantes, treinamentos, teóricos e práticos, sobre a implantação e a condução do Sistema de Produção Integrada, com visitas às áreas das empresas participantes do programa. Os referidos treinamentos, ministrados por pesquisadores e bolsistas da Embrapa Serni-Árido, enfatizaram a identificação de sintomas de pragas e doenças no campo, os aspectos agronômicos da cultura, o preenchimento das planilhas de amostragem e dos Cadernos de Campo e de Pós-Colheita (Figuras 1 e 2).

Figura 1 - Grupo de técnicos participando de aulas teóricas sobre a Produção Integrada de Manga.

Figura 2 - Grupo de técnicos participando de aulas práticas sobre manejo integrado de pragas da mangueira.

Conclusão

Num mercado altamente competitivo, os exportadores brasileiros de frutas deverão ofertar para os mercados importadores um produto de qualidade que atenda às exigências dos consumidores. Assim, a Produção Integrada representa um conjunto de técnicas voltadas à produção de alimentos de melhor qualidade, especialmente no que se refere a baixos níveis de resíduos de agrotóxicos e a impacto ambiental do sistema de produção.


A implantação do programa de Produção Integrada de Manga está baseada na integração entre pesquisadores, produtores, consultores e extensionistas, tanto do setor público quanto do privado. Para dar suporte tecnológico necessário ao programa, vários projetos de pesquisas estão sendo desenvolvidos, com o objetivo de gerar novas tecnologias e novos produtos e serviços que se compatibilizem com a realidade dos produtores de uvas, aumentar a produtividade e melhorar a qualidade dos produtos e serviços, fazendo com que eles se tornem mais competitivos e atendam às exigências impostas pelos principais

mercados importadores. O grande desafio é tornar esse sistema de produção mais eficiente em relação ao sistema convencional, por meio da racionalização do uso dos insumos, de forma a preservar a qualidade ambiental das áreas de produção.

Fazem parte do programa de Produção Integrada de Uvas no Vale do São Francisco 227 produtores, totalizando uma área de 10.900 hectares. Como resultados relevantes do programa, podem-se citar a melhoria do nível tecnológico e organizacional das propriedades, a racionalização do uso de agrotóxicos, a maior atenção às questões de preservação ambiental das áreas de produção e a estruturação de um sistema de rastreabilidade.

Por exemplo, no sistema de Produção Integrada de Manga, o MIP representa, aproximadamente, 80% das atividades do manejo da cultura e preconiza que o controle de pragas deve ser realizado por meio de técnicas de monitoramento, visando a manter a população das pragas abaixo dos níveis que causem danos econômicos. Essa prática de acompanhamento racional das pragas trouxe maior segurança na tomada de decisão para o controle químico. A adoção das atividades de monitoramento de pragas e doenças resultou no aumento da eficiência do uso de agrotóxicos, com redução média da ordem de 62%.

O sistema de Produção Integrada de Manga apresenta uma série de vantagens competitivas em relação ao Sistema Convencional, como o controle de todas as atividades no manejo da cultura e a racionalização no uso dos agrotóxicos, assegurando qualidade e produtividade em uma base sustentável e possibilitando a rastreabilidade das frutas e a certificação da produção e do produto, com a obtenção de um selo de reconhecimento internacional.

Grade de agrotóxicos

Fungicidas

Nome			Grupo	Classe	Dosa	igem	Inter (Di			01 2
Comercial	Nome Técnico	Classe	Químico	Toxicoló- gica	100 I H ₂ O	На	Segurança	Aplicação	Praga-Alvo	Observações
Amistar	Azoxistrobina	Fungicida	Estrobilurina	IV	15g	-	2	P1.	Antracnose – Colletotrichum gloeosporioides	Utilizar espalhante adesivo não-iônico Fixade a 0,05% do volume da calda de aplicação: (50 mL de Fixade / 100 l água).
Amistar	Azoxistrobina	Fungicida	Estrobilurina	IV	15g	150g	2	-	Antracnose – Colletotrichum gloeosporioides	
Condor 200 SC	Bromuconazol	Fungicida Sistêmico e de contato	Triazol	III	-	400mL	20	15	Oídio - Oidium mangiferae	
Cercobin 500 SC	Tiofanato- metílico	Fungicida	Benzimidazol	IV	140mL	-	10		Antracnose – Colletotrichum gloeosporioides	
Cuprozeb	Mancozeb + oxicloreto de cobre	Fungicida	Ditiocar- bamato + inorgânico	Ш	200g	¥	21	15	Antracnose – Colletotrichum gloeosporioides	
Contact	Hidróxido de Cobre	Fungicida	Inorgânico	IV	250g	-		7	Antracnose – Colletotrichum gloeosporioides	
Cobox	Oxicloreto de Cobre	Fungicida de contato	Inorgânico	IV	200g	-	7	14	Antracnose – Colletotrichum gloeosporioides Verrugose – Elsinoe mangi- ferae	Incompatível com ácido, polisulfeto de cálcio.
Cobre Atar BR	Óxido Cuproso	Fungicida Bactericida de contato	Inorgânico	IV	240g		14	7	Antracnose – Colletotrichum gloeosporioides Verrugose – Elsinoe mangi- ferae	
Cobre Atar MZ	Óxido Cuproso	Fungicida Bactericida de contato	Inorgânico	IV	240g		14	7	Antracnose – Colletotrichum gloeosporioides Verrugose – Elsinoe mangi- ferae	

Nome	and the same		Grupo	Classe	Dosa	gem	Inter (Di		Praga-Alvo	Observações
Comercial	Nome Técnico	Classe	Químico	Toxicoló- gica	100 I H ₂ O	На	Segurança	Aplicação	Praga-Aivo	Observações
Comet	Piraclostrobina	Fungicida	Estrobilurina	II	40 mL	-	7	15	Antracnose – Colletotrichum gloeosporioides	
Constant	Tebuconazol	Fungicida sistêmico	Triazol	III	100mL	-	20	-	Antracnose – Colletotrichum gloeosporioides Oídio - Oidium mangiferae	
CUP001	Oxicloreto de Cobre	Fungicida	Inorgânico	IV	200 g	-	14	7	Verrugose – Elsinoe mangi- ferae	
Cupravit Azul BR	Oxicloreto de Cobre	Fungicida de contato	Inorgânico	IV	300g	-	7	15	Antracnose – Colletotrichum gloeosporioides	<u>-</u>
Dithane NT	Mancozebe	Acaricida/ Fungicida	Alquilenobis (ditiocarba- mato)	Ш	200 g		20	-	Antracnose – Colletotrichum gloeosporioides	
Domark 100 CE	Tetraconazol	Fungicida sistêmico	Triazol	II	50-100	-	7	15	Antracnose – Colletotrichum gloeosporioides	-
Elite	Tebuconazol	Fungicida sistêmico	Triazol	111	100mL	-	20	•	Antracnose – Colletotrichum gloeosporioides Oídio – Oidium mangiferae	÷
Folicur 200 CE	Tebuconazol	Fungicida sistêmico	Triazol	Ш	100mL	-	20	15	Antracnose – Colletotrichum gloeosporioides Oídio – Oidium mangiferae	<u>.</u>
Kumulus DF	Enxofre	Fungicida Acaricida de contato	Inorgânico	IV	300g	7	-		Oídio - Oidium mangiferae	Incompatível com dinitros.
Kumulus DF-AG	Enxofre	Fungicida acaricida de contato	Inorgânico	IV	300g	_	-	-	Oídio - Oidium mangiferae	Não misturar com produtos fortemente alcalinos.
Garant	Hidróxido de Cobre	Fungicida de contato	Inorgânico	IV	250g	T _e	7	-	Antracnose – Colletotrichum gloeosporioides	÷
Garant BR	Hidróxido de Cobre	Fungicida bactericida de contato	Inorgânico	III	250g	-	7	14	Antracnose – Colletotrichum gloeosporioides	Não misturar com produtos à base de fósforo. Incompatível com Ziram, Dicloran e Carbamatos.
Morestan BR	Chinomethio- nat	Fungicida	Quinoxalina	III	75g	-	14	-	Oídio – Oidium mangiferae	-

...continuação

Nome	N T ź	Classe	Grupo	Classe Toxicoló-	Dosa	igem	Inter (Di		Dun vo Alva	01
Comercial	Nome Técnico	Classe	Químico	gica	100 I H ₂ O	На	Segurança	Aplicação	Praga-Alvo	Observações
Magnate 500 CE	lmazalil	Fungicida sistêmico e de contato	Imidazol	1	200 mL		- 1	-	Antracnose – Colletotrichum gloeosporioides	Muito perigoso para o meio ambiente.
Manzate 800	Mancozeb	Fungicida	Ditiocarba- mato	III	200g	-	21	15	Antracnose – Colletotrichum gloeosporioides	
Manzate GRDA	Mancozeb	Fungicida acaricida	Ditiocarba- mato	Ш	200g	-	21	15	Antracnose – Colletotrichum gloeosporioides	
Mancozeb Sipcam	Mancozeb	Fungicida	Ditiocarba- mato	III	200g	-	20	-	Antracnose – Colletotrichum gloeosporioides	
Nativo	Trifloxistrobina / Tebuconazol	Fungicida	Estrobilurina/ Triazol	III	300 mL	-	20	-	Mofo-cinzento – Botrytis cinérea	-
Pomme	Tiofanato- metilico	Fungicida	Benzimidazol (precursor de)	Ш	100- 150 mL	-	14	10	Antracnose – Colletotrichum gloeosporioides	•
Propose	Oxicloreto de Cobre	Fungicida bactericida de contato	Inorgânico	IV	400g	-	7	14	Antracnose – Colletotrichum gloeosporioides Verrugose – Elsinoe mangiferae	Produto perigoso ao meio ambiente.
Ramexane 850 PM	Oxicloreto de Cobre	Fungicida de contato	Inorgânico	IV	300g		7	15	Antracnose – Colletotrichum gloeosporioides Verrugose – Elsinoe mangiferae	Incompatível com TMTD, dicloran, carbamatos e cloropropilat.
Riza 200 EC	Tebuconazol	Fungicida	Triazol	1						
Reconil	Oxicloreto de Cobre	Fungicida Bactericida de contato	Inorgânico	IV	400g	-	7	14	Antracnose – Colletotrichum gloeosporioides Verrugose – Elsinoe mangiferae	Incompatível com TMTD, DNOC, enxofre cálcico e ditiocarbamatos.
Recop	Oxicloreto de Cobre	Fungicida Bactericida de contato	Inorgânico	IV	200g		7	10	Verrugose – Elsinoe mangiferae	Incompativel com TMTD,DNOC, enxofre cálcico e diocarbamatos.

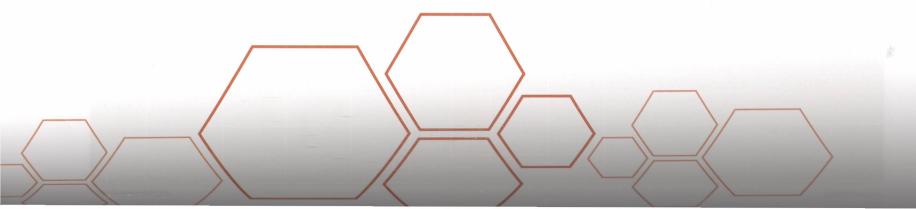
Nome			Grupo	Classe	Dosa	gem	Inter (Di		Praga-Alvo	Observações
Comercial	Nome Técnico	Classe	Químico	Toxicoló- gica	100 l H ₂ O	На	Segurança	Aplicação		Observações
Score	Difeconazole	Fungicida sistêmico	Triazol	1	20mL		7	14	Oídio - Oidium mangiferae Antracnose - Colletotrichum gloeosporioides	
Sportak 450 CE	Prochloraz	Fungicida contato	lmidazolil- carboxamida	I	110mL	7			Antracnose – Colletotrichum gloeosporioides	
Sulficamp	Enxofre	Fungicida/ Acaricida	Inorgânico	IV	700g	-		15	Oídio - Oidium mangiferae Ácaro da mal-formação – Eriophyes mangiferae	Incompatível com produtos à base de óleo e com calda sulfocálcica.
Triade	Tebuconazol	Fungicida sistêmico	Triazol	Ш	100	-	20	15	Antracnose – Colletotrichum gloeosporioides Oídio - Oidium mangiferae	
Tecto SC	Thiabendazol	Fungicida sistêmico	Benzimidazol	Ш	100- 200	-	14	-	Antracnose – Colletotrichum gloeosporioides Oídio - Oidium mangiferae	
Trifmine	Triflumizol	Fungicida sistêmico	Imidazol	IV	25-50g	-	7	15	Oídio - Oidium mangiferae	

Observação: Os fungicidas que não constam nesta Grade e estejam registrados podem ser incluídos e deverão cumprir as restrições feitas a produtos ou grupos de pesticidas já citados. Para mais informações sobre os produtos registrados, pode-se consultar o programa SIA em http://www4.anvisa.gov.br/agrosia/asp/default.asp.

Inseticidas e Acaricidas

Nome	Nome Técnico	Classe	Grupo	Classe Toxicoló-	Dosagem		Intervalo (Dia)		Praga-Alvo	Observações	
Comercial	Nome rechico	Classe	Químico	gica	100 I H ₂ O	Ha	Segurança	Aplicação	Flaga-Alvo	Observações	
Bistar 100 EC	Bifentrina	Acaricidas/ Inseticidas	Piretróide	III	30mL	_	7	-	Trips – Selenotripes rubro- cincttus	-	
Brigade 100 EC	Bifentrina	Acaricidas/ Inseticidas	Piretróide	III	30mL	-	7	-	Trips – Selenotripes rubro- cincttus		
Capture 100 EC	Bifentrina	Acaricidas/ Inseticidas	Piretróide	III	30mL	-	7	-	Trips – Selenotripes rubro- cincttus	-	
Dithane NT	Mancozebe	Acaricida/ Fungicida	Alquilenobis (ditiocarba- mato)	Ш	200g	-	20	-	Antracnose – Colletotrichum gloeosporioides		
Dipterex 500	Trichlorphon*	Inseticida de contato e ingestão	Organofos- forado	II	0,31	į	7	÷	Trips – Selenotripes rubro- cincttus Moscas-das-frutas – Anas- trepha fraterculus e Ceratitis capitata Lagarta-de-fogo – Megalopy- ge lanata	Incompatível com produtos alcalinos.	
Eltra 400SC	Carbosulfano	Acaricida/ Inseticida	Metilcar- bamato de benzofura- nila)	II	75mL	-	15	•	Trips – Selenotripes rubro- cincttus		
Fênix 400 SC	Carbosulfano	Acaricida/ Inseticida	Metilcar- bamato de benzofura- nila)	II	75mL		15		Trips – Selenotripes rubro- cincttus	<u>-</u>	
Lebaycid 500	Fenthiona	Inseticida/ Acaricida	Organofos- forado	П	100		21		Trips - Selenotripes rubro- cincttus Moscas-das-frutas - Anas- trepha fraterculus e Ceratitis capitata Lagarta-de-fogo - Megalopy- ge lanata	Incompatível com produtos de reação alcalina.	

Nome		A THE INC.	Grupo	Classe	Dosagem		Intervalo (Dia)		₩ Praga-Alvo	Observações	
Comercial	Nome Técnico	Classe	Químico	Toxicoló- gica	100 I H ₂ O	Ha	Segurança	Aplicação	Traga-Aivo	- Dadi Vaçoca	
Manzate GRDA	Mancozeb	Acaricida/ Fungicida	Ditiocarba- mato	Ш	200g		21	15	Antracnose – Colletotrichum gloeosporioides	-	
Marshal 400SC	Carbosulfano	Acaricida/ Inseticida	Metilcar- bamato de benzofura- nila	11	75mL	-	15		TripsSelenotripes rubro- cincttus	Não aplicar mais que 600g de i.a. por ciclo.	
Morestan BR	Chinomethio- nat	Acaricida	Quinoxalina	III	75g	_	14	-	Ácaro da mal-formação – Eriophyes mangiferae		
Provado 200 SC	Imidacloprido	Inseticida	Neonicoti- nóide	Ш	-	500 mL	7	-	Trips –Selenotripes rubro- cincttus		
Kumulus DF	Enxofre	Acaricida de contato/ Fungicida	Inorgânico	IV	300g	-	-	7	Oídio – Oidium msangiferae		
Kumulus DF-AG	Enxofre	Acaricida de contato/ Fungicida	Inorgânico	IV	300g	•	•	•	Oidio – Oidium msangiferae		
Success 0,02 CB	Espinosade	Inseticida	Espinosinas	Ш		1 – 1,6l	1	14	Moscas-das-frutas – Anas- trepha fraterculus e Ceratitis capitata		
Sulficamp	Enxofre	Acaricida/ Fungicida	Inorgânico	IV	700g	2	1100	15	Eriofidio – Eriophyes mangi- ferae		
						36.15			Trips – Selenotripes rubro- cincttus		
Sumithion 500 CE	Fenitrotiona	Inseticida	Organofos- forado	11	150mL	7001	14	15	Lagarta-de-fogo – Megalopy- ge lanata		
									Cigarrinha- Aethalion reticu- latun		


continua...

...continuação

Nome Comercial	Nome Técnico	Classe	Grupo Químico	Classe Toxicoló- gica	Dosagem		Intervalo (Dia)			
					100 I H ₂ O	На	Segurança	Aplicação	Praga-Alvo	Observações
Talstar 100 CE	Bifentrina	Inseticida Acaricida de contato e ingestão	Piretróide	III	30mL		07	1	Trips - Selenotripes rubro- cincttus	
Talento	Hexitiazoxi	Acaricida	Tiazolidina- carboxa- mida	II.	3g	-	3	-	Eriofidio – Eriophyes mangi- ferae	
Vertimec 18 CE	Abamectin	Inseticida acaricida de contato e ingestão	Avermec- tinas	Ш	100mL	7	7	•	Cochonilha escama farinha – Pinnaspis aspidistrae	Incompatível com óleo. Não usar com captara, folpet ou enxofre.
Xeriff 400 SC	Carbosulfano	Acaricida/ Inseticida	Metilcar- bamato de benzofura- nila	II	75mL	-	10	7	Tripes - Selenotripes rubro- cincttus	

Restrições: * Permitido com restrição segundo a MARKS & SPENCER RESTRICTED PESTICIDES - está em revisão anticolinesterase.

Observação: Os fungicidas que não constam nesta Grade e estejam registrados podem ser incluídos e deverão cumprir as restrições feitas a produtos ou grupos de pesticidas já citados. Para mais informações sobre os produtos registrados, pode-se consultar o programa SIA em http://www4.anvisa.gov.br/agrosia/asp/default.asp.

Agroquímicos utilizados no manejo da planta

		NAME OF BRIDE	Common	Classe	Dosagem	NAME OF THE PERSON	Intervalo		Observações
Nome Comercial	Nome Técnico	Classe	Grupo Químico	Toxicológica	100 I H ₂ O	На	(Dias)	Uso	
Smart Fresh	Metilciclopropeno	Cicloalqueno	Regulador de crescimento	III	2 a 12 mg/m³	-	-	Regulador de crescimento	
Smart Fresh Technology	Metilciclopropeno	Cicloalqueno	Regulador de crescimento	Ш	2 a 12 mg/m³	-	- -	Regulador de crescimento	
Ethrel 720	Etefom	Regulador de crescimento	Etileno (precursor de)	II	40-60 mL		-	Indução floral	
Cultar 250 SC	Paclobutrazol	Regulador de crescimento	Triazol	IV	2 a 6 mL/metro de diâmetro da copa	-	278	Indução floral	<u>P</u>
Bio trimedilure	Trimedilure	Feromônio sintético	Ésteres satu- rados	IV		•	-		Para colocar em armadilhas para captura de mosca-das- frutas.
Bioceratitis		Feromônio	Ésteres satu- rados	IV	-	-	-	-	

Observação: Os fungicidas que não constam nesta Grade e estejam registrados podem ser incluídos e deverão cumprir as restrições feitas a produtos ou grupos de pesticidas já citados. Para mais informações sobre os produtos registrados, pode-se consultar o programa Agrofit em www.agricultura.gov.br.

Ver material publicado pela equipe do projeto no CD-ROM anexo a esta publicação.

