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The II Pedometrics Brazil was an event promoted by the Pedometrics
Commission of Division I – Soil in Space and Time, of the Brazilian Soil
Science Society.

Pedometrics is one of the disciplines in soil science with the greatest
scientific and technological development in the recent years, mainly
due to the advances in computer systems and data availability. The
development of technologies related to the use of computing and
algorithms allows a better understanding of soil, as a phenomenon
that varies at different scales in space and time.

Research in Pedometrics is highly relevant to society, since it allows
for the soil information to be more accessible and useful for farmers
and public administrators. The II Pedometrics Brazil took place at a
significant moment for the country, with the beginning of the
implementation of the National Soil Survey Program (PronaSolos).
The main objective of PronaSolos is to map soils of the Brazilian
territory, at scales compatible with soil governance and in much
more detail than the existing soil surveys.

The II Pedometrics Brazil was organized by Embrapa Soils and UFRRJ
and held on-line from 24th to 27th of November, 2021. The central
theme was “Pedometrics: Innovations in the Tropics” and it featured
four sessions:

01: Pedometrics: Innovation in Tropics

02: Legacy Data: How turn it useful?

03: Advances in Soil Sensing

04: Pedometric guidelines to systematic soil surveys

The goals of the II Pedometrics Brazil were to discuss pedometric
methodologies and processes that may be implemented in the
PronaSolos program, and to promote the exchange of experiences
and knowledge between Brazilians and foreign researchers, and
graduate students, working in Agronomy and related Soil Science
fields.
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Thematic Session: Pedometrics: Innovations in Tropics 
 
Abstract 
Soil texture influences soil's physical, chemical, and biological processes, being crucial for 
understanding soil functions and improving decision making. This paper aimed to map the 
surface soil texture in the Minas Gerais state, Brazil, through machine learning and legacy 
data. We used 668 georeferenced samples containing coarse sand, fine sand, silt, and clay 
contents at 0-20 cm depth and 109 covariates based on the SCORPAN model. Predictor’s 
selection and predictive modeling of each particle size for five different models were 
performed 100 times, using 75% of samples for training and 25% for testing. The Random 
Forest was the best model for all-grain size distribution. The most important covariates were 
related to the parent material, soil properties, and climate. We conclude that machine 
learning techniques can produce fair consistent maps for superficial texture and the 
associated models’ uncertainties, even using limited legacy data. 
Keywords: soil physics; clay; silt; sand. 
 

Introduction 
 
The texture or particle size distribution of soils has influence on many physical, 
chemical and biological processes among several compartments of the Earth’s 
critical zone (Palm et al., 2007). Thus, surface texture maps can provide fundamental 
data for understanding soil functions and their ecosystem services. They also provide 
important inputs for environmental models, land use planning and management, and 
decision-making. However, spatial information in detailed scales and known 
uncertainties on contents of each soil’s particle size still lack for many regions in the 
world. Legacy data might be useful for producing and improving low-cost maps of soil 
attributes, but standardized and large datasets are scarce. In this sense, the 
objective was to map the surface soil texture in the Minas Gerais state through 
machine learning techniques using limited legacy data.  
 

Methodology 
 
The Minas Gerais state (586.528 km2) is located in southeastern Brazil and present 
high geodiversity and climate variability (UFV 2010). To model and map surface 
texture for the whole area, we used 668 georeferenced samples containing 
standardized measures of coarse sand, fine sand, silt, and clay contents at 0-20 cm 



 

 

 

 
depth (Souza et al. 2015), and 109 covariates based on the SCORPAN model. 
Covariates included climate data from WorldClim (Hijmans et al., 2005), parent 
material (CPRM 2004), volumetric water content in soil (Copernicus Climate Change 
Service, 2019), soil classes (UFV 2010), and morphometric data from digital 
elevation model processing (NASA JPL, 2020). All covariates were harmonized to 
500 m of spatial resolution (O’Brien, 2020).  
 
We applied sequential predictor selection, eliminating covariates from pairs with more 
than 95% spearman correlation and, subsequentially, the Recursive Feature 
Elimination was applied (Kuhn and Johnson, 2013). The predictive modeling for each 
particle size (coarse sand, fine sand, silt and clay) was done using five different 
models (Random Forest - RF, Cubist, Multivariate Adaptive Regression Spline – 
MARS, Support Vector Machine – SVM Radial, and Stochastic Gradient Boosting – 
GBM). These steps were performed 100 times, using 75% of samples for training 
and cross-validation and 25% for testing. The metrics adopted for validation were: 
coefficient of determination (R2), mean absolute error (MAE) and root-mean-square 
error (RMSE). To assess models’ consistency and uncertainties, we used the 
coefficient of variation (CV) of contents in the 100 predictions, the sum of modeled 
contents, and the calculated silt by difference of fractions (100 – (clay + fine sand + 
coarse sand)). All modellings and processing were carried out using the R software 
(R Core Team, 2021). 
 

Results and discussion 
 
Considering the limited legacy data approach, our results showed a fair predictive 
performance of machine learning models, without overfitting (Figure 1).  
 

 
Figure 1. Models’ performance of the 100 runs for each particle size in the test and 
training steps. 



 

 

 

 
The Random Forest had the best performance for all soil particle sizes and was used 
for predicting the maps. A range of 10-15 predictors in the selection process was 
needed to stabilize the performance of the models. The most important predictors 
and its ranking variate among particle sizes, but were related to climate, parent 
material, relief, and soil properties, such as: air temperature, precipitation, rock 
texture, soil moisture and soil class. Relief properties (convexity, ruggedness and 
others) were especially important for silt contents prediction. Sand fractions 
presented the worst R2 values, which indicates that merging coarse and fine sand in 
a single sand class might improve models’ prediction. Both RMSE and MAE 
presented relatively low values for all particle size, which means that the machine 
learning models were accurate to predict clay, sand and silt contents (Figure 1). 
 
These results are also confirmed by a visual-spatial assessment (Figure 2). In 
general, all particle sizes presented low CV values and low spatial and quantitative 
inconsistences of the values of sum-of-contents and silt-by-difference metrics. Field 
knowledge and cartographic comparisons also confirm a good spatial and 
quantitative consistency of maps, which could be improved by collecting more soil 
texture samples on low sample density areas, such as Triângulo Mineiro and Central 
Mineira mesoregions. Soils are mostly clayey at the surface, and fine sand particles 
are dominant in low-clay areas, which is mainly related to parent materials and 
weathering conditions.  
 

 

Figure 2. Modeled maps of mean content from the 100 runs and spatial uncertainties 
for each particle size using the Random Forest model. 



 

 

 

 
Conclusions 
 
We conclude that machine learning techniques can produce fair consistent maps for 
superficial texture and the associated models’ uncertainties, even using limited 
legacy data. Random Forest was the best model and the most important predictors 
were distributed across the SCORPAN factors. 
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Thematic Session: Pedometrics: Innovations in Tropics 

 
Abstract 
The objective of this study was to assess the multifractality of biological, physical, and 
chemical attributes of soil in the 0.0-0.05 m, 0.05-0.15 m and 0.15-0.3 m layers, in Parque 
Estadual do Mirador (PEM), Maranhão, Brazil. The sampled data comprised soil fauna, 
physical (sand, clay, silt, density, total porosity, macroporosity and microporosity), and 
chemical attributes of soil (organic carbon, pH, phosphorus, potassium, calcium, magnesium, 
sum of bases and capacity of cation exchange) in two savanna formations. The data were 
subjected to multifractal analysis. The predators group presented the highest degree of 
multifractality (ΔT1 = 0.64 and ΔT2 = 0.33). Silt and Ca were the attributes with the highest 
multifractality in the 0.0-0.05 m and 0.05-0.15 m layer.  OC and Ca expressed the highest 
multifractality in the 0.15-0.3 m layer. The singularity spectra described that the data 
represent multifractal systems influenced by the parent material, soil type, and relief. 
Keywords: invertebrates; soil fauna; physical properties; singularity spectra, multifractality.  
 

Introduction 
 
The soil attributes tend expressing high natural variability in the landscape, resulting 
from soil formation factors. Thus, it is necessary to implement analysis tools that 
consider variability at different scales. Variability scales are characterized at different 
times in multifractal analysis (Halsey et al., 1986), allowing to describe the 
heterogeneity of systems (Vidal Vázquez et al., 2013). In line ith this, according to 
Banerjee et al. (2011), variables are highly heterogeneous and dependent on the 
scale magnitude. Given the above, this study has the following hypothesis: a) the 
biological, physical, and chemical attributes of soil have different scaling patterns and 
heterogeneity structure in landscape. Thus, the objective of this study was to assess 
the multifractality of biological, physical, and chemical attributes of soil in the 0.0-0.05 
m, 0.05-0.15 m, and 0.15-0.3 m layers, in Parque Estadual do Mirador (PEM), 
Maranhão, Brazil.  
 
Methodology 
 
The study was carried out at Parque Estadual do Mirador (PEM), in the State of 
Maranhão, Brazil (6° 42' 9.803" S and 44° 42' 54.936" W - Figure 1). In the 
experimental plots (Figure 1). Biological, physical, and chemical attributes of the soil 
were sampled from the experimental plots (Figure 1), in August 2017. T1 plot 
comprised a sparse Cerrado vegetation, with an average altitude of 308 m, and 
predominance of Oxisols, belonging to the geological formation of Sambaíba. T2 
comprised a typical Cerrado vegetation with an average altitude of 432 m, and 

mailto:ray-234@hotmail.com
mailto:glecio.siqueira@ufma.br


 

 

 

 

predominance of Entisols originated from the geological unit known as Corda (Figure 
1). 

 
Figure 1. Map showing the location of Parque Estadual do Mirador (PEM), Maranhão 
(Brazil). 
 
A transect with 128 sampling points was installed in each plot. The sampling points 
were installed with a distance of 3 m between the points, resulting in a total length of 
381 m. The invertebrate fauna was sampled from pitfall traps. The physical and 
chemical attributes of the soil were collected from the 0.0-0.05 m, 0.05-0.15 m, and 
0.15-0.3 m layers, from undisturbed soil samples. Soil physical attributes comprised: 
sand (g kg-1), clay (g kg-1), silt (g kg-1), density bulk (BD - Mg m-3), macroporosity (m3 
m-3), microporosity (m3 m-3), total porosity (TP - m3 m-3), according to Camargo et al. 
(2009). Chemical attributes comprised: organic carbon (OC, g dm-3), pH (in CaCl2 
solution), phosphorus (P, mg dm-3), potassium (K, mmolc dm-3), calcium (Ca, mmolc 
dm-3), magnesium (Mg, mmolc dm-3), sum of bases (SB), and cation exchange 
capacity (CEC, mmolc dm-3), according to Raij et al. (2001). Multifractal analysis was 
carried ou based on the moment method (Halsey et al., 1986), and on the direct 
method (Chhabra and Jensen, 1989), considering the total length of the transect (δ = 
381 m) divided into successive 2k segments (k = 1, 2, 3...). The analysis involved the 
obtainment of the partition function (Vidal Vázquez et al., 2013), generalized 
dimension values (D - Hentschel and Procaccia, 1983), and singularity spectrum of 
the function of f(α) versus α, according to Chhabra and Jensen (1989). 

Results and discussion 

The singularity spectra [f(α) versus α] corresponding to the biological variables 
expressed multifractal behavior, with asymmetry for the spectrum branches (left and 
right) for the different variables in T1 and T2 (Figure 2a and 2b). The singularity 
spectra [f(α) versus α] for physical and chemical soil attributes were asymmetric, with 
different degrees of multifractality (Figure 3). In general, the physical attributes in T1 
and T2 expressed high measurement values, where silt showed the greatest 
differences in multifractality in the layers and between the plots (Figure 3b, 3e and 
3f). The singularity spectrum [f(α) versus α] for the chemical attributes showed 



 

 

 

 

different degrees of multifractality in the layers and between the plots, with 
asymmetry of the branches to the left, indicating that there where high measurement 
values in the variable scales (Figure 3). CO content varied in the variability scales for 
all layers and plots. Ca (Figure 3m), and Mg (Figure 3l and 3m) showed differences 
in the asymmetry of branches at T2 in the 0.05-0.15 m and 0.15-0.30 m layers, with 
asymmetry of the branches to the right, indicating occurrence of low measurement 
values. 

Soil biological indicators in T1 

 

Soil biological indicators in T2 

 

Figure 2. Spectrum of singularity for biological indicators of the soil in T1 (Sparse 
Cerrado) and in T2 (typical Cerrado) at Parque Estadual do Mirador, Maranhão 
(Brazil).  
 

Soil physical attributes 
a) T1 (0.0-0.05 m) 

 

b) T1 (0.05-0.15 m) 

 

c) T1 (0.15-0.3 m) 

 
d) T2 (0.0-0.05 m) 

 

e) T2 (0.05-0.15 m) 

 

f) T2 (0.15-0.3 m) 

 
Soil chemical attributes 

g) T1 (0.0-0.05 m) 

 

h) T1 (0.05-0.15 m) 

 

i) T1 (0.15-0.3 m) 

 
j) T2 (0.0-0.05 m) l) T2 (0.05-0.15 m) m) T2 (0.15-0.3 m) 



 

 

 

 

   

Figure 3. Spectrum of singularity for physical and chemical attributes of the soil. 
Physical attributes in T1: a) 0.0-0.05 m; b) 0.05-0.15 m; c) 0.15-0.3 m; physical 
attributes in T2: d) 0-0.05 m; e) 0.05-0.15 m; f) 0.15-0.3 m; chemical attributes at T1: 
g) 0.0-0.05 m; h) 0.05-0.15 m; i) 0.15-0.3 m; chemical attributes in T2: j) 0.0-0.05 m; 
l) 0.05-0.15 m; m) 0.15-0.3 m. 
 
Conclusions 

The soil showed different degrees of multifractality. The multifractality of soil fauna 
was influenced by the vegetation gradient, and the multifractality of physical and 
chemical soil attributes was associated to the soil parent material, soil type, and to 
landscape relief. The multifractal analysis allowed to elucidate the dynamics of 
ecological relationships for soil fauna organisms, reflecting the tropic chain 
structures. 
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Thematic Session: PEDOMETRICS: INNOVATION IN TROPICS 
 

Abstract 
Soil texture is management-key for agricultural in Brazil. Reflectance images of exposed 
soils can be related to properties, being useful as an environmental covariate in predictive 
models. This work aimed to create a new soil environmental covariate by recovering the bare 
earth surface image in order to get a continuous surface for a 3,295,860 km2 area in Cerrado 
Biome, and assess their predictive power on soil texture modeling for site-specific 
management scale. For that, it was selected related covariates to generate a predictive map, 
thus, overlay the predicted map to fill in the gaps, and evaluate the performance of the 
recovered image versus an averaged image in predictive models using RMSE, R2 and RPIQ. 
The predicted images had satisfactory correlation (Pearson) with the originals, which 
presented average values of 0.53, and, clay, silt and sand were predicted with proper 
accuracy using only the recovered image. 
  
Keywords: spatial big data; google earth engine; random forest; pedometry; remote sensing. 
 

Introduction 
The Cerrado Biome comprises the main and most challenging agricultural area in 
Brazil, responsible for 70% of national agricultural production (Wickramasinghe et al., 
2012) with high potential to assure food security (Cerri et al., 2018). Soil texture 
fractions are key attributes for agricultural recommendation and soil management, 
presenting little or no change over time. Currently, there are no digital maps of soil 
fractions which may assist site-specific management of precision agriculture in the 
Cerrado Biome, so an effort to gather a legacy soil data and produce remote 
sensing-based covariates can be useful to fill this gap of continuous spatial 
information (Poppiel et at., 2019). However, a computational task for big data 
analysis to generate information proper to site-specific management in tropical 
conditions is a challenge. Site-specific management, also called precision agriculture, 
consist of the management of agricultural crops at a spatial scale smaller than that of 
the whole field (Plant, 2001). 
 

Demattê et al. (2020) proposed a remote sensing data mining method to retrieve 
bare pixels over time and obtain a final image called Synthetic Soil Image (SySI). 
This image contains median values of the reflectance of bare surfaces of the Earth, 
including bare soil and rock outcrop. The spectral patterns retrieved from agricultural 
bare soils in the SySI are related to the simultaneous interaction of several soil 



 

 

 

 

attributes from soil surfaces exposed during land conversion and soil tillage 
practices. Soil spectral patterns can be directly related to soil minerology (Viscarra 
Rossel et al., 2016), clay (Lagacherie et al., 2013) and soil classes (Novais et al., 
2021), among others. 
 

Thus, we aimed to predict clay, silt and sand contents at 0-20 cm soil depth using 
remote sensing data and Random Forest algorithms in R environment and Google 
Earth Engine cloud-based platform. 
 
Methodology 
 

The soil dataset comprises 32,239 samples with information of clay, sand and silt 
content from the topsoil layer (0-20 cm) covering 3,295,860 Km2of study area. This 
dataset was obtained from: a) the collaboration of several Brazilian soil laboratory 
analyses being taken from farms with higher technological level (precision agriculture 
as a management tool), comprising 78% of the database; b) the Brazilian Soil 
Spectral Library (BSSL) (Demattê et al, 2019); c) the Free Brazilian Repository for 
Open Soil Data (FEBR) (Samuel-Rosa et al., 2017); d) Platform WebGIS IDE-
SISEMA. Once  the soil datasets were merged, the duplicates and typos were 
checked, outliers were removed according to Tukey's rule, and thus, dataset was 
finally divided into training (70%) and testing (30%) sets. 
 

Covariates obtention: A) A 30 m spatial resolution Synthetic Soil Image (SySI) was 
generated using the method described in Demattê et al. (2020). B) A 30 m spatial 
resolution elevation data from the Advanced Land Observing Satellite (ALOS) was 
used to calculate thirteen terrain attributes using the package Terrain Analysis in 
GEE (Safanelli et al., 2020). C) Nineteen bioclimate data were obtained from the 
WorldClim V1 Bioclim database at 1 km resolution (Hijmans et al., 2005). D) Three 
soil-plant variables were from Penman-Monteith-Leuning Evapotranspiration V2 
(PML_V2), transpiration from vegetation, direct evaporation from the soil and 
vaporization of intercepted rainfall from vegetation (Zhang et al., 2016). E) To 
represent a condition with the least disturbance of the landscape, where natural 
vegetation predominated, a Landsat mosaic obtained from 1984 to 1986 was used. 
F) Coarser spatial resolutions (climate and soil-plant data) were downscaled to 30 m 
pixel size.  
 

Since SySI had gaps over areas with continuous vegetation cover within the period 
evaluated, which were filled (predicted) using covariates and random forest 
algorithm, as follow: A) Covariates were randomly sampled using two observations 
per km2 in a 4 × 4 moving window. B) For each band, we selected the covariates by a 
10-fold cross-validation Recursive Feature Elimination (RFE) algorithm, implemented 
on the Caret Package (Kuhn, 2017). In order to avoid wavy patterns, it was limited in 
two bioclimatic covariates for each prediction according to RFE criteria. C) 
Thereafter, a grid search to tune optimal Random Forest (RF) parameters mTry, 
nTree, min node size (minNS), sample fraction and replacement can be ran as 
folowing: (5%, 15%, 25%, 33% and 40% of the total features number)*(floor=number 



 

 

 

 

of features/3) to mTry; 30, 50, 80 and 100 trees; 1, 3, 5 and 10 to minNS; sample 
fraction were 50, 63 and 80 %; with and without replacement, resulting in 120 
combinations, using the ranger package version 0.11.1 (Wright and Ziegler, 2017) in 
the R software (R Core Team, 2019). Unlike usual, optimal models with the fewest 
number of trees possible was seek, aiming at lower loss of estimation stability 
(Probst et al, 2019), and decrease computational time, as this increases linearly with 
the number of trees (Boehmke and Greenwell, 2020). 
 

Finally, the original SySI was overlaid on top of predicted bands and merged to 
obtain a continuous image, preserving the original values and incorporating the 
predicted ones on gaps. Thus, the spatially continuous image named here as filled-
SySI, and an average image (original + predicted) named average-SySI were used 
as covariates soil texture predictive models. 
 
The same process of tuning was applied for soil texture calibration considering two 
set of features: a) filled-SySI + soil-plant covariates and the absence of both; and b) 
averaged-SySI following the a) scheme. To assess the spatial prediction 
performance the metrics of RMSE, R2 and ratio of the performance to interquartile 
distance (RPIQ) were calculated. 
 
Results and discussion 
 
The predicted bare soil images (SySI) had satisfactory correlation (Pearson) with the 
originals, Blue 0.50; Green 0.52; LST 0.32; NIR 0.61; Red 0.58; SWIR1 0.57; SWIR2 
0.58. Table 1 shows the performance metrics of the soil texture consisting of training 
and test dataset using filled-SySI and average-SySI with soil-plant covariates and the 
absence of them.    

 

Table1. Performance metrics from training and testing sets of the default RF models 
and loss percentage of the optimal models for soil texture predictions 

 
Training set 

 
Testing set 

 
clay silt sand   clay silt sand   clay silt sand   clay silt sand 

 
RMSE (g kg

-1
) 

 
R

2
 

 
RMSE (g kg

-1
) 

 
R

2
 

A 129.76 80.22 171.45   0.63 0.39 0.64   130.81 79.74 171.32   0.63 0.40 0.64 
F 125.66 78.85 165.25 

 
0.66 0.41 0.66 

 
126.92 78.64 165.80 

 
0.65 0.42 0.66 

                A* 122.45 77.34 157.88   0.67 0.41 0.64   123.2 77.8 163.33   0.67 0.43 0.67 

F* 119.92 76.65 157.88   0.68 0.44 0.69   120.93 76.44 158.74   0.68 0.45 0.69 

 
RPIQ 

  
Percentage of loss of the tuned models 

 A 2.60 2.25 2.73 

    
A -0.95 -0.88 -0.83 

    F 2.67  2.22 2.82 

    
F -0.91 -1.09 -0.72 

    
                A* 2.75 2.25 2.86 

    
A* -0.76 -0.80 -0.86 

    F* 2.81 2.29 2.95         F* -0.78 -0.77 -0.88         

A: average-SySI set; F: filled-SYSI; A*: average-SySI + soil-plant covariates; F*: 
filled-SySI + soil-plant covariates; RMSE: Root Mean Square Error; RPIQ: ratio of the 
performance to interquartile distance; R2: Coeffcient of determination. 



 

 

 

 

 

With the exception of silt, all optimal models (100 trees) showed less than 1% of loss 
compared to the default model (500 trees). In a correlation analysis, the filled-SySI 
showed satisfactory negative correlations with clay (NIR -0.61; SWIR2 -0.59; SWIR1 
-0.56 and Red -0.55) and silt (NIR -0.46; Red -0.43; SWIR -0.39 and SWIR1 -0.37) 
and positive with sand (NIR 0.63; SWIR2 0.58; Red 0.57; SWIR1 0.56). Such results 
corroborates with the statement regarding the product ability in soil modeling (Poppiel 
et al., 2021; Novais et al., 2021). 
 
Conclusions 
 
The gaps filled bare soil reflectance images (SySI) showed high performance for 
topsoil clay, silt and sand content spatial predictions. The filled image was slightly 
superior. And there was little or no difference in the presence or absence of auxiliary 
variables. The RFE criteria and model adjustments allowed eliminating redundant or 
noisy variables, enabling the reduction of the number of trees without significant 
losses in the predictions. 
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Abstract 
 
Obtaining large amounts of field data in a representative way is a great challenge, especially 
in the soil profile. This study aimed to evaluate the application of electrical conductivity 
profiling as a field method for the vertical characterization of soils. A field test was conducted 
in a Technosol profile, using a MH6534 electrical conductivity profiling probe, soil sampling, 
and granulometric characterization and electrical conductivity laboratory tests. The results 
indicated that this field method was able to identify and discretize the soil layers, having high 
correlation with clay contents obtained in the laboratory. However, it was not able to identify 
the organic layer. The method proved to be a good alternative for the vertical 
characterization of the tested soil, but soil samplings and analysis are necessary for data 
interpretation and models calibration. 
 
Keywords: penetrometer; contaminated soil; non-invasive method; field data; real time. 
 

 
Introduction 
 
The soil matrix is usually significantly heterogeneous and anisotropic is critically 
affected by the vertical and horizontal variability of the media (KARDANPOUR; 
JACOBSEN; ESBENSEN, 2014). The acquisition of large amounts of high-density 
data, in a representative way and with low cost is a challenge, especially when 
considering the vertical characterization of soils. An ideal penetrating data acquisition 
method must present characteristics that favor its field application, especially in 
contaminated sites, with simple operation, acquisition velocity and low level of soil 
disturbance. The latter is the most critical, as soil characteristics should not suffer 
great alterations, in order to avoid the migration of potential contaminations to deeper 
positions in the soil and/or groundwater. This study aims to evaluate the applicability 
of electrical conductivity profiling as an indirect, non-invasive characterization method 
of stratigraphic variation. 
 
Methodology 
 
For the electrical conductivity profiling test, the Geoprobe® MH6534 probe was used, 
with electrical conductivity sensor in a horizontally aligned dipole-type arrangement, 
data acquisition in every 1.5 cm, and nails introduced by percussive system to a 
depth of 9 m. For the laboratory tests, the soil was collected by the direct push 
method (ASTM, 2014), using a pneumatic geohammer with 1.4 m jacketed rods, up 



 

 

 

 

to a depth of 7.5 m. The samples were sent to the laboratory of the Investigations, 
Risks and Environmental Management Section of the Institute for Technological 
Research. The soil profile description was performed according to the Manual of 
Description and Collection of Soil in the Field (SANTOS et al., 2013), and its 
classification was based on the World Reference Base for Soil Resources (IUSS, 
2015). The samples selection occurred according to the textural variation, resulting in 
17 samples for granulometric analysis and electrical conductivity tests (TEIXEIRA et 
al., 2017). 
 
Results and discussion 
 
The soil in the study area was classified as an Epileptic Humic Technosol, being 
under great influence of anthropic activities and addition of materials in the first 
layers. The pedogenetic processes observed along the soil profile, especially under 
1.5 m, are controlled by fluvial deposition materials from the former floodplain of the 
Pinheiros river, in the Sedimentar Basin of São Paulo, as well as by the depth and 
groundwater level. The sediments are covered by technogenic deposits 
superimposed on the original floodplain (CARVALHO, 2006), which corroborates the 
soil profile identified in the area, representing a typical profile of the Pinheiros river 
fluvial material influence zones. 
The electrical conductivity values obtained in the field were extracted as a function of 
the depths of the granulometric characterization tests, and the relation between the 
clay content and the electrical conductivity results for the discrete samples was 
analyzed (Figure 1). The coefficient of determination obtained was R² = 0,9164, a 
satisfactory result, considering that the sensor determination is an indirect process, 
which is susceptible to medium heterogeneity as well as to potential contact 
problems and/or mechanical and electrical failures. The same result was observed 
along the soil profile: the electrical responses only corresponded to the texture 
variations where clay was identified, not presenting any relation with other soil 
fractions. 
The dipole-type array used in this system was able to identify clay lenses (Layer 07 – 
5.87 m to 6.0 m and Layer 10 – 7.00 m to 7.05 m), with thickness ranging from 0.05 
m to 0.13 m, identified during the visual-tactile soil description process. This result 
shows the sensitivity of the electrical conductivity sensors and the array system used 
for stratigraphic data acquisition of thin layers. The discretization of these layers 
corroborates the findings of Christy et al. (1994), who, when testing the 
responsiveness, repeatability and sensitivity of arrays, observed that dipole-type 
arrays are more sensitive to small variations in the medium. The method is also able 
to identify these variations, even though it is an array model more susceptible to lack 
of contact with the sides of the perforations, as it has only two electrodes horizontally 
arranged.   
 
 



 

 

 

 

 

Figure 1. Tactile-visual textural division of soil layers and the results of granulometric 
and electrical conductivity characterization obtained in the field and in the laboratory 

 
The results of electrical conductivity obtained in the laboratory showed little variation 
along the soil profile, with a value of 8.5 mS/m in the organic layer (Layer 02), an 
inverse behavior to that observed in the field test. This is due to the differences 
between the methods: in the laboratory, the electrical conductivity in the solid-liquid 
mixture is evaluated via exchange of cations associated with clay minerals and 
organic matter, whereas in the field method, the electrical conductivity is evaluated 
by a sensor in a solid medium, with direct contact with soil particles and its moisture. 
Thus, in the laboratory, the organic layers present a more conductive characteristic, 
and in the field test, the organic layers have a resistive characteristic, similar to sandy 
layers. In an indirect system for the determination of textural features, this behavior 
might lead to interpretation errors, thence soil samplings are necessary for the 
elaboration of calibration models. 
  



 

 

 

 

Conclusions 
 
The application of the electrical conductivity profiling test with horizontal dipole-type 
sensor array for stratigraphic characterization is feasible, enabling the discretization 
of thin soil layers, even in a heterogeneous profile. The field electrical conductivity 
values are directly related to clay layers, and inversely related to organic layers, 
requiring the collection of samples for the calibration and interpretation of indirect 
data from the site. Further studies are necessary to evaluate the results of the 
electrical conductivity profiling method in other tropical soils. 
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Thematic Session: (1) - Pedometrics: Innovation in tropics 
 
Abstract 
The soil high amounts of carbon and can act as a sink for greenhouse gases. Therefore, the 
aim of the study was to model and map SOC stocks in the state of Rondônia at 1 m depth. We 
used 2,914 soil profiles for modeling. We select the most important variables by correlation 
and by importance using recursive features elimination (RFE). We tested seven different 
machine learning algorithms. The random forest obtained the highest R2 and the lowest MAE 
and RMSE and was selected for the prediction of SOC stocks. Soil classes and climate were 
the most important variables for SOC stocks. Rondônia stores 2,530.91 TgC. The greatest 
amounts of SOC are at low altitudes, where seasonal flooding occurs, and the genesis of the 
soil favors the accumulation of SOC. Lower SOC stocks is associated with Ferralsols under 
intense agricultural expansion and deforestation for livestock. 
Keywords: random forest; Rondônia; digital soil mapping; climate changes; recursive feature 
elimination. 
 
Introduction 
 
Soil accumulates two-thirds of all terrestrial carbon, and depending on of land use and 
management, it can be a source or sink of greenhouse gases (RUMPEL et al., 2020), 
playing an essential role on climate change mitigation (LAL, 2004). However, accurate 
spatial quantification of soil carbon (SOC) stocks is still scarce, especially in developing 
countries with a low density of soil samples as Brazil. Despite a lack of sampling points 
for the Amazon biome, the state of Rondônia has a soil database with more than 2,900 
profiles, resulted from a detailed soil survey in the 1990s. 
The spatial distribution of SOC stocks can be performed using digital soil mapping 
techniques, using remote sensing associated machine learning (MCBRATNEY et al., 
2003). Then, mapping SOC stocks at a regional level has the potential to improve the 
quantification and distribution of total SOC stocks and better guide public policy 
makers. Therefore, the objective of the study was to model and map the SOC stocks 
in the state of Rondônia at 1 m depth. 
 

Methodology 
 
Rondônia is located in the Amazon biome and the climate is Am (tropical monsoon), 
with altitude ranging from 33 to 1,100 m. We used information from 2,914 soil profiles 
from the soil survey used for the second approximation of the Socioeconomic 
Ecological Zoning of Rondônia to model the distribution of SOC stocks at standard 
depths (0-5, 5-15, 15-30, 30-60 and 60-100 cm). We used as predictors the variables 
available related to the SCORPAN function, which describe quantitatively the soil 
formation factors, including soil classes, lithology (COCHRANE; COCHRANE, 2006), 
vegetation indices, relief (NASA JPL, 2020) and climatic variables (FICK; HIJMANS, 
2017). To select the most important variables, we applied sequential predictor 



 

selection methods, first by correlation > |0.95|, and after by the interactive recursive 
feature elimination (RFE) algorithm. 
We used seven different algorithms in the modeling process: cubist; multivariate 
adaptive regression spline - earth; stochastic gradient boosting - gbm; elastic-net 
regularized generalized linear models - glmnet; k-nearest neighbors - k-knn; random 
forest - rf; and support vector machines - svmRadial. The process was executed 100 
times for each algorithm and depth, varying the subset for training (75%) and testing 
(25%). The performance indexes mean absolute error (MAE), root mean squared error 
(RMSE) and coefficient of determination (R2) metrics were used to selected. Finally, 
we created, an average map from the 100 runs with the that presented the higher 
performance. The uncertainty of prediction was evaluated through the coefficient of 
variation of the 100 maps. The entire process was performed on R software (R CORE 
TEAM, 2021). 
 

Results and discussion 
 
The algorithms presented different performances in the 100 runs for all soil depths (Fig. 
1). Random forest had the highest R2 and lowest MAE and RMSE at all depths and 
was selected for the prediction of SOC stocks. The variation in performance metrics 
demonstrates the importance of repeating the adjustment process in machine learning 
under different subsets. This approach may avoid results that are not plausible in the 
reality of the modeled phenomenon. 
 

 
Fig. 1. Performance of different algorithms in the test set of soil organic carbon stocks 
at different depths, in Rondônia State, Brazil. 
 
Random forest used between 12 and 20 predictors for performance stabilization. Soil 
classes and bioclimatic variables (temperature and precipitation) were the ones that 
stood out the most important variables for the prediction of SOC stocks. The soil class 
mainly describes texture and structure, which are determinant attributes in SOC stocks 
balance (BASILE-DOELSCH et al., 2020). The climate moderates the biological 
processes there affect carbon storage in soil (TAN et al., 2020), which explains the 
importance of these predictors in the in our modelling. 
Rondônia stores 2,530.91 TgC and more than 50% of this carbon are located 
superficial layers (0-30 cm). The largest SOC stocks are found in the southern and 



 

southeastern regions of the state (Fig. 2), where there is a predominance of Gleysols, 
and the smallest SOC stocks are in the central region of the state under Ferralsols and 
where the deforestation process is intense. The higher SOC stocks are associated the 
low altitudes, where soil genesis and seasonal flooding dynamics favor the 
accumulation of SOC (MAGHA et al., 2021). Regions with lower SOC stocks are 
associated to Ferralsols, which high weathering process reduced the amounts of SOC. 
In addition, the central region of Rondônia witnessed an intense agricultural expansion 
and deforestation for cattle farming, what can significantly reduce SOC stocks (MAIA 
et al., 2009). The coefficient of variation (CV) showed uncertainties bellow 25%, with 
the highest CV values in areas with high SOC stocks, evidencing greater difficulty of 
the model in making predictions in these places. 
 

 
Fig. 2. Mean of 100 predicted soil organic carbon stock maps (a) and coefficient of 
variation (b) at 1 meter depth, Rondônia state, Brazil. 
 

Conclusions 
 
Random forest had the best performance on modeling SOC stocks in Rondônia, and 
the most important variables were soil classes and climate. The SOC stock in the state 
of Rondônia at 1 meter depth is approximately 2,530.91 Tg. Wetlands hold the largest 
SOC stocks, while areas of Ferralsols under heavy anthropization contain the smallest 
values SOC in the state. 
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Abstract  
The research goal is to analyze soil’s properties and associate them with the behavior and 
vertical variability of soil basic infiltration speed (bir) and saturated hydraulic conductivity (ksat) 
in soils from Guapi-Macacu watershed using the Algorithm for Quantitative Pedology (AQP) 
package, in order to support predictive vertical modeling of soil attributes. To achieve the goals, 
36 soil profiles were subjected to statistical analysis and then applied the AQP depth functions: 
standardization, slicing and aggregation methods. Thus, having the harmonized data set, the 
results were quantitatively and qualitatively evaluated, which pointed to high soil granulometric 
and physicochemical properties variability, maintaining a moderate to strong correlation with 
the physical-hydric attributes. It is concluded that the high soil properties variability can affect 
the vertical modeling in terms of prediction, as it tends to reduce the assertive degree in the 
training/validation of the models. 
Keywords: AQP; Geoprocessing; Hydropedology; Digital Soil Mapping; Predictive Modeling. 

Introduction 
 
Knowledge about soil physical-hydric attributes, such as is important to understand the 
water dynamics in watersheds (GARCÍA-SINOVAS et al., 2001). The water content 
stored and available affects the environmental functions of soils, the biodiversity and 
sustainability of this natural resource (FAO, 2017). Thus, the present work aims to 
understand soil`s physical-hydric attributes vertical variability, specifically the soil basic 
infiltration ratio speed (bir) and saturated hydraulic conductivity (ksat) from soils in 
Guapi-Macacu`s watershed and its relationship with other soils properties, such as 
particle size composition (sand, silt and clay), soil and particle density and porosity to 
apply pedotransfer functions (PTFs). 

Methodology  
 
The studied area is composed by Guapi-Macacu whatershed (Figure 1), located in the 
Guanabara Bay Hydrographic Region (RH-V), in metropolitan region of Rio de Janeiro. 
Its domain is delimited by the political-administrative limits of the Itaboraí, Guapimirim 
and Cachoeiras de Macacu municipalities; and also by Guapiaçu town, reaching 
dimensions of 1250.78 km2 of water catchment area and 199.2 km in perimeter 
extension (Projeto Macacu, 2010). 
 
The soil profiles, as well as their physical-chemical analysis, come from the pedological 



survey carried out in 2011 by Embrapa Solos company in partnership with the Research 
and Development Support Foundation - FAPED (CHAGAS et al., 2011). Data from 36 
hydropedological sampling profiles were obtained by conducting a hydropedological 
survey with Guelph Permeameter. 
 
The variables measured (bir and ksat) in two different layers (0-20 cm and 0-40 cm) 
were subjected to an exploratory statistical analysis. Then, soil depth functions were 
applied in final database, through the spline method implemented in a routine 
developed in RStudio v. 1.3.959 environment with R v.4.0.1 (R CORE TEAM, 2020), 
using Algorithms for Quantitative Pedology (AQP) package (BEAUDETTE et al., 2013). 
The soil profiles were sliced at a 1 cm interval (slice-wise method), and the data set 
was aggregated according to six predefined intervals of 20 cm in depth (slab-wise 
method). The results obtained through the AQP modeling were characterized in profile 
collections and analyzed according to each soil property. The methodology is shown at 
Figure 2. 
 

 
Figure 1. Study area: Guapi-Macacu whatershed, 
Rio de Janeiro, Brazil. 

 
Figure 2. Proposed methodology flowchar. 

Results and discussion  
 
The soil profiles collection presented characteristics such as: a total of 36 soil profiles, 
ranging from 0.30-1.15 cm in depth. The largest fraction of clay (400 to 700 g.kg-1) 
(Figure 3) is found in the subsurface B horizon and increases with depth; the fraction 
of clay dispersed in water (350 to 450 g.kg-1) (Figure 4) behaves inversely, being 
greater in the A horizon and decreasing in depth. 
 
Sand (Figure 5) is well distributed along the profiles in the surface and sub-surface 
layers, ranging from 400-800 g.kg-1. Soils with different particle sizes presented distinct 
behaviors in terms of easy water movement and particle translocation, greater in clay 
and silt, less in san, due to weight and size. Thus, indicating that bir and ksat is greater 
in superficial and subsurface horizons where the thin sand particle size portion (Figure 
6) quantity is greater compared to coarse sand (Figure 7), and soil porosity (Figure 8) 
also increases in these saturated layers. 
 
The ksat measured mainly increased in the limit between surface and subsurface layers 
(~20-40 cm), where clay (Figure 3) and silt (Figure 9) fraction decreases due to the fine 
sand proportion increase, affecting water flow in pores. Rain saturated soils shown a 
decrease in ksat value influencing measurements (low values in superficial layers and 
null values in subsurface portion). 
 



Soil density (Figure 10) generally increases with soil depth of the Basin. Organic soils 
have low soil density values around 0-0.6 g.cm-3. Mineral soils (presence of horizon 
AB, BA and C) density decreased, while other soils density increased in depth. The 
behavior is quite different for particle density (Figure 11), which affects aggregation and 
water flow, associated with particle size (soil granulometry). The particle density values 
are higher than soil density, reaching a maximum of 2.65 g.cm-3. 

 
Figure 3. Clay attribute variability in Guapi-
Macacu soils profile collection, in g.kg-1. 

 
Figure 4. Dispersed clay attribute variability in 
Guapi-Macacu soils profile collection, in g.kg-1. 

 
Figure 5. Sand attribute variability in Guapi-
Macacu soils profile collection, in g.kg-1. 

 
Figure 6. Thin sand attribute variability in Guapi-
Macacu soils profile collection, in g.kg-1. 

 
Figure 7. Coarse sand attribute variability in 
Guapi-Macacu soils profile collection, in g.kg-1. 

 
Figure 8. Porosity attribute variability in Guapi-
Macacu soils profile collection, in percentage 
(%). 

 
Figure 9. Silt attribute variability in Guapi-
Macacu soils profile collection, in g.kg-1. 

 
Figure 10. Soil density attribute variability in 
Guapi-Macacu soils profile collection, in g.cm-3. 



 
Figure 11. Particle density attribute variability in 
Guapi-Macacu soils profile collection, in g.cm-3. 

Conclusions  
 
The AQP use contributed to the texture variability analysis and soil physical-hydric 
attributes in depth, allowing the correlation between soil characteristics and its textural 
classification properties. Thus, this tool acts as a support for analysts in decision making 
at choosing input variables in predictive models’ development (digital soil mapping), 
enabling the input data harmonization. Associated with machine learning methods and 
models, the AQP is a potential tool for preliminary studies in hydropedology, such as 
the implementation of pedotransfer functions, being recommended its use in research 
aimed at maintenance and conservation of soil water functions as directed by FAO 
(2017) (storage, availability and human supply, among others). 
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Thematic Session: Pedometria: Inovação nos Trópicos. 

 
Abstract 

The soil-landscape relationship occurs through complex interactions, that could be 
represented by generalized covariates and multiscalar geomorphometric analysis. So, 
the objective of this study is to predict soil surface attributes on scales compatible with 
mappings of small farms, by applying multiscale geomorphometric generalization. MGG 
is a upscalling operation, based on a cartographic concept of generalization applied at 
vector and raster representations, with unique multiscalar reference. The study was 
conducted ain watersheds located on Alter-do-Chão geological formation, Eastern 
Amazon. The results has show improvements with multiscalar generalized covariates, on 
soil surface attributes mappings with Random Forest. Future research is needed on: 
scale transformations methods; vector-raster scale correspondences; scale-related 
pedogenesis models on pedoenvironments.  
 

Keywords: Digital Soil Mapping; Upscaling; Dimension analysis; Random Forest. 
 

Introduction 
 
The soil-landscape relationship is related to the concept of the catena, coined by 
Milne (1935). Subsequently, the analyses of soil-landscape relations proposed by 
Hugget (1975), contemplated three-dimensional models of the slopes. In the context 
of digital soil mapping, in the scorpan model paradigm (MCBRATNEY et al., 2003), 
soil-landscape process modeling can be described as an interdisciplinary object of 
the interface between pedometry-geomorphometry. 
The scale issues of soil-landscape relationships are related to the complex 
interactions. The multiscalar influences of topography on particular soil distribution 
have two general aspects: overlay of pedological processes that occurred at different 
times (SCHMIDT & ANDREW, 2005; TARGULIAN & KRASILNIKOV, 2007); and 
driving forces in the present time, determined by the sum of forces better correlated 
with one, several, or many geomorphologic scales (HU et al., 2020). 
Some studies tested the geomorphometric covariables scales selection, show 
highest DEM resolutions do not necessarily produce the highest accuracy for 
predictive soil mapping (CAVAZZI et al., 2012; SAMUEL-ROSA et al., 2015).  
For a friendly interpretation of soil-landscape scale specific relationships, this study 
proposed a cartographic-based criterion to formalize the scale correspondence to 
pixel size for geomorphometric covariables. The present study tested the hypothesis 
whether multiscale geomorphic representation, obtained from cartographic 
generalization of a digital elevation model, can improve pedometric modeling. 
 



 

 

 

 

Methodology 
 
The study area is in phanerozoic sedimentary basins, in the Alter do Chão geological 
formation, located in the Trombetas basin in Oriximiná-Pará in the Eastern Amazon. 
The geomorphic units of these watersheds are classified as a homogeneous 
dissection with coarse drainage density and weak incision depth. 
In this study, the concept of minimum mappable area for soil surveys (IBGE, 2015) 
was considered to define pixel sizes in relation to cartographic scale. The detailed 
descriptions for each of the four scales used are in Table 1. 

Table 1. Correspondence between scale and pixel size for Multiscale 
Geomorphometric Generalization (MGG), using the concept of minimum mappable 
area. 

Scale 
Minimal mappable 

area (m²) 
Pixel size (m) 

Pixel area
a
 

(m²) 
pa/mma

b
 

(%) 

1:25000 25000 30 22500 90 

1:50000 100000 60 90000 90 

1:75000 225000 90 202500 90 

1:100000 400000 120 360000 90 

a. For a 5x5 window. b. Ratio pixel area (pa) by minimal mappable area (mma), in percentage. 

The geomorphic variables, at different scales, were obtained from SRTM DEM from 
two upscaling methods, as illustrated in Figure 2. Using local averages on covariable 
elevation, in 2x2, 3x3, 4x4 windows, for resolutions 60m, 90m and 120m, 
respectively, and subsequent derivatives covariable calculation. Classification of 
geomorphons was followed by the exclusion of polygons smaller than the minimum 
mappable area for each scale. Such methods correspond to cartographic 
generalization applied to general geomorphometry and specific geomorphometry, 
respectively (ZINCK, 2016). 

 
Figure 1. Methodology flowchart of MGG for the topography covariables. 

The modeling of the soil-landscape for prediction of soil superficial layer texture was 
done using Random Forest (BREIMAN, 2001). The sampling has done with 9 pilot 
areas, consisting of small farms, distributed in the upper and lower courses in both 
basins and adjacent basin boundaries, totaling 697 ha, approximately 1% of the 
extent of the watersheds. Each pilot area was sampled at 10 points, a sufficient 
density for semi-detailed soil surveys, compatible with the 1:25,000 scale soil maps 
(IBGE, 2015). 
 



 

 

 

 

Results and discussion 
 
The prediction of sand and silt content, at original and multiscale generalized geo-
morphometrics, is illustrated in Figure 2. In both variable groups, the MGG has pro-
duced maps with less noise and more recognizable patterns related to geomorphic 
fea-tures. These results corroborate the hypothesis that the topography has an 
influence, in a larger spatial context, and has prevalence on prediction of soil particle 
size contents in the tested basin. In contrast, a case study with Random Forest with 
30m and 90m DEM did not achieve significant differences in prediction (BHERING et 
al., 2016). Despite some similarity with co-variables importance, like Elev and RSP, 
the modeling is done on single scale datasets. In this sense, we can argue the 
importance of observing soil-landscape phenomena from a multiscale perspective.  
The MGG was able to increase the accuracy of superficial layer soil texture 
classifications, as shown in Table 2. The user´s accuracy has a considerably higher 
result, so the MGG increased the reliability of each mapped class. In the same way, 
the Kappa index also has higher values for MGG geomorphometric variables. 

 

Figure 2. Predictive maps of silt (a,b) and sand (c,d) at original scale 
geomorphometrics and multiscale generalized geomorphometrics, respectively. 

Table 2. Accuracy evaluation for soil superficial layer texture classification. 

Geomorphometric variables User’s / Producer’s accuracy Kappa Index 

 MAr ArMe MeAr All Classes 

Original Scale 75% / 84% 72% / 58% 20% / 20% 43% 

MGG 81% / 88% 76% / 71% 100% / 67% 62% 

 
Conclusions 
 
The MGG improved Random Forest model adjustment for silt and sand particles and 
also improved the accuracy of metrics of the soil texture classification of the surface 



 

 

 

 

layer, especially for the most unusual classes, with the Kappa Index going from 43% 
to 62%. Topography influences on a coarser spatial scale and has prevalence on 
prediction of soil particle size contents in the studied watershed. Future research is 

needed on: scale transformations methods; vector-raster scale correspondences; scale-
related pedogenesis models on pedoenvironments. 
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Thematic Session: Pedometrics: Innovations in Tropics 
 
Abstract 
In the search for new techniques aimed at complementing and adding new data on 
Ferralsols, high resolution computer microtomography (microCT) appears as a non-
destructive and fast analytical technique. MicroCT has been outstanding in the international 
scenarios and it is more and more present in soil analyses. Analyzing a soil sample by 
microCT allows obtaining knowledge, in microscale, on shape, size, distribution, volume, 
area and pore connectivity and having a 3D visualization of the soil sample and its structure. 
The objective of this work is to use microCT to compare the porosity distribution and pore 
connectivity density between a soil without vegetation cover and a soil with grass cover, both 
Ferralsols. Four undisturbed samples of each soil were collected. The results show that the 
MicroCT technique is an efficient and non-destructive tool for the analysis and 
characterization of the pore structure of soils protected from and degraded by erosion, 
underlining clear differences between them, as expected. 
 

Introduction 
 
The pores of the soil are represented by cavities with different sizes and shapes, 
determined by the arrangement of solid particles which constitute a volumetric 
fraction of the soil filled with air, water and nutrients solution (Hillel, 1972). The soil 
porosity influences in aeration, water conduction and retention, resistance to 
penetration and branching of the roots in the soil and, consequently use of available 
water and nutrients (Tavares Filho, J. & Tessie, Stubff et al, 2014). Several 
techniques can be used to obtain soil porosity index. In the search for new 
techniques aimed at complementing and adding new data on Ferralsols, high 
resolution computer microtomography (microCT) appears as a non-destructive and 
fast analytical technique.  
The microCT provides high resolution images with a set of volume data of an 
inspected sample that does not need to be modified and no preparation method has 
been submitted. Its physical principle is based on the attenuation of the X-rays when 
they interact with the object and are modulated according to the physical 
characteristics. To obtain microCT images, it is necessary to acquire many 
projections at constant angular steps and the reconstruction is performed with an 
appropriate algorithm based on the filtered overhead. 
The objective of this work is to use microCT to compare the porosity distribution and 
pore connectivity density between a soil without vegetation cover and a soil with 
grass cover, both Ferralsols. Four undisturbed samples of each soil were collected. 
 



 

 

 

 

Methodology 
 
The work developed on a slope within the limits of the Stream of Thorn Microbasin, 
which has a total area of 9.14km2 being located in the Farming Paiol, where 
agricultural activities related to the genetic improvement of cattle and dairy cattle are 
developed. The area is located in the municipality of Silva Jardim, State of Rio de 
Janeiro, and access is given by BR 101.  
The undisturbed samples for the tests were collected on the half slope of a dissected 
hill within the limits established by erosion plots, totaling eight replicates packed in 
plastic film for transportation and handling without loss. The samples were distributed 
in the following way: four in soil with grass cover and four in soil without vegetation 
cover, using acrylic tubes measuring 50mm in height and 32mm in diameter.  
The samples were scanned in a high energy system - Skyscan / Bruker, model1173. 
The system operates with voltage and current of 130 kV and 61 μA, respectively. A 
flat panel detector (2240 x 2240 pixels) was used to register the transmission of the 
X-ray beam. After acquisition, the image is captured and reconstructed using the 
FDK reconstruction algorithm, (Feldkamp; Davis; Kress, 1984).  
In the present study, we chose to use a adaptive method segmentation. In this 
method for each voxel, the threshold is calculated as the mean of all pixel/voxel 
grayscales within a selected radius. In this way, the binary image is obtained, with 
the objects (soil matrix) in white and the background (pore) in black. Thus, it was 
possible to quantify the total porosity and density of connectivity. The schematic of 
this segmentation. 
 

Results and discussion 
 
To acquire the data, the values of the parameters were adjusted to acquire the 
information within a pattern that responded in the most accurate way, searching for 
the openings with the smallest possible size, in order to identify more clearly the 
class of Micropores. In this sense the soil pore diameters analyzed were classified 
according to Brewer (1964) that define micropores that have a diameter smaller than 
0.03mm and macropores larger than this value.  
Covered soil (CS) presented the following percentages of total porosity: 21.1; 24.6; 
27.3 and 36.7%; As the soil without cover (SWC) had porosities of 13.6; 20.5; 21.8 
and 30.8%. The pore densities in the covered soil were 46.7; 76.7; 155.4 and 508.63 
mm3, while in the uncovered terrain were 19.9; 45.8; 76.7 and 511.3 mm3. The 
values of soil porosity presented higher values in the soil covered with grass in 
relation to the same pairs of soil samples without vegetation cover. This trend was 
also observed in the values of density of connections between the pores. (Table 1) 
The values corresponding to macroporosity were 7.37; 13.78; 9.01 and 12.54% on 
CS soil and 7.66; 7.48; 13.18; 12.52% not only SWC. Both coverages obtained an 
average very close to this index, varying only 0.46%. Already the values of 
microporosity for the soil CS was 13.75; 10.91; 18.37 and 24.17%, in SWC soil the 
indices were in the houses of 5.94; 13.08; 8.71 and 18.36. In this cyst it is noticed 
that there is evidence for CS soil, showing an average 5% higher than SWC soil. This 
can be explained because the permanence of the vegetal cover increases organic 



 

 

 

 

matter in the soil, it keeps the root system active and assists in the stability of its 
aggregates generating an increase of the microporisdade according to Viana et al 
(2011). 
In order to obtain a standard of comparison, the soil water retention curve test was 
carried out in soil samples from the same aforementioned environments (CS and 
SWC), which presents several practical, technical and scientific applications, such 
as: The determination of the soil field capacity, the permanent wilting point and the 
total availability of water in the soil, indispensable variables for an adequate irrigation 
management, soil water balance and macro and micro porosity (Table 2).  
One of the ways to determine the water retention curve in the soil is to use the 
Richards pressure chamber, which simulates a determined tension in the soil sample 
and later, by weight difference (wet soil after being subjected to pressure - Soil dried 
in an oven at 105 ºC for 48 hours), the water content related to the applied voltage is 
determined. For all eight samples submitted to the assay an eight-strain sequence 
was applied on the following increasing scale: 0.01; 0.033; 0.06; 0.33; 1.00; 5.00 and 
15.00 bar. 
What is evident when carrying out a relationship with both methods is that the 
Retention Curve is larger than the Computed Microtomography because this method 
can identify a greater percentage of microporosity reaching the house of 23.17% 
more in the soil CS and 28.05% in soil SWC. This is due to the fact that the 
maximum resolution of the MCT reaches the equivalent of 0.03mm, however there 
are a series of pores with smaller sizes that are not identified by the tomographic 
sensors. Regarding macroporosity data, the Retention Curve showed an average of 
12.11% for CS soil and 5.40% for SWC soil. In this same index for MCT, 10.21% for 
CC soils and 11.52 for SWC were presented. This demonstrates a greater capacity 
of the microtomography in the identification of pores larger than 0.03mm, mainly to 
environments that have already been worn in compacts for a period of five years. 
 

 
Table 1 - Distribution of porosity and connectivity density in different systens of 
use. 
 



 

 

 

 

 
Table 2 - Distribution of the values processed by Retention Curve. 

 

Conclusions 
 
The results show that the presence of the vegetal cover is a relevant factor in the 
increase of the porosity of the superficial layers of the soil, because the root system 
develops ducts that are connected with the progress of its development. In this 
sense, identified a concentration of 18.60 g/dm3 of organic carbon in the A horizon of 
this soil, which may aid in the stability of aggregates and condition the occurrence of 
pores. On the other hand, the lack of vegetation cover considerably reduces the pore 
indices of the superficial layers of the soil, which can be explained by the fact that the 
sealing process of the exposed soil occurs when the material disaggregated by 
erosion caused by the impact of the raindrops (Splash) obliterates the pores, 
corroborating with this hypothesis identified, for the same area, very high apparent 
density values for horizon A, at the house of 1.45 g/dm3. Thus, the MicroCT 
technique demonstrated an efficient and non-destructive tool for the analysis and 
characterization of the pore structure of soils protected from and degraded by 
erosion, underlining clear differences between them, as expected. 
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Abstract 
The objective of this work was to evaluate the spatial dependence of the total organic carbon 
(TOC) of the archeological site Lagoa Grande das Queimadas. For this purpose, soil samples 
were collected up to 200 cm deep, totaling 38 samples, and the TOC was analyzed in the 
laboratory. The data obtained were analyzed using descriptive statistics and geostatistical. The 
results showed that there is spatial dependence. The kriging showed that the TOC up to 80 
cm decays in depth and from 80 cm to 100 cm there is an increase and decaying again after 
100 cm. The use of geostatistical techniques proved to be efficient to understand the spatial 
dependence of the data. The results indicate lithological discontinuity. 
Keywords: Geostatistics; Semivariogram; Kriging; Archaeological record. 
 

Introduction 
 
The applicability and use of geostatistics as a methodology for analyzing data in space 
or time is widespread in several branches of science and it is interested in determining 
the spatial dependence of observations on a variable. In soil science, geostatistics 
provides information about the spatial variability of its properties in a sampled area, 
and this knowledge allows for proper management planning. Many works use the 
technique to assess horizontal variability, few works on vertical variability in the soil 
profile. 
 
Given the above, the objective of this work was to evaluate the spatial dependence in 
depth of the levels of TOC of an open trench in Lagoa Grande das Queimadas located 
in the southwest of the State of Piauí, using descriptive and geostatistical statistics. 
 

Methodology 
 
The study area comprises Lagoa Grande das Queimadas located in Várzea Branca in 
the southwest of the state of Piauí, between two conservation units: the Serra da 
Capivara National Park and the Serra das Confusões National Park. The region in 
which the lagoon is located presents minimum temperatures of 18 ºC and maximum of 
36 ºC, with a semi-arid, hot and dry climate. The vegetation is shrub-arboreal caatinga 
(CPRM, 2004). 
 
The regional geology is composed of granites and schists from the Pre-Cambrian 
Sobradinho-Remanso Complex and tertiary-quaternary dendrite-laterite deposits. The 



 

 

 

 

 

depressed shaped site has Holocene sediments. The municipality of Várzea Branca is 
located in the Canindé-Piauí Hydrographic Sub-Basin, whose main watercourse is the 
Piauí River. In the study area, a Haplic Gleysol occurs. 
 
The research presents the TOC analysis of 38 samples collected up to 200 cm deep 
inside the Lagoa das Queimadas. Samples were collected every 10 cm, for the first 3 
depths and the others every 5 cm. 
 
The TOC were quantified following the Embrapa Soil Analysis Methods Manual 
(TEIXEIRA, et al., 2017). To measure the TOC, the soil sample is placed in an acidic 
medium and the TOC is determined by the oxidation of potassium dichromate, in the 
end the remaining dichromate is titrated with ferrous ion. 
 
After this procedure, the data were tabulated and descriptive statistical analysis 
performed. To understand its spatial dependence, data were analyzed using 
semivariograms and kriging (VIEIRA et al., 2020). The depth of each layer was used 
as a geographic coordinate, starting from the surface where the value zero was 
assigned. 
 

Results and discussion 
 
Data analysis through descriptive statistics showed that the soils have an average of 
1.50 g kg-1 TOC, standard deviation and variance of 1, minimum value 0.18 and 
maximum value 3.00, showing that the data show moderate variability. In addition, 
asymmetry presented a value of -0.1 and kurtosis of -1.6, indicating that the values 
present asymmetry to the left and platykurtic distribution. 
 
The spatial dependence of TOC was verified by adjusting the semivariogram (Figure 
1). A good fit of the semivariogram can be observed, indicating a moderate spatial 
dependence. 
 
The adjusted model had a nugget effect (C0 = 0.15), a level of 0.39 indicating spatial 
dependence and the range showed that these samples are correlated up to a depth of 
11.58 cm (Figure 01). 
 
The data have a structural variance (C1) of 0.24, with a coefficient of determination 
(R2) of 0.71 and a degree of spatial dependence of 62%. Furthermore, the gaussian 
model was the one that best suited the observed data. 

 
The figure 02 shows the depth distribution of TOC observed in the samples and 
estimated by Kriging. Up to a depth of approximately 85 cm there is a decrease in 
TOC, with observed and estimated values being close, that is, with small deviations. 
Between 85 and 110 cm, the TOC distribution is erratic, with greater deviations 
between measured and estimated values. From 110cm onwards, TOC contents are 
significantly smaller than up to 85cm and estimates return to few deviations. The 



 

 

 

 

 

results indicate that there is a lithological discontinuity or fluvic character in the profile 
from 85 cm in depth. 
 
 

 
Figure 01- TOC semivariogram of Lagoa Grande das Queimadas archeological site. 
 

 
Figure 02- Depth distribution of observed and estimated organic carbon contents by 
kriging. 
 

Conclusions 
 
The TOC contents in the profile studied had a good adjustment to the semivariogram 
and a good estimate can be affirmed by the kriging, being able to employ the method 
for interpolation. In view of the observed results, it was possible to make inferences 
about the origin of the parent material of the studied soil. 
 

References 

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0,00 1,00 2,00 3,00

D
et

h
 (

cm
)

Total organic carbon (g/kg)

Measured

Predicted



 

 

 

 

 

 
CPRM. Projeto cadastro de fontes de abastecimento por água subterrânea, 
estado do Piauí: diagnóstico do município de Várzea Branca. - Fortaleza, 2004. 
Disponível em: 
http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/16459/Rel_VarzeaBranca.pdf?se
quence=1 Acesso em: 27. maio. 2020. 
 
TEIXEIRA, P. C.; DONAGEMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. (Ed. Técnicos). 
Manual de métodos de análise de solo, 3. ed. rev. e ampl. Brasília: Embrapa, 2017. 
575p. 

 
VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: 
NOVAIS, R. F.; ALVARES, V. H.; SCHAEFER, C. E. G. R. (Ed.). Tópicos em ciência 
do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2000. 
 

 



 

 

 

 

Digital Soil Mapping: some issues of pedological concern 
 

CARVALHO FILHO, Amaury de1; MOTTA, Paulo Emilio Ferreira da2;  
CARVALHO, Ana Letícia Lima de3 

1
 Embrapa Solos, amaury.carvalho@embrapa.br; 

2
 Embrapa Solos, motta.pauloemilio@gmail.com;  

3
 Universidade Federal de Juiz de Fora, carvalho.ana@engenharia.ufjf.br 

 
PEDOMETRICS: INNOVATION IN TROPICS 

 
Abstract 
Aiming to contribute to the development and improvement of modern soil mapping 
techniques, an analysis of the basic concepts and practices adopted by the Digital Soil 
Mapping was performed, under the focus of pedological knowledge. The main deficiencies 
and inconsistencies concerning the Scorpan model and the conceptual approach of the 
method are identified and discussed. Some problems related to the soil maps produced are 
also pointed out. The importance of pedological knowledge for the development of soil 
mapping techniques and soil interpretation is emphasized, which in the authors’ opinion 
should receive special attention from the scientific community dedicated to the topic. 
Keywords: soil survey; soil genesis; pedological knowledge; scorpan model; soil science. 

 
Introduction 
 
Since its introduction (McBratney et al., 2003), the Digital Soil Mapping (DSM) has 
been considered a revolutionary approach, and its advantages and future 
perspectives frequently exalted (McBratney et al., 2019). Despite the large number of 
studies carried out in nearly two decades, there remains a difficulty in reconciling 
standardized procedure for a comprehensive application. Efforts in this direction have 
focused on the adequacy of statistical and computational techniques and selection of 
covariates; issues concerning pedological foundations have received little or no 
attention. In this sense, this work aims to evaluate some aspects of the DSM from a 
pedological point of view, as contribution to modern techniques of soil mapping. 
 

Methodology 
 
From a comprehensive evaluation of several studies applying DSM techniques, and 
having as reference review and synthesis papers and basic documents that present 
the fundamental principles of the method (McBratney et al., 2003; Dobos et al., 2006; 
SSDS, 2017; Rossiter, 2018, McBratney et al., 2019), an analysis of the main 
concepts, practices and results produced by the DSM methodology was performed, 
which are discussed below from the point of view of pedological knowledge. 
 

Results and discussion 
 
As proposed by McBratney et al. (2003), the basic principle of Digital Soil Mapping 
(DSM) is the use of environmental variables related to soil formation factors for 
prediction of soil classes or soil properties, based on the so called Scorpan model, 
which is used as a foundation to express quantitative evaluations in a spatial context. 



 

 

 

 

This approach originates from a supposed similarity with traditional procedures of 
making soil surveys, which would involve a predefined model of soil formation 
applied to soil properties data and other environmental variables that have significant 
impact on soil formation (Dobos et al., 2006). 
 
The Scorpan model is based on the fundamental equation of soil-forming factors, 
proposed by Jenny (1941). It is formulated as an empirical quantitative function S = 
f(s, c, o, r, p, a, n), where S (soil classes or soil attributes at a point in space and 
time) is estimated by seven environmental covariates — s: soil (other properties of 
the soil); c: climate; o: organisms; r: relief; p: parent material; a: age (the time factor); 
n: spatial position. 
 
The genetic connotation implicit in the model is evident. In this sense, some 
questions arise. Given the great variability of environmental conditions related to soil 
genesis, and the strong interdependence among them, what are the objective 
conditions of establishing the formula factors in order to ensure reliable quantitative 
estimates? And how to take into account the interactions between the factors? 
 
Besides the logical inconsistency of considering soil characteristics (factor s) as an 
independent variable in the equation, which implies a relationship of self-dependence 
in the genesis of a natural element (as something whose origin depends on itself), 
establishing the other factors on a quantitative basis seems a very complex problem. 
Thus, climate (climatic properties of the environment) and relief (landscape 
attributes) can be decomposed into a series of attributes, but how to quantify, or even 
to estimate, the participation of each one? On the other hand, organisms (vegetation 
or fauna or human activity) can be represented by vegetation or digital land cover 
data (SSDA, 2017); but how to take into account the influence of soil fauna 
constituents, microorganisms among them? 
 
Even more difficult is to estimate the parent material, referred as lithology (McBratney 
et al., 2003), which can be derived from a geology map according to Soil Survey 
Manual (SSDS, 2017). At this point there is a contradiction between bedrock 
(lithology), the central theme of geological mappings, and parent material, as 
evidenced by the concept presented by the Soil Survey Manual itself (SSDS, 2017): 
“Soil parent material is not always residuum weathered directly from underlying 
bedrock. The material that developed into the modern soil may not be related to the 
underlying bedrock at all. In fact, most soils did not form in place but were subject to 
transport and deposition by wind, water, gravity, or human activities.” 
 
However, the most complex and perhaps most important factor for an adequate 
adjustment of the equation is time (age), which has influence on all the others. From 
the variations in environmental conditions over the time of soil formation results the 
recognized soil polygenetic character, whose understanding requires specific and 
detailed studies of soil genesis. As reminded by Arnold (1999): "The exact 
combination of physicochemical and biological reactions that have actually 
transformed materials over time into soil horizons of a specific soil can never be 
known with certainty." 



 

 

 

 

 
In summary, the Scorpan model presents a set of basic inconsistencies, both from 
the point of view of soil genesis knowledge and the specification of the equation 
parameters. Another problem of DSM conceptual approach refers to prediction based 
on soil genesis inferences, which presents a strong speculative aspect and 
incorporates a hypothetical character to the results obtained. Here, a word is 
necessary on the supposed similarity between DSM and traditional soil survey. It is 
important to highlight that the soil survey is based in relationships established 
between soils and other recognizable elements of the environment, evaluated directly 
in the field. This procedure does not exclude the use of soil genesis knowledge (and 
consequently of formation factors) to establish relationships between soils and other 
environmental variables — but its application should be restricted as an element of 
inference, not of determination. Although mental models are applied throughout the 
mapping work, they are progressively tested and refined in a continuous process of 
adjustment. For this reason, the detail level of the soil survey, more than the map 
scale itself, has an essential significance as an index of reliability and as a guide for 
interpretation of results. Even though subtle, this aspect implies a strong distinction 
between the traditional method of soil survey and the DSM approach. At the same 
time, it reveals a distorted understanding of the soil mapping process, which is 
reflected both in the digital methodological procedures and in its products. 
 
In practice, for DSM predictions, the Scorpan model is just partially applied regarding 
the formula factors. While some factors (relief, for example) are decomposed into 
numerous attributes (environmental covariates), others are related restrictedly to one 
characteristic, or may not even be considered, which occurs frequently with the time 
factor (age). Each environmental covariate data (including soil) can be directly 
obtained by field determinations (soil profiles, for instance) or derive from remote or 
proximal sensing images, or even from thematic maps. Therefore, there are a large 
number of possible variations, regarding the nature of covariates selected, the 
information sources, the predictive models and the data processing techniques used. 
As a result, subjective conditions are incorporated into the process, whereas the 
results depend, widely, on the model adopted (subject of the action) as well as on the 
attributes, many of which are not directly related to the soil (object of the evaluation). 
 
The high degree of subjectivity is expressed in the prediction differences observed in 
numerous digital mapping studies. This is one of the reasons for the difficulty of 
establishing a standard protocol for applying DSM. Such difficulty has been attributed 
to sampling deficiency, the need to adjust prediction models and covariate selection 
techniques, or even to hidden factors (Rossiter, 2018). Its causes, however, have 
much deeper roots. They result from inconsistencies of the DSM method discussed 
above, which in essence are linked to the disconnection with the pedological 
knowledge, the basis for understanding soils (Arnold, 1999). 
 
In fact, some propositions adopted by the DSM evidence insufficient soil knowledge. 
Among them, the attribution of spatial resolution to soil maps (instead of scale) and 
the mapping of soil classes — both devoid of meaning. In the first case, a 
characteristic of sensor images (that record information captured from a real-world 



 

 

 

 

element) is applied to a thematic map, which corresponds to a representation of the 
geographic distribution of a natural element (not the phenomenon itself). In the 
second case, the fact that a soil class is just a concept, and as such impossible to 
map, is ignored. There is here a confusion, common to non-specialists, between 
taxonomic class and soil mapping unit as a landscape segment, which reinforces the 
importance of pedological knowledge for soil mapping and interpretation (Arnold, 
1999). 
 
The lack of perception of the inherent utilitarian character of soil maps is also explicit. 
This is exemplified by numerous DSM studies that present as product maps of soil 
classes at the order or suborder levels, which in themselves have no practical use. 
An eloquent example is the recent efforts to estimate the probability of occurrence of 
soil classes or properties. There is no technology that can solve the impasse 
concerning the practical use of maps indicating, for the same area, distinct 
possibilities of spatial distribution of soils (most probable and second-most-probable), 
as presented by McBratney et al. (2019; see Fig. 3). 
 

Conclusions 
 
The DSM approach presents a series of deficiencies associated to non-observation 
of knowledge developed by Pedology, which compromises its suitability as a 
methodology for soil mapping, which should be considered by scientific community 
related to the subject. 
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Abstract 
Soil invertebrate fauna quickly responds to environmental changes and has been used as 
environmental quality indicator. The objective of this work was to evaluate the scale variability 
of soil invertebrate fauna under use and management systems. Invertebrate fauna was 
sampled in a transect with 128 points under the following systems: Maize, Soybean, 
Eucalyptus stage I, Eucalyptus stage II, preserved Cerrado and disturbed Cerrado. Data were 
evaluated using multifractal analysis to verify the complexity and heterogeneity. Maize, 
preserved Cerrado and disturbed Cerrado presented higher richness of taxonomic groups. 
Invertebrate fauna showed multifractal behavior with the complexity and heterogeneity 
influenced by management. Soybean presented monofractal behavior, which reflects the low 
system diversity. 
Keywords: scale heterogeneity; singularity spectrum; soil fauna diversity; spatial 
variability 
 

Introduction 
 
The soil is habitat of many invertebrate taxonomic groups that play diverse ecological 
functions. They are sensitive to minimal environmental variations and has been used 
as environmental quality indicator. Invertebrate fauna has high complexity and scale 
variabilities in natural ecosystems (Silva et al., 2020). However, in anthropic systems 
the complexity decreases. According to Vidal-Vázquez et al. (2013) the heterogeneity 
description provides important information’s about spatial and scale variabilities. The 
objective of this work was to evaluate the scale variability of soil invertebrate fauna 
under use and management systems. 
 

Methodology 
 
The experiment was carried out at Fazenda Unha de Gato (3º70'80.88'' S and 
43º18'71.27'' W – Figure 1), in areas under use and management systems: Maize (MI 
– 103 ha); Soybean (SO - 113 ha), Eucalyptus stage I (E1 - 3,79 ha), Eucalyptus stage 
II (E2 - 3,79 ha), preserved Cerrado (CP - 33,08 ha) and disturbed Cerrado (CA - 20,44 
ha). Pitfall traps were installed in 05/01/2016 in transect with 128 sampling points, with 
three meters distant each other. 
Data were analyzed by multifractal technique following the presumptions of moment 
method (Halsey et al., 1986; Evertsz and Mandelbrot 1992) and direct method 
(Chhabra e Jensen, 1989), generating successive partitions to k (k = 1, 2, 3…), where 
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at each scale δ, a number of segments, N(δ) = 2k with characteristic size length, δ = L 
× 2−k, were obtained, covering the entire extent of the support, L. That allows the 
construction of partition function graphs (Evertsz and Mandelbrot 1992; Vidal Vázquez 
et al., 2013), and singularity spectrum (Chhabra and Jensen (1989). 
 

 
Figure 1. Sampling areas at Fazenda Unha de Gato, Maranhão, Brazil. 
 

Results and discussion 
 
A total of 40,524 individuals were collected comprising 36 taxonomic groups (Figure 
2a). The area under Maize presented higher abundance (15,502 – 38.25%), followed 
by Eucalyptus stage II (8,590 – 21.19%), Eucalyptus stage I (5,630 – 13.89%), 
preserved Cerrado (5,146 – 12.69%), disturbed Cerrado (3,882 – 9.57%) and Soybean 
(1,837 – 4.53%). 
Partition functions were built to successive segments of 2k in k = 0 and k= 8 in order 
intervals –10 < q < 10 and had multifractality with adjustment greater than 0.97. In 
figure 2b is showed the partition function of richness of taxonomic groups for preserved 
Cerrado. 
 

 
 

Figure 2. Identified taxonomic groups in experimental plots (2a) and partition functions 
(2b) of richness in preserved Cerrado.  
 
The spectrum of the generalized dimension (Dq) describes a typical sigma-shaped 
curve and provides indicator parameters of properties of multifractal dimension (Vidal-

0 10 20 30 40 50 60 70 80 90 100

Milho

Soja

Ecalipto I

Eucalipto II

Cerrado Preservado

Cerrado Antrópico

Acari Araneae

Archeognata Blattodea

Chilopoda Collembola

Coleoptera Dermaptera

Diplopoda Diptera

Embioptera Formicidae

Gastropoda Hemiptera

Heteroptera Hymenoptera

Isopoda Isoptera

L. Coleoptera L. Diptera

L. Formicidae L. Lepidoptera

L. Neuroptera Lepidoptera

Mantodea Nematoda

Neuroptera Oligochaeta

Opiliones Orthoptera

Pseudoscorpionida Psocoptera

Scorpionida Thysanoptera

Trichoptera Zygentoma

-21

-14

-7

0

7

14

21

28

-2 -1.5 -1 -0.5 0

lo
g

 μ
(q

, 
δ

)

log δ

Riqueza de Jackknife

-10 -8 -6 -4 -2 0 2 4 6 8 10

b) a) 



 

 

 

 

Vázquez et al., 2013). The left sides of the spectra represent the q negative moments, 
which correspond to higher measured concentrations, while the right side represents 
the q-positive moments, which correspond to the lower measured concentrations. 
Therefore, the differences in these three moments of the generalized dimension (Dq) 
were used to evaluate the heterogeneity of scale properties. When D0 = D1 = D2, the 
distribution of the data series is characterized as monofractal; however, if D0 > D1 > 
D2, the measure distribution is considered to be multifractal. 
The singularity spectrum graph to organism abundance expressed in individual per 
trap per day (Figure 3a) described that organism abundance cover multifractal 
systems. maize, Eucalyptus stage I and II showed asymmetric branches to the left, 
indicating that along the transect there is domain of high values of measurements. 
Soybean, preserved and disturbed Cerrado had asymmetric branches to the right, 
demonstrating a domain of low values of scale measurements. 
 

 
 

Figure 3. Spectrum of singularity to the number of individuals per trap per day (a) and 
richness of taxonomic groups (b) in the experimental plots. 
 
The spectrum of singularity to richness of taxonomic groups presented asymmetric 
branches to the right, indicating a domain of low values of scale measurements. 
Eucalyptus stage I and II had spectrums with higher amplitude. We highlight that soil 
invertebrate fauna in Soybean and Maize cultivations had scale variability like Cerrado 
areas. 
 

Conclusions 
 
Maize area had higher abundance and lower diversity of taxonomic groups. The 
variations found in scales of heterogeneity to abundance and richness indicates that 
each these parameters reflect a variability in distinct manners. Multifractal analysis 
pointed the differences in the soil use and management indicating a domain of low and 
high values of measurement and describing the heterogeneity of the evaluated 
systems. 
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Abstract  
The work aimed to estimate soil erodibility in natural and anthropogenic environments in the 
southern region of Amazonas. Areas of approximately one hectare were selected in each study 
environment, namely: native forest 1, native forest 2, cerrado, cerradão, pastagem, 
reforestation with teca, reforestation with jenipapo, misto reforestation (teca, jenipapo, 
andiroba, samaúma, mogno). In each environment soil samples were randomly collected at a 
depth of 0-20 cm, 32 per area, 256 in total. Texture analysis and soil organic carbon were 
performed, and then soil erodibility was estimated using indirect prediction methods. Data were 
subjected to descriptive and univariate analysis, as well as principal component analysis. 
According to the results obtained, it is observed that the evaluated areas of native forest 1 and 
2, cerradão and pastagem show high susceptibility, reflecting the level of erodibility, this in 
relation to the cerrado, reforestation with jenipapo, teca and misto reforestation. 

  

Introduction  

  
Soils in the southern region of Amazonas have been undergoing changes due to the 

replacement of forest areas by the most diverse use systems, without due knowledge 

and compliance with technical criteria, and this has been one of the main problems in 

the region (Frozzi et al., 2020 ), which has led to the acceleration of erosive processes, 

causing damage to the ecosystem. 

In this context, in order to estimate the erodibility, some studies used indirect methods, 

as, among other characteristics, it has a low cost and provides important information 

for diagnosing the use and management activities. Of these, a study carried out by 

Brito et al. (2020), who studied the estimation of erodibility in areas of Terras Preta de 

Índio under the use of cocoa, pasture and coffee in the region of Apuí, AM. 

Knowledge of changes in soil attributes caused by various anthropogenic uses 

provides assistance for the adoption of management practices that allow increasing 

the yield of the production process with the conservation of environments (Souza et 

al., 2020). For Oliveira et al. (2020), although several scientific works and the efforts of 

a large number of researchers have contributed to the advancement of knowledge of 

soils in the southern region of Amazonas, there is a need to expand this knowledge for 

a better compression of Amazonian ecosystems. Given the above, the objective of this 
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work was to estimate the soil erodibility in natural and anthropogenic environments in 

the southern region of Amazonas. 

 

Methodology  

  

The study was carried out between January and March 2020 in areas of the 

municipality of Humaitá, south of the state of Amazonas (Brazil). The areas of native 

forest 1 (FN1) cerrado, cerradão are located at km 20, of the BR-319, towards Humaitá 

– Manaus, in an area belonging to the 54th Infantry Battalion of the Brazilian Army. 

Pastagem and native forest areas 2 (FN2) are located on a private property at km 45 

of BR-319 towards Manaus. Reforestation areas with teca, jenipapo reforestation, 

misto reforestation (teca, jenipapo, andiroba, samaúma and mogno) is located on a 

private property located at km 18 of BR-319 towards Manaus, AM. 

In each studied area (native forest 1 and 2, cerrado, pastagem area, teca, jenipapo 

and misto reforestation area), 32 collection points were selected in the central part of 

an area equivalent to one hectare and then samples were collected of soil randomly 

using a Dutch auger at a depth of 0-20 cm, making a total of 256 samples in the studied 

areas. 

The collected soil samples were dried in the shade and later shrunk manually, passing 

them through a sieve with a diameter of 2.00 mm, obtaining the air-dried fine earth, 

then the total organic carbon content was determined (TOC) and estimated soil organic 

matter (SOM), as well as particle size analysis (texture) (Teixeira et al., 2017). To 

fractionate the sand, it was sieved, aiming to estimate the factors of soil erodibility, 

using a sieve shaker with 2mm meshes; 1mm; 0.5mm; 0.250mm; 0.125mm and 

0.053mm. From the fractions, the soil erodibility variables were determined: K factor 

(global erodibility - Denardin (1990)), Ki factor, Kr and Tc (between-groove, furrow and 

critical shear erodibility - (Flanagan and Livingston, 1995)). 

  

Results and discussion  

 

In relation to soil organic matter (SOM), this presented mean values ranging from 33.07 

to 102.55 g kg-1, in the following ascending order: teca> misto> pastagem > cerrado > 

cerradão>jenipapo> FN1 > FN2. The areas of the natural environment had higher 

content compared to the cultivated areas. This result is due to the management 

systems adopted in agricultural crops that have a great influence on the MOS stock, 

which may decrease, maintain or increase in relation to the area's native vegetation 

(Caetano et al., 2013), as well as the diversity of organisms present in natural 

environments which, in turn, a certain percentage is lost in the conversion of 

environments to anthropized places, these organisms are responsible for the 

decomposition of organic material and incorporation of carbon and nutrients into the 

soil (Gonçalvez and Santana, 2019). 

The mean K factor ranged from (0.04 to 0.06 t.ha-1.MJ-1.mm-1.ha.h), starting in the 
jenipapo > teca > misto > FN1> cerrado > cerradão > pastagem> FN2. Within the 
classification proposed by Castro et al. (2011), for the K factor, the jenipapo, teca and 
misto reforestation areas were classified as areas of high erodibility, whereas the FN1 



 

and FN2, cerrado, cerradão and pastagem areas, these have very high erodibility, in 
both cases it is necessary a conservation management plan at these sites in order to 
mitigate and prevent evolution to higher levels of erosion, gullies in this case (Hernani 
et al., 1999). 
The average Ki wepp factor ranging from (3.10E+06 to 4.85E+06 kg.s.m-4), starting in the 

area FN2 > cerrado > jenipapo > FN1 > misto > teca > pastagem > cerradão. It is 

observed that the natural (FN1 and FN2 and cerrado) and crop areas (Jenipapo, Teca 

and Misto) have lower averages compared to pastagem (4.17E+06 kg.sm-4) and 

cerradão (4. .85E+06 kg.sm-4), which corroborates the values presented by Brito et al 

(2020). This shows that pastagem and cerradão are more susceptible to erosion 

between ridges. 

The results of the principal component analysis are shown in Figure 1. It was possible 

to verify that the cerrado area has a greater relationship with sand associated with 

global erodibility (K) and inter-groove erodibility (Ki), showing the easy detachment of 

particles in this environment of natural form (Corrêa et al., 2015). 

 
Figura 1. Principal component analysis of the soil attributes studied at a depth of 0– 

20 cm for the areas FN1, FN2, cerrado, cerradão, pastagem, jenipapo, teca and misto, 

in southern Amazonas. Areia: sand, Argila: clay, MO: soil organic matter. 

The areas of FN1e FN2 and jenipapo presented a high content of soil organic matter 
(MOS), combined with a higher clay content, thus causing low K factor rates, and even 
with a smaller amount of vegetation cover, the cerrado also presented low evidence of 
lighter, shallower erosion (Kr). According to Costa (2013), the high content of organic 
matter in the soil influences its structure and stability. Thus, the importance of clay in 
the soil is justified as essential in the aggregation and stabilization of soil aggregates, 
as they will contribute to greater resistance against erosive processes (Brito et al., 
2020). 
 



 

Conclusions  
 
Soil organic matter has mechanisms that are fundamental for reducing the risk of soil 

erosion in natural environments, being crucial as a form of mitigation in cultivated 

environments. 

Of the areas evaluated, the cerradão and pasture show the highest erosion levels in 

relation to the other areas, a fact that is closely associated with higher levels of sand 

and low clay, even with high values of critical shear stress. 
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Abstract
We used an expert system for soil classification to curate soil data and improve its quality.
The system is the first to accurately classify soil profiles to the fourth level of the current
version of  the Brazilian Soil  Classification System (SiBCS).  We analyzed 94 soil  profiles
using  the  expert  system,  which  guided  the  necessary  changes  on  soil  data  to  make  it
consistent with the corresponding classifications. About 45% of soil profiles did not require
data  treatment,  and  most  changes  were  related  to  horizon  symbols.  Even  after  data
treatment, changes in classification were necessary for almost 40% of the profiles on at least
one  categorical  level.  Therefore,  using  an  expert  system for  soil  classification  can  help
identify inconsistencies in data and classifications of soil profiles, in addition to guiding the
necessary changes. It can also help improve the SiBCS.
Keywords: data quality; soil profiles; digital tool.

Introduction

Increasing  the  quantity  and  quality  of  soil  data  and  information  is  essential  for
improving  soil  resource  governance.  It  is  one  pillar  of  action  for  the  Global  Soil
Partnership (GSP) (FAO, 2021), which aims to improve soil governance to guarantee
healthy  and  productive  soils  as  well  as  supporting  the  provision  of  essential
ecosystem services. The National Soil Program of Brazil (Pronasolos) (POLIDORO
et al., 2016) was proposed to provide richer information on Brazilian soils for decision
making. The long-term program has five main lines of action, one of which deals with
database and soil information.

Soil  classification  is  an  essential  component  of  soil  science.  The  Brazilian  Soil
Classification System—in Portuguese,  Sistema Brasileiro de Classificação de Solos
(SiBCS)—is the official taxonomic system for soil  classification in the country. It  is
structured in the form of a taxonomic key up to the fourth categorical level. It also
contains recommendations of qualifiers for the fifth level and suggested properties for
the sixth categorical level (DOS SANTOS et al., 2018).

The correct classification relies on the consistency and completeness of soil  data,
which  involves  dozens  of  soil  attributes.  Vaz  et  al.  (2019)  developed  an  expert
system for automatic soil classification and analyzed data from a widely used soil
database, comparing the results of the system with the classifications registered in
the database. They showed the need for greater data curation of available databases
under the supervision of soil scientists and presented the system as a powerful tool
to assist with this activity. However, their analysis was limited to the first level of
SiBCS, and did not include data curation. In the present study, we used the same



expert system as Vaz et al.  (2019) to examine soil data to the first four levels of
SiBCS, as well as took steps to curate the data and improve its quality. 

Methodology

The expert  system we used to analyze the soil  profiles is based on the rules of
SiBCS for its first four categorical levels. The classification provided by the system
only considers the current version of SiBCS (DOS SANTOS et al., 2018).

We formed a team of soil and computer scientists to analyze the data with the help of
the expert system. Once completely validated, the software should provide correct
classifications in all cases since the data provided is correct and complete. In some
situations, the software can generate wrong classifications due to the considerable
complexity and the number of possible classes in the system. When this occurs, the
software is corrected and starts to produce the expected result.  Therefore, all  the
automatic classifications generated by the system in the present study were correct
and verified by soil scientists.

We analyzed 94 soil  profiles from  the states of  Pernambuco and Rio Grande do
Norte in  Brazil.  These samples were collected during the GeoTab Project,  which
aimed to  organize soil  data from the Brazilian coastal  tablelands and update the
classifications of the profiles. These are available in ‘.doc’ files, meaning that the data
needed to be processed in order to be generated in the format required by the expert
system. We did it using an app called SmartSolos.

After obtaining the automatic classification for a given soil profile, we compared it
with the recorded one. When the classes were different, we analyzed the data to
check its consistency and the rules of the software in order to verify its correctness.
The source of such differences could be errors in software, soil  attribute data, or
classification. For each case, we made the necessary changes.

Results and discussion

Table 1 shows the number of profiles analyzed for each first categorical level (order)
of SiBCS. The ‘Classification’ columns provide the number of soil profiles from each
order  that  were  classified  by  the  expert  system  according  to  the  records  made
previously by soil scientists. The ‘Data’ columns indicate whether data treatment was
required in order to obtain a correct classification.

The ‘Ln’ columns give the number of profiles whose records were correctly classified
to  the  nth level.  For  example,  the  classification  of  nine  out  of  25  argissolos was
consistent with verified records to the fourth level, while 15  argissolos had correct
classifications  to  the  third  level,  but  not  the  fourth.  Finally,  one  profile  that  was
actually an argissolo had been labeled with entirely different classes. 



Table 1: The classifications and the consistency of data for the analyzed soil profiles. 
Order # Profiles Classification Data

L0 L1 L2 L3 L4 OK Horizon Addition Update

Argissolos 25 1 0 0 15 9 12 9 1 3

Cambissolos 11 0 0 1 2 8 4 5 2 1

Chernossolos 2 0 0 0 0 2 1 1 1 0

Espodossolos 3 0 0 0 0 3 3 0 0 0

Gleissolos 8 0 0 3 0 5 6 0 2 0

Latossolos 11 0 0 1 2 8 8 2 1 0

Luvissolos 5 2 0 0 1 2 2 3 0 0

Neossolos 13 1 0 3 0 9 4 9 7 0

Nitossolos 1 0 0 0 0 1 0 0 0 1

Organossolos 1 0 0 0 0 1 0 1 0 0

Planossolos 7 2 0 0 1 4 1 6 0 0

Plintossolos 4 0 0 0 0 4 1 3 0 0

Vertissolos 2 0 0 1 0 1 1 1 0 0

Unknown 1 1 0 0 0 0 0 1 0 0

Total 94 7 0 9 21 57 43 41 14 5

The  ‘Data’  column  group  indicates  the  changes,  if  any,  required  for  each
classification:
 OK: data were consistent; therefore, no change was made.
 Horizon: changes in the horizon symbols.
 Addition: additional data were needed.
 Update: updates in some attributes.

In order to arrive at a consistent classification, profiles occasionally required changes
to horizon symbols, attribute updates, or additional data. The sum of numbers in the
‘Data’ columns is not necessarily equal to the number of profiles examined from the
corresponding order, as is the case of the ‘Classification’ columns. This might occur,
for  example,  when a single  profile  requires changes in  both  horizon symbol  and
attribute update.

After data treatment, the system classified 60.6% (57/94) of all profiles in a manner
consistent with the records at all  four levels. Meanwhile, 22.3% (21/94) of profiles
were consistent with the third level, with errors only arising in the fourth. In most of
these cases, the registered class at the fourth level is no longer valid. As such, these
errors  were  largely  caused  by  incompatibilities  across  SiBCS  versions,  and  the
records  had  not  yet  been updated.  In  9.6% (9/94)  of  profiles,  only  the  first  and
second  levels  were  correct.  In  7.5%  (7/94)  of  profiles,  the  classification  was
completely different from the original. Therefore, some change in classification was
necessary for almost 40% (37/94) of the profiles.       



To  obtain  a  correct  classification,  data  must  be  correct  and  complete.  No  data
treatment was required for 45.7% (43/94) of profiles. Of the profiles that did require
changes, most needed only the adjustment of symbol horizons, which can be quickly
done by a specialist. Updating obsolete symbols to the current standard and adding a
missing suffix were the most common changes. In 14.9% (14/94) of the profiles, it
was necessary to add data that a specialist would be able to distinguish but were not
explicitly registered. In some cases, it was necessary to replicate the dry color in
other horizons or to add an attribute indicating, for example, cohesive qualifier, fluvic
qualifier, or alterable primary materials. Data not related to horizon symbols only had
to be updated in 5.3% (5/94) of cases, generally for a single attribute. Thus, incorrect
attribute values were corrected after analysis by a domain specialist who identified
the inconsistencies in the data. In many cases, they were only recognized because
the  classification  obtained  by  the  system  was  not  equal  to  the  one  recorded—
furthermore, the results from the expert system provided indications of the necessary
changes.

It is important to note that one profile was classified by the system as “unknown” for
the first level. The current version of SiBCS considers the predominance (>50%) of
activity clay in the B horizon to classify  luvissolos and  argissolos. However, in the
profile classified as “unknown”, 50% of the B horizon had low-activity clay and 50%
high-activity  clay.  Therefore,  it  is  not  classified  either  as  a  luvissolo  or  as  an
argissolo. This demonstrates another benefit of the expert system, namely its ability
to validate SiBCS rules using software.

Conclusions

Analyzing soil  profiles with an automatic soil  classification tool makes it  easier to
identify errors in data or classification of soil profiles and allows more reliable data
curation. Additionally, the system can identify areas for improvement in the SiBCS.
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Abstract 
Over the years, the process of converting natural ecosystems into cultivated areas, as well as land use 
and management systems, has provided changes in aggregate stability and in soil carbon stock levels. 
The present work aimed to evaluate the impact of native forest conversion into cropland and its impacts 
on carbon aggregation and storage in southern western Amazonia. Meshes with dimensions of 90 x 70 
m, 90 x 56 m and 54 x 42 m were established, where 80 points were demarcated with regular spacing of 
10 x 10 m, 10 x 8 m and 6 x 6 m, for the forest and guarana, urucum, cupuaçu, respectively. At each 
sampling point, clod and ring samples were collected to determine physical and chemical attributes, at 
three depths (0.00-0.05; 0.05-0.10; and 0.10-0.20 m), totaling 240 samples/area. The conversion 
influenced the soil aggregation state, evaluated by the increase of clay fraction dispersion and decrease 
of DMP, DMG values and aggregate classes > 2.00 mm; the attributes were at the limit of the degree of 
spatial dependence, ranging from moderate to strong; in the multivariate analysis, the forest and 
cupuaçu areas showed similar behavior, with values of CO, EC and aggregate classes 2 – 1 mm, < 1 
mm and IEA, above the average. 
 
Keywords: Amazonian soils, land use and management, environmental impacts. 

 
Introdution 
 
Currently, the occupation and replacement of previously forested areas by agricultural areas 
without proper knowledge and non-compliance with technical criteria, has been one of the main 
problems in the Amazon region. In this sense, a conversion of natural environments into 
agricultural systems, especially monoculture systems, has caused changes in the soil 
(FREITAS et al., 2015). Among the soil properties that change the most due to use and 
management, the structure stands out, associated with the formation of compacted layers with a 
decrease in macropores, aggregate size, water infiltration rate and increased resistance to 
penetration of the root system and density (COSTA et al., 2015). Studies have also shown that 
soil carbon stocks have been significantly affected by land use and management systems 
(CUNHA et al., 2017). So, intensive cultivation, combined with a high turnover rate, is 
responsible for reducing the content of organic matter in the soil, which is one of the main 
agents for the formation and stabilization of aggregates (CASTRO FILHO et al., 1998). 
Quantifying changes in the stability of soil aggregates can provide results that support 
agricultural production on a more sustainable basis. In order to optimize crop productivity, 
attention and maintenance of good aggregation, stability and, consequently, good structure are 
necessary (OLIVEIRA et al., 2013). Given the above, the stability of aggregates, as a physical 
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attribute, becomes fundamental in the assessment of structural quality, as it is sensitive to 
variations in land use, and can identify possible changes promoted by the conversion of the 
forest into agricultural areas. Thus, this study aimed to evaluate soil carbon aggregation and 
stock in areas undergoing forest conversion to different cropping systems, using traditional 
univariate, multivariate and geostatistical statistical techniques. 
 

Metodology 
 
The study was carried out in two rural properties that are part of the São Francisco Settlement 
located in the municipality of Canutama, Amazonas, Brazil. Four areas were selected, being 
three areas under different crops: Urucum (Bixa orellana L.), Cupuaçu (Theobroma grandiflorum 
(Willd. Ex. Spreng) Schum), Guaraná (Paullinia cupana (Mart.) Ducke) and more forest area 
(Figure 1). 
Knits were made according to the dimensions of the crop. In the areas of guaraná and forest, 90 
x 70 m meshes were evaluated with regular spacing between the sampling points of 10 x 10 m, 
in the annatto area the chosen mesh was 90 x 56 m with spacing between the sampling points 
of 10 x 8 m , for the cupuaçu area, the mesh presented dimensions of 54 x 42 m, with regular 
spacing between the sampling points of 6 x 6 m. The were collected at the crossing points of the 
meshes, at depths of 0.00-0.05; 0.05-0.10; and 0.10-0.20 m, with 80 sampling points in each 
area, and totaling 240 per area. The points were georeferenced with a Garmin Etrex model GPS 
equipment (Datum South American´69). 

Figure 1. Location and digital elevation model of areas with guaraná, cupuaçu, urucum and forest, in the 
municipality of Canutama, southern Amazonas - AM. 

 
From the soil collected and taken to the laboratory provided by aggregate stability by the 
method of Kemper and Chepil (1965) and then determined the gravimetric mean diameter 
(DMG), weighted mean diameter (DMP) and the aggregate stability index (IEA) . The degree of 
flocculation (GF), degree of dispersion (GD) and wet organic carbon (CO) was performed by the 
method of Teixeira et al. (2017), after the carbon analysis, the carbon stock (EC) was corrected. 
After obtaining data, univariate analysis of variance, geostatistics and multivariate analysis were 
included. 
 
Results and discussion 

 
The analysis of variance (ANOVA) for the attributes evaluated in areas cultivated with guarana, 
annatto and cupuaçu in comparison with the forest area are presented in table 1 for the 
respective layers 0.00-0.05 m, 0.05-0 .10 m and 0.10-0.20 m. 



 

 

 

 

 
 

 

 

 
 

 
 

 

 

 
Table 1. Mean test of soil attributes in the layers of 0.00-0.05 m, 0.05-0.10 m and 0.10-0.0.20 m for areas with 
different uses in southern Amazonas - AM. 

Descriptive 
statistics 

CO EC DMG DMP Classes % IEA GF GD 

g kg-1 t ha-1 mm  >2,00 2,0-1,0 <1,00  %  

Layer (0,00-0,05 m) 

Guaraná 

Average 14,04d 7,99b 2,79a 3,19a 94,38a 0,82bc 4,80b 93,92b 78,93a 21,07a 

Urucum 

Average 16,52c 8,79b 2,76a 3,18a 94,77a 0,70c 4,53b 92,87b 76,60ab 23,40a 

Cupuaçu 

Average 23,42a 11,18a 2,53b 3,08b 91,17b 1,15a 7,68a 91,12c 68,55c 31,45a 

Forest 

Average 20,22b 8,66b 2,82a 3,20a 94,52a 0,98ab 4,51b 95,64a 72,91a 27,09a 

Layer (0,05-0,10 m) 

Guaraná 

Average 12,11d 6,63c 2,44c 2,96bc 86,17b 2,77a 11,06a 91,12b 69,42a 30,58a 

Urucum 

Average 16,16b 8,62b 2,81 3,16a 93,63a 1,39b 4,98c 94,64a 59,27a 40,73a 

Cupuaçu 

Average 23,30a 13,38a 2,59b 3,04b 89,17b 3,49a 7,35b 93,74a 57,78a 42,22a 

Forest 

Average 13,66c 6,53c 2,52bc 2,94c 87,61b 3,58a 8,81b 93,67a 66,14a 33,86a 

Layer (0,10-0,20 m) 

Guaraná 

Average 10,35b 11,13b 2,09b 2,72bc 77,54b 5,33b 17,13ab 89,47c 54,27ab 45,73ab 

Urucum 

Average 7,87c 8,08d 2,62a 3,03a 89,42a 2,76c 7,82c 92,83a 51,99ab 48,01ab 

Cupuaçu 

Average 8,05c 9,40c 2,07b 2,62c 73,95c 7,89a 18,16a 90,92bc 41,41b 58,58a 

Forest 

Average 12,70a 13,32a 2,15b 2,75b 80,45b 5,47b 14,09b 91,86b 61,44a 38,66b 

CO: organic carbon; EC: carbon stock; DMG: geometric mean diameter; DMP: weighted average diameter; IEA: 
Aggregate Stability Index; GF: Degree of Flocculation; GD: Degree of Dispersion. Means followed by the same 
lowercase letter in the column do not differ by Tukey's test (p < 0.05). 

 
By analyzing the results of CO and EC, it was possible to observe that there were differences 
between all areas analyzed, with higher values found in the area under cupuaçu cultivation in 
the 0.00-0.05 m and 0.05-0.10 m layers, with the exception of the 0.10-0.20 m layer, which the 
forest area presented the highest value. 
The high values of CO and EC in the cupuaçu area, respectively in the 0.00-0.05 m and 0.05-
0.10 m layers must be associated with the high biomass production, provided by the input of 



residues from the culture itself, a fact that can also be attributed to the time of 7 years of 
cultivation with the crop without undergoing intensive practices in the soil. The respective results 
found for CO and EC corroborate those found by Cunha et al. (2017), which they attributed to 
the highs attributed to the vegetation cover verified in loco under the use of the Guandu bean in 
comparison with an area of native forest and pasture. 
It is possible to observe an increase in aggregate values with an increase in organic carbon. 
This situation was proven in the studies of CAMPOS et al., (2016), where they highlighted a 
positive correlation between the distribution of aggregates with organic carbon, observing a 
percentage increase. Regarding the degree of dispersion (GD), it was possible to observe that 
the areas studied were not differentiated from each other by the Tukey test at all depths 
analyzed. The only exception was observed for the forest area at a depth of 0.10-0.20 m, which 
presented a lower degree of dispersion in relation to the areas of guaraná, annatto and 
cupuaçu. 
Based on these results, studies highlight that normally soils with high flocculation (GF) and low 
dispersion (GD) are related to better soil physical conditions (VASCONCELOS et al., 2013), in 
addition to mentioning that both attributes are inversely proportional (VICENTE et al., 2012). 
Under analysis of the degree of spatial dependence (GDE) from geostatistical data, expressed 
by the ratio between the nugget effect and the plateau, following the classification by 
Cambardella et al. (1994), it was observed that the attributes differ in the limits of the degree of 
spatial dependence (GDE), ranging from moderate to strong dependence. Corroborating those 
found by Alho et al. (2014), they evaluated the spatial variability of aggregate stability and 
carbon stock in Cambisol and Argisol in Amazonas. In line with this, it was possible to observe 
higher GDE for GDM in the annatto area with 58% and 63.1% forest, respectively, in the 0.00-
0.05 layer. In the 0.05-0.10 m layer, the highest DEG was observed for the attributes silt and 
IEA, with 53.8% and 54.5%, respectively, in the area of guaraná and annatto. At depth 0.10-
0.20 m, the highest values occurred for the DMP attributes and aggregate classes> 2 mm, both 
in the guaraná area. 
Figure 2 illustrates the distribution of scores in the different areas studied and the disposition of 
factor loadings of the soil attributes formed by PC1 and PC2 

Figure 2. Analysis of the main components of the soil attributes studied at depth from 0.00 to 0.20 m, in an area of 
guaraná, urucum, cupuaçu and forest in the municipality of Canutama, AM.  

 
It is possible to observe greater densification of the forest and cupuaçu scores in the first and 
second quadrants, which shows that both areas obtained values for the attributes CO, EC, silt, 
clay and aggregate classes 2 - 1 mm, <1mm and IEA, above of the media. On the other hand, 
an area cultivated with annatto was more distributed in the fourth quadrant, with attributes more 
focused on characteristic characteristics, the same values above the average, such structuring 



 

 

 

 

 
 

 

 

 
 

 
 

 

 

condition may be related to the time of cultivation in the processing area. The opposite occurred 
in the area cultivated with guaraná, where values below the average were observed for the 
attributes that are related to soil conditions, such as DMG, DMP and aggregate classes > 2 mm. 
 
Conclusions 
 
Areas cultivated with cupuaçu, after the conversion process, may present the same content of 
CO and EC or even surpass as areas of native forests. The conversion process influences the 
soil aggregation state, evaluated by the increase of clay fraction dispersion and decrease of 
DMP, DMG values and aggregate classes> 2 mm. The attributes defined in the studied areas 
define the limits of the degree of dependence, using the variation between moderate and 
strong. In the multivariate analysis, as forest and cupuaçu areas complement similarity, with 
values of CO, EC, silt, clay and aggregate classes 2 - 1 mm, < 1 mm and IEA, above the 
average. 
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Abstract 
The mapping of soil attributes such as resistance to penetration is essential to assess soil 
compaction. The objective of the present study was to assess the similarity between the 
multiple linear regressions (MLR) and ordinary kriging (OK) to estimate the variability of soil 
penetration resistance (PR). The study was carried out at Fazenda Freitas, São Francisco of 
Pará city, in the Para State. The samples were georeferenced, totaling 71 points at 0.00–
0.10m of depth, and we measured the PR in these places. We assessed the spatial pattern 
by geostatistical analysis, and after was interpolated by OK. We used a dataset with 15 relief 
covariates for MLR using the dependent variable: PR. We measured the correlation between 
the estimative from OK and MLR. We selected eleven relief covariates for the regression 
model with R2=0.70. The PR map estimated by MRL obtained 70% similarity with the map 
obtained by OK.  MLR is an alternative to estimate PR when it is impossible to use 
geostatistical modeling for similar environments. 
 
Keywords: Pedometrics; Geostatistics; Soil mapping; Pedotransfer.  
 

Introduction 
 
          The mapping of soil class and attributes on a detailed scale is still a major 
challenge for sustainable management. In digital mapping of soil attributes, it is 
common to use geostatistical techniques to create iso-values maps. However, this 
requires a large number of soil samples to be able to find spatial dependence 
structure and make interpolations. This makes this methodology costly, sometimes 
unfeasible, especially in small areas. An alternative is the use of remote sensing 
data, machine learning, relief attributes that are important covariates to estimate part 
of these soil attributes (MacBratney et al., 2003).  
            Another economical and cheap alternative is the use of digital soil mapping 
using relief factors (Menezes et al., 2014). These relief covariates are mostly 
correlated with most of the soil attributes (Silva Júnior et al., 2012). Based on the 
hypothesis that can be used as attribute predictors of soil penetration resistance 
using multiple linear regression analyses. The objective proposed in this work is to 
evaluate the similarity between the multiple linear regressions with the results of the 
penetration resistance map estimated by ordinary kriging.  
 

Methodology 
 
            The study was carried out at Fazenda Freitas, in the municipality of São 
Francisco do Pará, Northeast Pará. The soil is medium-textured Yellow Latosol 



 

 

 

 

(Oxisol) (Santos et al., 2018). The study area was georeferenced with GPS geodesic 
to survey the coordinates of the limits of the sampling grid, totaling 71 sampling 
points in a regular grid with a spacing of 22m. Was measured the soil resistance to 
penetration (RP) using an impact penetrometer on the surface of the layer of 0.00-
0.10m. Initially, we analyzed the data in an exploratory way to verify the presence of 
outliers and the need for transformation for geostatistical analysis.  
We measured the spatial dependence based on the assumption of the intrinsic 
hypothesis, which was performed from the experimental semivariograms.  

                                                        (1) 

Where: N(h) represents the number of experimental pairs;  
(h) is the regular interval that separates Z(xi) and Z(xi+h);  
Z(xi) is the value of a variable Z in position xi; Z(xi+h) is the value of a variable Z 
separated by a distance h of position xi.   
The adjustment of the mathematical model is performed for a graphical 
representation of ŷ(h) and h (Matheron, 1963).  
            The ordinary kriging was used for making spatial distribution maps for soil 
resistance to penetration, using software Surfer – 14 (Golden Software inc., 1999), 
            In our work, we used the method Stepwise Regression. The stepwise 
regression method is a combination of forwarding selection and backward 
elimination. We used the following variables in input: 15 independent variables 
(Digital Elevation Model (DEM), Analytical Hillshading (AH), Aspect (ASP), Cross-
Sectional Curvature (CSC), Longitudinal Curvature (LC), Convergence Index (CI), 
Closed Depressions (CD), Flow Accumulation (FA), Topographic Wetness 
Index(TWI), Slope, LS Factor (LSF), Channel Network Base Level (CNBL), Vertical 
Distance to Channel Network (VDCN), Valley Depth (VD), Relative Slope Position 
(RSP), to estimate the penetration resistance of soil from ordinary kriging (PR_OK).   
We measured the coefficient of determination between the raster data from OK and 
MLR to assess the similarity. 
 

Results and discussion 
 

The semivariogram analysis showed the existence of spatial dependence for PR 
in the layer 0,00-0,10m. The mathematical model adjusted to the experimental 
semivariogram was spherical, with range: 203.37 m, sill:0.02, nugget:0.01, and 
degree of spatial dependence of moderate (Table I). 
 

Table I. Parameters for fitting the theoretical model to the experimental 
semivariogram of soil penetration resistance. 
 
Soil property 

 
Model 

Target  
Nugget/sill1 

 
spatialstructure2 Range (m) Partial sill Nugget 

PR Spherical 203.37 0.02 0.01 0,50 Medium 
1Calculated from the target data set; 2Values < 0.25 being strong, 0.25-0.75 being medium, and > 0.75 
being weak (Cambardella et al., 1994) 
            Table II presents the result of stepwise regression using SAGA GIS 2.3.2. In 
this study. were selected as controlled variables eleven relief variables. Other 
covariates tested in this study no selected indicates the smallest p-value than Alpha-



 

 

 

 

to-Enter (p= 0.000< 0.05). Therefore, the soil penetration resistance variable that 
enters into the model. 
 
Table II. Summary of soil penetration resistance multiple linear regression model 
parameters 
Stepwise regression with variables 

R multiple 0.70   
Coefficient of determination (R2) 0.70   
R2 adjusted 0.70   
Standard error of estimate 0.03   

Analysis of variance 

 SS df MS F Sig. 

Regression 7.044 11 0.640 545.739 0.000 
Residue 2.982 2.982 0.001   
Total 10.026 2.993    

Covariates selected: Vertical Distance to Channel Network (VDCN), Slope (S), Channel Network Base 
Level (CNBL), Aspect (ASP), Flow Accumulation (FA), Convergence Index (CI), Longitudinal 
Curvature (LC), Valley Depth (VD), LS Factor (LSF), Topographic Wetness Index (TWI) and Relative 
Slope Position (RSP). 

 
Based on the MLR coefficients, it was possible to elaborate the following equation to 
estimate the soil resistance to penetration, equation 2:  

    (2) 
Forkuor et al. (2017) also managed to estimate soil attributes using MRL and 

remote sensing variables and concluded that for sand and clay MLR has offered a 
better predictive ability. The RP values of the KO and MRL maps ranged between 
0.56 and 0.84 Mpa. These are within the acceptable range for the plants, established 
in the depths of 0.00–0.10 m (Figure I). According to Tormena et al. (1998), it was 
determined that 2.00 Mpa is the limiting level for root growth, and depending on the 
species, it can reach up to 4.00 Mpa (IMHOFF et al., 2000).            

(A) (B)

 
Figure I, Maps of the spatial distribution of soil resistance to penetration by KO (A) and by MRL (B). 

Using this equation (2) and specializing the estimated values, we calculated 
the correlation between this map estimated by MLR and kriging and found an R2 de 
0.70, as shown in figure II. 

These results showed a 70% similarity between the maps. Our finding showed 
that as is possible to use the MRL as a quick assessment tool and non-expensive in 



 

 

 

 

caparison with kriging. Due to applying geostatistics, to use data samples a lot to find 
the spatial dependence structure. 

                      
Figure II, Scatter plot between results from OK and MLR and coefficient of determination (R2). 

 
Conclusions 
 
The results from the final model of the multiple linear regressions by the stepwise 
method have 70% similarity of the values estimated by ordinary kriging. This shows 
you can have an alternative. The use of MLR is an alternative to estimate PR when it 
is impossible to use geostatistical modeling for similar environments. MLR is a quick 
assessment tool and non-expensive in a relationship with ordinary kriging. 
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Thematic Session: Pedometrics: Innovations in Tropics 

 
Abstract 
 
The present work aimed to evaluate the distribution of granulometric fractions in depth in a 
hydromorphic soil profile by semivariograms interpretation. The study area is in the 
municipality of Várzea Branca-PI, more specifically in the archaeological site Lagoa Grande 
das Queimadas Piauí State, Northeastern Brazil. For the particle size analysis, the pipette 
and sieving method was used. Subsequently, the data were processed through kriging, 
which proved to be great tools for understanding the spatial distribution in depth. 
 
Keywords: Geostatistics; Pedology; Granulometry; Archaeological record 
 

Introduction  
 
The knowledge of the physical properties of soils related to particle size distribution 
are fundamental for understanding the active processes, potentials and weaknesses 
of any soil profile. So that there is knowledge of the soil horizons, collections in soil 
profiles and subsequent particle size analysis are fundamental. 
 
In this sense, it is important to perform the spatialization of the results found, aiming 
at the spatial understanding of the distributions and acting processes. There are 
several ways to carry out this step, however, due to the difficulty of performing 
numerous collections, there is a need for methods that estimate values for non-
sampled points, and the semivariograms presented here are a way of checking the 
quality of the estimation, given the mentioned, the present work aimed to evaluate 
the distribution of particle size fractions in depth by ordinary kriging. 
 
Methodology 

 
The study area comprises Lagoa Grande das Queimadas located in Várzea Branca 
in the southwest of Piauí State. The region in which the lagoon is located presents 
minimum temperatures of 18 ºC and maximum of 36 ºC, with a semi-arid, hot and dry 
climate. The vegetation is shrub-arboreal caatinga (CPRM, 2004). 
 
The regional geology is composed of granites and schists from the Pre-Cambrian 
Sobradinho-Remanso Complex and tertiary-quaternary dendrite-laterite deposits. 
The depressed shaped site has Holocene sediments. The municipality of Várzea 



 

 

 

 

Branca is located in the Canindé-Piauí Hydrographic Sub-Basin, whose main 
watercourse is the Piauí River. In the study area, a Haplic Gleysol occurs. 
 
The analyzed samples were collected at a depth of (0-160 cm, in 31 layers) in Lagoa 
das Queimadas, with the first 3 layers having a thickness of 10 cm and the other 5 
cm. For the particle size analysis, the methodology present in the Embrapa Soil 
Methods and Analysis Manual (TEIXEIRA et al., 2017) was used, using the pipette 
and sieving method, and the clay, silt and sand contents were determined.  
 
After this procedure, the data were tabulated and descriptive statistical analysis 
performed. To understand its spatial dependence, data were analyzed using 
semivariograms and kriging (VIEIRA et al, 2020). The depth of each layer was used 
as a geographic coordinate, starting from the surface where the value zero was 
assigned. 
 
Results and discussion 
 
The analysis of the data referring to the granulometry of the soils through descriptive 
statistics showed average values for sand of 149.07, for silt 501.85 and for clay 
348.52 g kg-1. With variance 14948.54; 7519.79; 30427.88, respectively for sand, silt 
and clay, the standard deviation was smaller for the silt variable 86.72, indicating less 
variability in the silt values. The results indicate a predominance of silt and clay in the 
studied soil, and low degree of weathering.  
 
The coefficients of variation presented values of 19.8% for the silt variable, 33.0% for 
clay and 47.4% for sand, representing moderate to high variability in the studied 
profile.  
 
In addition to descriptive statistics, the data were analyzed using geostatistics by 
ordinary kriging, with the adjustment of semivariograms (Figure 1).  
 
The semivariogram for the sand fraction showed the nugget effect 0 (C0 = 0), the 
plateau value (C0+C1), coincided with the structural variance (C1), both being 
5242.6, the range was 220 cm, the best model to represent the data of this variable 
was the circular. 
 

As for the silt variable, the semivariogram showed a nugget effect in the value of 
(C0=1308.2), structural variance was (C1= 13964), plateau (C0+C1= 15272) range 
88.62 cm. The model that best fit the data was the Gaussian. For clay, as well as the 
sand fraction, the nugget effect was zero (C0= 0), therefore structural and level 
variance had identical values being (C0+C1=45219), (C1=45219). The range was 
180cm, the semivariogram model that best represented the data was spherical.   
 



 

 

 

 

 
Figure 1- Semivariograms of soil particle size fractions. 

 
Assessing the granulometry of the soils, it is possible to see lithological discontinuity 
occurring around 110 cm in depth. Since the sand and silt contents increase and the 
clay contents decrease significantly (Figure 2). 
 
A B C 

  
 

 
Figure 2- Depth distribution of sand (A), silt (B) and clay (C) contents observed and 
estimated by kriging. 



 

 

 

 

 
Conclusions 
 
The different semivariogram models are great tools for understanding the spatial 
distribution of data, emphasizing the need for adjustment and choice of appropriate 
models according to the specificity of the data. The results indicated lithological 
discontinuity at about 110cm deep in the soil profile. 
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New alternatives for collecting soil data as input of local DSM approaches 

 
Philippe Lagacherie,  INRAE, UMR LISAH, France 
 
In spite of their fine resolution, the Digital Soil Mapping (DSM) products that are now available at global 
and, in some countries, at national scale do not provide accurate representations of local soil patterns 
as required by the end-users acting at local level, e.g municipalities or watersheds, …(Rossiter et al, 
2021). Several recent experiments (Somarathna et al, 2017 ; Lagacherie et al, 2020, Loiseau et al, 2021) 
revealed that better performances of DSM could be obtained by significantly increasing the spatial 
density of the sites with measurements of soil properties that are used for calibrating the (machine 
learning) DSM Models. However, such an increase often represents an inaccessible investment in soil 
information, especially for a local user. Alternatives to the collection of exact soil measurements exist 
and should be considered as surrogate data for enriching at acceptable costs the soil inputs used for 
calibrating the DSM models. 
The sources of surrogate soil data are multiple: legacy data obtained by automated entry procedures, 
proximal and/or remote sensing estimations of soil properties (Vis-NIR spectrometry, electromagnetic 
induction, remote sensing, gamma-ray spectroscopy, ….), plant-based soil functional indicators 
(Thermal Infrared estimations of ETR, delta C13) or qualitative soil observations provided either by 
experienced soil surveyors, farmers or even citizens. Some recent examples of collection of such 
surrogate soil data will be presented in the talk. We will also present the specific DSM approaches that 
have been developed and tested for using such surrogate data in synergy with the “classical” soil 
measurements to improve the DSM products (Zare et al, 2021; Styc et al, 2021). 
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Thematic Session: Legacy Data: How Turn It Useful? 

 

Abstract 

The research goal is to analyze terrain attributes obtained from a digital elevation model 
(DEM) to represent soil forming factors used in digital soil mapping at Bom Jardim county, Rio 
de Janeiro state, and also to delimit arable areas.  The DEM was generated to represent the 
altimetry of the study area, and subsequently, the basic attributes of the terrain were extracted: 
slope, slope height, aspect, valley depth index, topographic moisture index and factor - LS. 
Soil properties were correlated with terrain attributes through a Spearman correlation method. 
It is concluded that, the terrain covariates derived from the digital elevation model can 
represent the soil forming factors and be used at the digital soil mapping of the area, as well 
as be used to establish agricultural suitability areas in mountainous areas, such as Bom 
Jardim – RJ. 

Keywords: digital soil mapping, topographic parameters, hillslope area, soil conservation and 
security. 

 

Introduction 

Advances in remote sensing have occurred quickly, especially regarding spatial and 

spectral resolutions, both of great interest for digital soil mapping (DSM) (TEN CATEN, 

et al., 2011). Thus, factors and processes of soil formation can be modeled from 

variables measured by remote sensing and geoprocessing techniques. Therefore, it is 

essential to create a database with environmental variables that most influence the 

variability of soils in order to further develop digital soil mapping of soil attributes and 

classes in a interest area (CALDERANO FILHO et al., 2009). 

Orbital remote sensing data and terrain attributes derived from a digital elevation 

models (DEM), have been used to understand the spatial and temporal relationships 

between soil classes, properties and different environmental variables (SANCHEZ et 

al., 2009). These attributes are commonly used as auxiliary variables in the spatial 

prediction of soil-landscape patterns and contribute to the improvement of the mapping 

of soil classes and properties, such as horizon thickness, elements in the soil solution, 

texture, color, moisture, among others (Gessler et al., 2000). 



 

 

 

 

The objective of this work is to analyze terrain attributes derived from a digital 

elevation model (DEM), in Bom Jardim county, in order to select covariates that 

represent soil forming factors and also to delimit arable areas based. 

Methodology 

The study area corresponds to  Bom Jardim county, Rio de Janeiro state, between the 

coordinates 22º 06' and 22º 18' S and 42º 12' and 42º 30' W. The total area have 

385.04 km2, with strong-wavy relief, altitudes ranging between 405 to 1,630m, and 

average slope of 38%. According to Calderano Filho et al. (2009), three main soil 

classes (Oxisols, Epodossolo and Argisol) occurs in the area. To compose the soil 

database, 209 soil profiles were used, collected and described according to SiBCS 

(SANTOS et al., 2005), in a total of 603 soil samples. From the entire dataset the 

following soil properties were selected to use in the present analysis: coarse sand, fine 

sand, clay, clay dispersed in water and organic carbon. 

A digital elevation model (DEM) was generated to represent the altimetry of the study 

area, from the official digital cartographic base of the state of Rio de Janeiro - scale 

1:25,000. The topographic database in vector format, contour lines with 10 meters of 

equidistance, quoted points and a hydrography were interpolated  using the 

“TopotoRaster” tool to obtain a 20m resolution DEM. At the end of this procedure, the 

spurious depressions were corrected by using the “FillSink” tool, in order to make it 

hydrologically consistent.  

Later, the DEM was imported into the System for Automated Geoscientific Analyzes 

(SAGA-GIS, 2020) program, the Terrain Analysis function was used to extract basic 

terrain attributes: slope, aspect, valley depth index, topographic wetness index, and 

factor - LS. the terrain attributes were associated with soil samples database, and the 

free software QGIS 3.10.4 was used to edit the maps and produce the legends. 

Results and discussion 

Analyzing the image (Figure 1A) it can be seen that the areas of the municipality 

present considerable variation in relief. Bom Jardim is a municipality of mountainous 

areas and fragile ecosystems.  

Slope is one of the most important terrain attributes associated with pedogenetic 

processes, as it directly affects surface and subsurface water flow velocity and, 

consequently, soil water content, erosion/deposition potential and many other 

important exogenic processes. According to the map presented in Figure 1B the 

average declivity varies around 20.51 to 41.02º, characteristic of a heavily undulating 

to mountainous relief. 

The Figure 1C present the LS factor where with higher LS Factor represent a region 

where there is loss of kinetic energy and the deposition of eroded material from higher 



 

 

 

 

parts of the terrain takes place. The topographic moisture index (Figure 1D) describes 

a region's tendency to water storage. According to the parameters of Lin et al. (2006) 

the soils of Bom Jardim are well drained, but only in the highest parts of the 

landscape. These moisture conditions expressed in the map can also be associated 

with soil thickness, structure, density  and permeability. 

In Figure 1E we have the aspect map, this attribute has an influence on insolation, 

evapotranspiration, and the distribution and abundance of flora and fauna. On the map 

Figure 1F is represented the valley depth index, which describes how flat the bottom of 

a valley is. For mountainous regions these areas have great importance, since this 

particular region has a high susceptibility to erosion (CARVALHO JÚNIOR, et al., 

2014), and a relevant role to agricutural production. This areas can be indicated both 

for silvopastoral activities in drier areas, and agroforestry activities at the humid areas. 

The correlation matrix between soil properties and terrain attributes is presented in 

Figure 2. Coarse sand content and water-dispersed clay did not correlate with any 

terrain attribute, while fine sand content was correlated with topographic moisture 

index and DEM. The clay content was corrected with the valley depth index. In relation 

to organic carbon, only and correlated with DEM. 

 

Figure 1. (A) Digital elevation model - DEM and digital model of environmental covariates, 
with a spatial resolution of 20 m, for the municipality of Bom Jardim – RJ. B (Slope); C (LS 
Factor); D (typographic moisture index); E (Aspect) and F (Valley depth index) 



 

 

 

 

 

Figure 2. Correlation matrix between the properties of the soil surface layer with the 
environmental co-variables and terrain attributes. (AG = coarse sand; AF = fine sand; AGR = 
clay; ADA = clay dispersed in water; C_ORG = organic carbon; ITU = topographic wetness 
index; DEC = slope; ASP = aspect; IDV = valley depth index; MDE = digital elevation model. 

Conclusions 

The environmental covariates derived from the digital elevation model can be used to 

represent soil forming factors, such as slope, LS factor and topographic wetness 

index. As well as the covariates aspect, topographic wetness index and valley depth 

can be used to establish agricultural suitability areas in mountainous areas, such as 

Bom Jardim county, in Rio de Janeiro state. 
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Abstract 
The purpose of this work was to study and map the distribution of soils organic carbon stock 
(SOCS) up to 1m depth using legacy data in the north region of Rio de Janeiro State (Brazil). 
The study compares the performance of geoestatistical (ordinary kriging - Ok) and 3 Random 
Forest (RF) algorithms. The data belongs to PROJIR dataset, which was generated in 1983 
and digitalized recently by the Laboratory of Water and Soils in Agroecosystems (LASA). The 
study found 161 soil profiles containing both soil organic carbon and soil bulk density, which 
allow the calculus of SOCS up to 1.0m soil depth.  Besides, to apply RF algorithm, 19 
covariates were evaluated as predictor (13 derived from DEM and 6 from Landsat8 images). 
The map of SOCS generated by OK presented the best performance using the conventional 
metrics (r2, RMSE and MAE) and the criteria of Plausibility, Interpretability and Explainability. 
The majority territorial extension of the study site has SOCS between 0-20 Kg.m-2. 
Keywords: Spatial prediction; Random Forest; Ordinary Kriging. 

 
Introduction 
 
Knowledge in soil legacy data is at risk of being lost due to the complexity of 
maintaining files as paper, considering the high costs involved in exploratory soil 
surveys (ARROUAYS et.al, 2017). Thus, the relevance of retrieving this information is 
applicability in predictive modeling of soil attributes, scientific studies, and decision-
making in public policies. Soil organic carbon (SOC) management is key to climate 
change mitigation and adaptation by achieving neutrality of land degradation, food 
security, and a more sustainable ecosystem. SOC in soils has a positive influence on 
multiple soil functions, where high values of SOCS make soils more resilient to climate 
change through increased water holding capacity, erosion, and flood control. Using 
tools such as digital mapping it is possible to estimate the soil organic carbon stock at 
a regional scale using the equation SCORPAN (GOMES et al, 2019). This modeling is 
important for calculating the carbon inventory and understanding the biophysical 
processes that can affect the soil carbon balance. Therefore, specific regionalized 
surveys are important to ensure an appropriate scale of the study, in addition to being 
a basis for intervening in soil restoration and a basis for the management of sustainable 
practices. So, this work sought to model the spatial variability of soil organic carbon 
stock up to 1m depth using legacy data for a region in the north of the state of Rio de 
Janeiro using Random Forest and ordinary kriging as an estimator. 
 



 

 

 

 

 

Methodology 
 
In this study, data was collected from an area of approximately 250,000 hectares, 
representing about 30% of the northern region of Rio de Janeiro. One of the main 
economic activities of the region was the sugar and alcohol industry, which led, 
between 1981 and 1983, to carry out an edaphoclimatic survey coordinated by IAA, 
through National Sugarcane Improvement Program and which was called “Northern 
Fluminense Irrigation and Drainage Project”, PROJIR in Portuguese (FARIAS, 2008). 
Nowadays, the PROJIR data legacy belongs to Federal Rural University of Rio de 
Janeiro. The database has several soil observations (soil profiles and soil boreholes) 
and, among these, 161 profiles have analyzes of organic carbon and soil density, which 
allowed the direct calculation of the carbon stock up to 1 meter deep using the following 
equation (GOMES et al, 2019): SOCS = [SOC x BD x T], where: SOCS - Soil Organic 
Carbon Stocks (Kg.m-2); SOC - soil organic carbon content (g.kg-1); BD - soil bulk 
density (Kg.dm-3); T - soil layer thickness (m);To predict the SOCS stock 3 versions of 
the algorithm Random Forest (RF) were trained and 1 model using geostatistical 
ordinary kriging (OK). The OK is a univariate method that uses the primary variable 
(SOC) measured at sampled locations to predict the same primary variable at 
unsampled locations (CEDDIA et al, 2015). The RF algorithms used 19 environmental 
covariates, being 13 from the relief (DEM, slop, aspect, northernness, plan_cur, 
prof_curv, convergence, cat_area, twi, ls_factor, rsp, chnd, chnb) and 6 from Landsat8 
images (NDVI, EVI, CLAY, SAVI, GSI, IRON). The RF model 1 (RF1) used all 
covariates (19), the RF model 2 (RF2) used only relief covariates (13), while RF model 
3 (RF3) were used only Landsat 8 images. The model's efficiency were performed 
using r2, RMSE and MAE metrics. The process of preparation of covariates, selection, 
calibration, evaluation of models, prediction and generation of maps were implemented 
in R software (R Core Team, 2019). 
 
Results and discussion 
 
The results of the study is summarized in figure 1 and table 1(the metrics of the four 
algorithms Rf1, RF 2, RF 3 and OK is presented), respectively. In figure 1a, it's possible 
to note that the SOCS present regions with higher values (towards to the southeast 
direction) and lower values (center of the map). Besides, the histogram (figure 1b) 
shows that the SOCS data do not follows a normal distribution  
function (positive skewness). 
 

 

Table 1. Metrics of the algorithms to map SOCS up to 1m depth. 
Model R2  RMSE  MAE  
RF1 0.21             16.12 11.39  
RF2 0.18 17.20  11.94 
RF3 0.30 15.52 10.55 
OK 0.33 15.74 8.78 



 

 

 

 

 

The data was transformed using log10 function. The experimental semivariogram with 
its Gaussian model fitted is presented in figure 1c. A Gaussian model with a pure 
nugget effect (Co) of 0.058, a contribution (C1) of 0.025 and a range (a) of 4500 meters. 
The parabolic behavior of the semivariance at short distance shows the strong spatial 
continuity between points located at up to 3000 meters.  
The maps generated by OK (figure 1 d and e, kriging and kriging variance) and the 
RF1, RF2 and RF3 (figures 1f, 1g and 1 h, respectively) is presented. The map 
generated by OK shows a more continuous isolines values along the study site, which 
is a consequence of the spatial continuity captured by the gaussian model. The maps 
generated by RF models reflect the importance of the covariates used. For example, 
the maps generated by RF1 and RF 2 shows that the relief covariates has a strong 
effect on the polygons of  values of SOCS (figure 1f and 1g). On the other hands, in 
the map generated by RF3 (only Landsat8 image covariates) the Paraiba do Sul river 
is clearly highlighted as having higher SOCS. These results are important to show the 
importance of the modelling process evaluation, which can be done not only through 
the conventional metrics (r2, RMSE and MAE) but also analyzing its Plausibility (validity 
considering the current knowledge and scientist theories), Interpretability (the 
translation of an abstract model or model output into terms understandable by humans) 
and Explainability (models must predict and explain the phenomenon) (WADOUX et 
al, 2020). The map generated by OK also presented a better performance (higher R2 
and lower MAE). The model RF3 was the second best (with lower RMSE), however, 
this map does not follow the criteria of Plausibility, Interpretability and Explainability. 
 

 
Figure1: a) SOCS distribution b) Histogram of SOCS; c) Semivariogram of log SOCS; 
d) OK-Gaussian Map; e) Kriging Variance Map; f) RF1 Map; g) RF2 Map; h) RF3 Map.  
 
The models RF1 and RF3 doesn’t represent the SOCS. This could be due to the 
database being collected in the 83’s. At that time the Landsat 8 images does not exist 
and consequently it is not reasonable to explain the carbon dynamics using images 
from a time different from that when the soil was collected and analyzed. Therefore, it 
can be inferred that the result is due to a numerical coincidence. The predictive 
mapping of SOCS with terrain covariates using RF2 (figure 2g) presented the lowest 
r2 values (0.17) and the worst RMSE result (17.20). The predicted values of SOCS 
using OK algorithm shows that the majority territorial extension of the study site has 
SOCS between 0- 20 Kg.m-2 (figure 1d). Besides, the lower SOC (0-10 Kg.m-2) is found 



 

 

 

 

 

in the region from the central to northeast direction (figure 1d). The higher values of 
kriging variance (figure 1e) are observed along the regions with lower observations 
density, which, in general is commonly associated to the boundaries limits of PROJIR 
area (figure 1e). The map of kriging variance can be useful for helping the soil scientist 
to information.        
                              

Conclusions 
 
The map of SOCS generated by OK presented not only the best performance using 
the conventional metrics (r2, RMSE and MAE) but also the criteria of Plausibility, 
Interpretability and Explainability. The majority territorial extension of the study site has 
SOCS between 0 - 20 Kg.m-2. The product of this work can serve as input to various 
models of soil function assessment, for conservation and management purposes as 
well as soil security. 
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Abstract 
The availability of reliable soil data is scarce in many countries, including Brazil. A Digital Soil 
Mapping technique of the map disaggregation has proven to be an efficient and cost-
effective alternative to produce reliable soil data. This research proposed to test an update 
map disaggregation methodology. The study was conducted using soil legacy data from the 
Soil Survey of the Municipality of São Sepé - RS, Brazil. The legacy data were digitized in a 
GIS environment and seven covariates were generated from the DEM. This dataset was 
processed by the GIS software's own random tree training and classification tools. The 
results were smoothed and evaluated by stratified cross-validation, error matrix and visual 
analysis. The method proposed in this work proved to be efficient in individualizing polygons 
of soil classes allocated in complex areas. The most important variables for the random tree 
model were altitude and geology. 
Keywords: random decision tree; digital soil mapping; legacy soil map. 
 

Introduction 
 

The demand for more accurate soil information has increased every year, 
especially for agricultural purposes, where technological advances allow an 
increasingly efficient use of this information (CHAVES et al., 2021; ZERAATPISHEH 
et al., 2020). The existing soil maps produced through field surveys provide basic 
information, but they can be very inaccurate, even more so when they are maps with 
less detailed scales, which makes it difficult to take decision in agriculture, especially 
in farms that operate on a smaller scale (FLORES et al., 2013). Digital Soil Mapping 
(DSM) has presented itself as an alternative for generating more information about 
soils, either by mapping new areas or as a means of adding greater reliability to 
existing maps (HÄRING et al., 2012; VINCENT et al., 2018). In this context, the map 
disaggregation technique, widely used in DSM, stands out for its ability to 
individualize simple mapping units, often allocated in more complex units, containing 
two or more soil classes. Among the tools available for map disaggregation in 
Geographic Information Systems (GIS) environment, decision trees have stood out, 
presenting good results in the disaggregation of legacy soil maps (MØLLER et al., 
2019; SARMENTO et al., 2017). The objective of this work was to perform the 
disaggregation of a legacy map using the tools of image segmentation and 
classification by Random Trees available in a GIS environment in order to improve 
the quality of the legacy map and facilitate the disaggregation process. 

 



 

 

 

 

Methodology 
 

The study area is in the municipality of São Sepé, in the central region of the 
state of Rio Grande do Sul, Brazil. It covers an area of approximately 2,203 km² 
between latitudes 29°53'S and 30°32'S and longitudes 53°08'W and 53°52'W; the 
altitude range is between 29 and 461 meters above sea level. The climate of the 
region according to the Köppen international climate classification system was 
determined according to (ALVARES et al., 2013), which classifies the region as 
"Cfa", presenting a humid climate, with rainfall during all months of the year and in 
the hottest month of the year it presents temperatures above 22°C. The region is 
drained mainly by the Vacacaí River and its tributaries. 

The first step was to digitize the soil map of the São Sepé municipality, 
originally available in 1:100,000 scale and noncolor paper printed (LEMOS et al., 
1972), where 26 soil classes were described. The second step was the extraction of 
the geomorphometric variables (aspect, slope, curvature, topographic wetness index 
and Euclidean distance from main drainage) derived from the Digital Elevation Model 
(DEM), which were obtained using the Spatial Analyst extension of the ArcGIS 
software. The DEM used was obtained from the remote data of the SRTM mission, 
with 30m resolution. To provide more information to the model, also were used layers 
with geology data (CPRM, 2010) and a landform map obtained using LandMapR 
(MACMILLAN, 2003), that subdivides the landscape into 15 landforms. 

After creating the layer of sample points, the Sample tool was used to extract 
the data from each layer into a table. Once the spreadsheet was generated, variables 
selection was done using WEKA 3.8.5 software (FRANK; HALL; WITTEN, 2016), 
which also allowed to select the best model for classification. Back in ArcGIS, the 
selected variables were grouped using the Composite Bands tool, which groups the 
various rasters into a file with multiple bands and the Segment Mean Shift tool was 
used to group pixels with similar characteristics. These layers were processed by the 
Train Random Trees Classifier tool to generate the classification rules file (.ecd), 
compatible with the ArcGIS classifier. At this point the point file with the model 
training data is also added. After having classification rules, were used to classify the 
raster generated by the Segment Mean Shift tool, generating the final map. 

The accuracy of the predicted map was verified by using cross-validation, 
error matrix, and visual observation of the new polygon’s limits. 

 
Results and discussion 
 

The overall map accuracy (agreement with legacy map) was 62.04% and the 
error was 37.96%. Machado et al. (2018) obtained an overall accuracy of 80.5% in 
the disaggregation of a map, however, the authors pointed out that maps 
disaggregated from legacy data with more complex components tend to increase the 
rate of correct predictions, since this complexity allows the combination of more than 
one soil class. 

 The error matrix also showed Planosols as having the highest agreement rate 
(2.102), which was expected, since this is the class that has the largest area extent 
(53,584 ha) in the original map and this gives it a predictive agreement rate for the 
model. The model had Mean Absolute Error (MAE) and Root Mean Squared Error 



 

 

 

 

(RMSE) values of 0.038 and 0.138 respectively. The most important covariates for 
the construction of the decision tree rules were altitude and geology, which explains 
the delineation of the polygons obtained in the disaggregated map, as can be seen in 
Figure 1. 
 

 
Figure 1. Detail of part of the study area showing combined map units of the legacy soil map 
(a), and the allocation of individual soils obtained by disaggregation (b). 

 

The delineation of the disaggregated soil classes was richer in details and 
showed greater conformity with the relief, both in the lower areas, following the 
design of the slopes, and in the higher areas, such as the appearance of patches in 
the top areas (Fig. 1b). According to Minai, Libohova e Schulze (2020), legacy soil 
map units that extend to natural boundaries are often the consequence of 
delineations made on low-resolution imagery. The disaggregated map represents the 
distribution of MUs through pixels, enabling more gradual and continuous transitions 
between the soil classes. Geology, in turn, can explain part of the emergence or 
disappearance of classes in certain sections of the map. 

 
Conclusions 
 

The disaggregation increased the level of detail of the soil map of the São 
Sepé municipality. The methodology developed in this work was efficient in 
identifying the occurrence of simple soil classes in complex areas. The 
methodological changes implemented in this study simplified the disaggregation 
process. 
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Thematic Session: Legacy data: How turn it useful? 

 
Abstract 
 
Aero geophysical data is becoming an important source of environmental covariate in digital 
mapping. Airborne gamma-ray spectrometry is more common in digital soil mapping, 
because of the penetration potential of approximately 30-40 cm. However, the airborne 
magnetic method can be tested to add and improve the prediction of soil properties. 
Therefore, the objective of this work was to implement a preliminary study to model the 
spatial distribution of soil properties using pedological legacy data, aero geophysical data, 
and terrain covariates to discuss their importance to the digital soil mapping in Bom Jardim 
county, Rio de Janeiro, Brazil. 
 
Introduction 
 
Considering the applicability of the airborne gamma-ray spectrometry to represent 
different sources of parental material, its use for digital soil mapping has increasing. 
The penetration potential of approximately 30-40 cm and the correlation with 
weathering and pedogenesis processes (Wilford et al., 1997) where discussed by 
Reinhardt et al. (2019), Bonfatti et al. (2020) and Loiseau et al. (2020). The airborne 
magnetic method, on the other hand, despite being less frequent, showed potential 
for soil studies as McCafferty et al. (2009), Siemon et al. (2020) and Iza et al. (2018). 
The research goal is to predict soil properties using legacy soil data, terrain 
covariates derived from the Digital Elevation Model (DEM) and aero geophysical data 
(AGD) through Random Forest model, to evaluate the potential of these covariates in 
digital soil mapping.  
 
Methodology 
 
The soil dataset gathers 208 superficial soil samples collected in Bom Jardim county, 
between 2009 and 2011 (Figure 1), and from those samples some of the soil 
properties were addressed this study: Bases saturation (VV), Soil density (DEN), 
Clay and Sand contents. The procedures used to collect, describe and analyze the 
soil samples are detailed by Calderano Filho (2012). The DEM was obtained by 
interpolation of vectorial data from the official cartographic database of Rio de 
Janeiro state, at 1:25,000 scale, with a 20m of spatial resolution. From the DEM, 17 
terrain covariates were derived in the SAGA-GIS open-source software.   
 



 

 

 

 

 
Figure 1: Location of soil profiles, Bom Jardim - RJ, modified from Calderano Filho, B. (2012). 

The AGD was obtained from CPRM (2012), and the interpolation was performed 
using the methods minimum curvature for gamma-ray data (Briggs, 1974) and 
bidirectional for magnetic data (Geosoft, 2010), totaling 19 covariates with a 
resolution of 100 m, as suggested by Vasconcellos et al. (1994). After processing, all 
the products were resampled in the RStudio software to 20 m resolution to adapt 
them to the terrain covariates resolution. After processing the covariates, Spearman's 
correlation was applied with a critical value of 95% to exclude covariates that are not 
correlated with dependent variables. The Random Forest (Breiman, 2001) model was 
applied with the parameters: ntree=350 and mtry= 10, to modeling soil properties in 
RStudio software. The accuracy was evaluated through the coefficients R2 and 
RMSE obtained by the cross-validation method. 
 
Results and discussion 
 
Four airborne magnetic covariates were excluded from Spearman's correlation, 
including Total magnetic anomaly, Tilt angle and your absolute value (Miller e Singh, 
1994), and Horizontal tilt angle (Cooper e Cowan, 2006). After that, the model RF 
was applied. Table 1 demonstrates the cross-validation R2 and RMSE values.  

Tabela 1: R2 and RMSE for each dependent variable. 

 DEN  Sand  Clay  VV 
R2 0.37 0.18 0.15 0.19 

RMSE 0.46 g/cm3 45.63 g/kg 87.62 g/kg 19.07 % 

 
Carvalho Junior et al. (2014), from the same database, considering 0-5 cm soil depth 
and the method ordinary kriging, obtained R2 values 0.19 and 0.17 to predict soil clay 
and sand contents, respectively. The study considering 18 environmental covariates 
derived from DEM and satellite imagery. Comparing with the R2 values of this study 
for clay and sand, the AGD seems to be important to improve the prediction 
performance. Figure 2 shows the top five variables that most contributed to 
regression model performance.  
 



 

 

 

 

 
Figure 2: Top 5 most important variables for RF model performance: (a) Sand, (b) Clay, (c) Soil density (DEN), (d) 
Bases saturation (VV). 

The AGD is present in the top 5 covariates to all properties studied (Figure 2). The 
magnetic data GX, GY and GZ as we can see in Barbosa et al. (2013) are related to 
the presence of magnetic bodies, in other words, the reflecting parental material 
characteristics. The Mafic Index (IM) was calculated by combing magnetic and 
gamma data and allows the removal of the influence of iron-rich soils (Barbosa et al., 
2013) and according to Figure 2, has importance in the prediction of DEN. The 
importance of gamma-ray data was remarkable to predict DEN and VV. CTEXP is 
mostly related to the source material (high K, eU and eTh values). High values of eTh 
can be related to the parental material or clay related with intense weathering 
process (Wilford et al., 1997). Kd is the value of K (%) without the eTh contribution 
highlighting these element anomalies (Pires, 1995) and FatorF is calculated by the 
formula F=K*(eU/eTh), where high values show K (%) enrichment (Ribeiro et al., 
2014), that can explain your contribution to the VV prediction. 
 
Conclusions 
 
From the results observed, it was possible to conclude that the aero geophysical data 
have significant importance. AGD can be used in predictive modeling procedures to 
map soil properties as support with terrain covariates to understand the origin of soil 
property's spatial variability. 
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Thematic Session: Legacy Data: How turn it usefull? 

 
Abstract 
This study aimed to analyze and discuss how the use of legacy soil data and landscape 
similarity analysis can help in planning the allocation of preferred areas for detailed soil 
surveys in the scope of the PronaSolos-RJ project. Covariates were raised that represent the 
soil formation factors were raised for the entire state. These covariates were then used in the 
Gower dissimilarity index in order to evaluate the similarity from different reference areas 
(legacy soil survey). The territory of Rio Janeiro is not satisfactorily covered by pedagogical 
maps at scales and levels of detail to meet current and future demands. The reference area 
approach to representing a region through the Gower index similarity analysis can save time, 
money, and personnel resources. 

 
Introduction 
 
There is an increasing demand for spatial information on soil types and their 
properties by scientists and decision-makers to better understand the effect of a 
growing population and an increasing demand for food in a climate-changing 
environment. In many places in the world, soil information is difficult to obtain and 
can be non-existent and in Brazil is not different. When no detailed map or soil 
observation is available in a region of interest, we can use a reference area (RA) with 
similar characteristics (Mallavan et al., 2010) to extrapolate the soil-landscape 
relationship. Considering that funding to obtain new soil surveys is very scarce in 
Brazil we have to optimize it by organizing the available existing data (legacy data) 
and planning the soil survey in representative areas where we can use the idea of 
transferability model to map other regions with similar characteristics (Grunwald et al., 
2018).  
A large quantity of soil data has already been produced in Brazil as part of soil 
surveys and research projects on the various aspects of soil science (Samule-Rosa 
et al., 2020), however, there is no standardization of this collection, not a single base 
where you can consult and have a quick answer about the level of survey, scale, 
format, title, authorship and where if you find such information. Realizing this need, 
the National Soil Program of Brazil (PronaSolos) was created, an ambitious project to 
investigate the Brazilian soils through soil surveys throughout the entire territory that 
will consolidate data integration and availability, decision-makers needs and 
collaborate with the advancement of knowledge of the soils in Brazil.  
There will be several initiatives across the country with partnerships between the 
union, states and municipalities. One of the states that have already started the 
activities of planning and executing PronaSolos is the state of Rio de Janeiro (RJ), 
the state where the program was born. Seeking to optimize resources of time, money 
and people this study aimed to analyze and discuss how the use of legacy soil data 
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and landscape similarity analysis can help in planning the allocation of preferred 
areas for detailed soil surveys in the scope of the PronaSolos-RJ project.   
 
Methodology 
 
The study area is the State of Rio de Janeiro (RJ) located between the geographical 
coordinates 41º and 45º W and 20º30 and 23º30 S and is about 44,000 km2 in the 
Southeast of Brazil (Figure 1). The area is divided into six geopolitical mesoregions 
known as Baixadas, Centro Fluminense, Metropolitana do Rio de Janeiro, Noroeste 
Fluminense, Norte Fluminense e Sul Fluminense. The state also is characterized by 
eight large landscape types known as Serra da Bocaina, Coastal Plains, 
Mountainous Area, North-Northwest Fluminense, Paraíba do Sul River (Middle 
Valley), Serra Mantiqueira, Serra dos Órgãos, and Upper Itabapoana River (Plateau), 
described in Mendonça-Santos et al. (2008).  
 

 
Figure 1. The study area location and elevation map, extracted from the SRTM 
DEM. 
Covariates that represent the factors of soil formation were raised for the entire state, 
they were: Relief (Elevation, slope, topographic wetness index); Parent material 
(geology); Climate (precipitation and average temperature); Soil (legacy map 
1:250,000 scale); Organism (Sentinel2 bands b2, b3, b4, b8 and SAVI index).  
The Gower similarity index (GI) proposed by (Gower, 1971) as outlined by (Mallavan 
et al., 2010), was employed to measure the similarity among fields (legacy data-
reference area). 

𝑆𝑖𝑗 =
1

𝑝
∑ (1 −

|𝑥𝑖𝑘−𝑥𝑗𝑘|

𝑟𝑎𝑛𝑔𝑒 𝑘

𝑝
𝑘=1 ) 

where Sij is the GI between sites i and j; k represents each covariate; p is the number 
of covariates; range k is the value range of covariate k in the whole study area. Thus, 
Sij ranges between 0 and 1; a value of 1 means that the two individuals differ in no 
character whereas 0 means they differ maximally in all their characters. In our case, 
the interpretation is the opposite of the one presented above, that is, values of 1-Sij 
equal to 0 means that the two individuals differ in no character whereas 1 means 
they differ maximally in all their characters. All legacy soil survey from RJ state were 



 

 

 

 

downloaded from the Geoinfo platform of the Brazilian Agricultural Research 
Corporation (Geoinfo-Embrapa). They were used as reference areas (RA) for 
computing the GI, one each time. The final value with the dissimilarity classes is an 
average of all maps that were classified following the GI criterion, greater than 0.12, 
"Dissimilar" and less than or equal 0.12 "Similar" 
 
Results and discussion 
 
As can be seen, none of the areas is capable of representing very well the entire 
state of Rio de Janeiro (Figure 2) and, as expected, represents its surroundings 
where the environmental characteristics are similar. For example, the RA "Região 
Serrana" represents very well the entire Serrana region of Rio, with GI less than 0.1, 
but does not represent very well the coastal regions or the north and northwest 
Fluminese regions 
For example, the Projir region is representative of the northern region and some 
parts of the coast, with a GI less than 0.1, but it represents very well neither the 
Serrana region nor the mountainous region of the southern Fluminense in the "Serra 
do Mar" and "Serra da Mantiqueira" regions. 
 

 
Figure 2. Gower index maps using as reference different regions of Rio de Janeiro 
where soil surveys were carried out. 
When combining all GI maps, it is possible to see that the areas considered 
dissimilar are mainly the areas with rugged terrain in the Serrana region, the Sul 
Fluminense region and the Costa Verde (Figure 3). 
Also, part of the north coast of Rio de Janeiro was classified as dissimilar when 
combined the indices of all Ras (Figure 3). 
Following the idea of using the areas where soil surveys have already been carried 
out as representative RA, it is possible to define model extrapolation limits 
(transferability) for a given region. Combining this information, it is possible to define 
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areas that have little similarity to any existent RA, that is, priority areas for soil survey 
following the demands of PronaSolos. This procedure can and should optimize 
resources of time, money and people 
 

 
Figure 3. Dissimilarity class map based on average Gower index 
 
Conclusions 
 
The territory of Rio Janeiro is not satisfactorily covered by pedological maps at scales 
and levels of detail to meet current and future demands. 
The reference area approach to representing a region through the Gower index 
similarity analysis can save time, money, and personnel resources. 
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Thematic Session: Legacy Data – how to turn it usefull 
 

Abstract 

The use of legacy data improve the value of these data and promote the input of new 
data on the database. Also, reduces the primary data collection and analytical 
procedures. In MS State, the legacy data was 1325 soil profiles. We are looking for 
correlations with previus soil map, and litology and vegetation maps to reveal the profiles 
distribution. The DEM and derivatives was used also to compare with the profiles 
distribution. The spatial distribution of soil profiles follow the categorical  maps units 
occurrence. The statistical values of DEM and slope are not significantly different. The 
spatial distribution of soil profiles can represent the covariates of the all area and are 
ready to be used to produce digital soil maps. 
Keywords: soil database; Mato Grosso do Sul; Tropical. 

 

Introduction 
 
The use of legacy data for soil surveys is important to reducing primary data 
collection, and enhance available data that could otherwise be neglected. 

Looking for a methodology to verify the use of these legacy data against some 
predictor covariates, an exploratory spatial analysis of legacy data over the 
Paraguay river basin, in the state of Mato Grosso do Sul, with the exception of 
the wetland, was carried out (Figure 01). 

The objective of this work is to verify the adequacy of the spatial distribution of 
the legacy data as a function of covariates such as altimetry, slope, lithology, 
biomes, vegetation and soils maps in the study area. 

Methodology 
 
The dataset has 1325 soil profiles collected in previous works, without the use of 
statistical sampling techniques, important step in digital soil mapping. These data 
belong to the ZAE MS project of Embrapa Solos and will soon be available in the 
institution's databases. Numerical altimetry and slope covariates were obtained 
from NASA JPL (2020). Thematic covariates on Biomes, Lithology, Soils and 
vegetation were obtained from BDiA – IBGE (2021). 

The study area is included in the cerrado biome, and represents approximately 
27% of the state's area, with 96,960 km2. Figure 01 shows the study area and 
thematic covariates used in this study, namely, lithology, soils and vegetation. 

Results and discussion 
 
The DEM and slope covariates has the follow characteristics (Table 01). The 
DEM values are close between study area and soil samples. Apparently the slope 

https://www.embrapa.br/busca-de-publicacoes/-/publicacao/list/autoria/nome/carlos-henrique-l-lopes?p_auth=o5n81Ksa


has  different distribution, but areas with slope above 45 % are less than 01% of 
the study area, and we can consider that the relation are maintained.  

Table 02 shows 1325 soil samples grouped by class according to FAO (2021). 
Note an unbalanced distribution of classes, with predominancy of Ferralsols, 
Arenosols and Acrisols. The covariates are showed in Figure 01. 

Table 01. Statistics values of DEM (meters) and slope (%) of study area and soil 
samples. 

 min max mean SD 

DEM study area 73 942 334 146 

Slope study area 0 370 7.5 7.9 

DEM soil profiles 76 890 344 146 

Slope soil profiles 0 52 5.5 4.8 

 

 

 
Figure 1. Study area with soil samples locations and covariates 

 



Table 02. Samples Soil Class distribution according FAO soil taxonomy (FAO, 

2021) 

FAO Class of soil samples  count % 

Acrisols 145 10.9 

Arenosols 250 18.9 

Cambisols 45 3.4 

Chernozems 42 3.2 

Ferralsols 540 40.8 

Fluvisols 1 0.1 

Gleysols 46 3.5 

Leptosols 69 5.2 

Luvisols 4 0.3 

Nitisols 34 2.6 

Planosols 50 3.8 

Plinthosols 46 3.5 

Regosols 35 2.6 

Vertisols 18 1.4 

 

The result of join the soil samples and soil map, shows that the soil samples 
distribution has a quite relation with soils polygons distributions. The Table 3 
shows this relation. We can note that only one soil unit map (Histosols) doesn´t 
have soil samples and that the greater soil units have the greater account of soil 
samples. The idea is to analysis which soil samples are within each soil unit, to 
best understand the soil sample distribution in relation to soil map, but the 
quantitative aspects reveals that the soil samples distribution follow the same 
distribution of soil unit map. 

Table 3. Soil units map, percent and km2 distribution and soil samples within 
each soil unit. 

Soil units % km2 
soil 

samples 

Rock outputs 0.6 595 3 

urban 0.0 20 0 

water 0.1 89 0 

Plinthosols 1.8 1,785 21 

Gleysols 2.0 1,976 20 

Ferralsols 25.9 25,120 482 

Chernozems 3.7 3,619 27 

Nitisols 3.5 3,352 66 

Histosols 0.0 8 0 

Acrisols 12.4 12,056 205 

Leptosols 10.9 10,571 73 

Arenosols 20.2 19,625 272 

Regosols 8.9 8,659 72 

Planosols 7.6 7,343 64 

Vertisols 2.2 2,143 20 
 



The vegetation covariate also has a relation between map units and soil samples 
spatial distribution. The same correlation occurs between soil samples and 
lithology map units. These correlations can be noted in Table 4. 

Table 4. Correlation between soil samples spatial distribution and map units of 
vegetation and lithology. Note that only the lithology map units with soil samples 
are showed. 

Lithology map 
units % km2 

soil 
samples 

Vegetation map 

units % Km2 

soil 

samples 

Sand deposits 1.1 1,049 15 Contact 
32.2 31,260 370 

amphibolite 0.1 57 1 Water 
0.1 86  

Arches, 
Conglomerate 0.3 323 6 

Deciduous 

Seasonal Forest 
2.9 2,777 18 

Sandstone 37.0 37,300 524 

Seasonal 

Semideciduous 

Forest 
1.0 928 7 

Biotite 9.0 8,750 81 Savannah 
62.6 60,704 920 

Limestone 4.1 3,999 57 

Savannah-

estepe 
1.2 1,195 10 

dacitus 12.2 11,806 205 

Savannah-

estepe 
1.2 1,195 10 

clay deposit 6.5 6,260 62 

Diamictite, Shale 15.2 14,705 217 

Philito 4.8 4,607 59 

shale 2.0 1,943 44 

Marble 1.1 1,043 20 

quartzite 1.4 1,342 22 

Schist 3.4 3,312 12 
 

Conclusions 
 

The spatial location of soil profiles follows the spatial distribution of the covariates, 
which denotes that the spatial distribution of soil profiles can represent the 
covariates of the all area and can be used to produce digital soil maps. 
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Thematic Session: Legacy data: How turn it useful? 

 
Abstract 
 
Soil bulk density is an important soil physical property, used as a quality indicator. Its variation 
influences soil water content and carbon stock estimates. This study aims to evaluate the 
accuracy of pedotransfer functions that predict bulk density in Brazil. The predictive capacity 
of 14 pedotransfer functions were evaluated using the Pearson correlation (r), the mean 
standard error (MSE), and the root mean square error (RMSE). The best results were obtained 
by Benites et al. (2006) – B, Botula (2013), and Souza et al. (2016). However, the inaccuracy 
is not acceptable for some applications and new functions considering a hierarchical system 
of soil data considering soil class and depth (surface or subsurface), land use (agriculture, 
pasture, and forest) and management (no-tillage, conventional or livestock farming forest 
integration) will be developed and tested. 
 

Introduction 

Soil bulk density (BD) is not determined in routine soil laboratories (De Vos et al., 
2005), mainly due to its specific applications and limited use in fertilizer 
recommendations. However, BD is a means to evaluate sustainable soil management 
practices (Botula, 2013), especially for soil structure quality, as it reflects compaction 
(Assouline, 2006). Additionally, Agricultural Zoning of Climatic Risk (ZARC) provides 
information on planting dates and the probability of unfavorable weather events for the 
entire territory. ZARC uses a time series of climate data, phenological information and 
available soil water (ASW). ASW data came from pedotransfer functions estimatives 
that in nowadays are estimated by a particle size distribution (Teixeira et al., 2021). BD 
data may improve the ASW estimatives. Moreover, crop models as Decision Support 
System for Agrotechnology Transfer - DSSAT (Hoogenboom et al., 2019) need the BD 
values of soil horizons to run the analyses and predictions. Another demand or BD 
data is as to estimate soil stock of carbon for the inventory Measurement, Reporting 
and Verification of greenhouse gas (GHG) mitigation, especially from agriculture 
(Bernoux et al., 1998; De Vos et al., 2005; FAO, 2020). Considering its importance, 
the lack of BD data and the possibility of using pedotransfer functions (PTFs) to 
estimate missing information, the objective of this study was to evaluate the accuracy 
of available PTFs to predict soil BD for Brazil. 

Methodology 
 
The BD data associated with soil chemical and physical properties were obtained in 
the Hydrophysical Database for Brazilian Soils - HYBRAS (Ottoni et al., 2018) and 
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other data sets totaling 2,635 soil samples data. The soil samples, parameters ranged 
as follows: 0.4, 0 and 0% for sand, silt, and clay minimum contents respectively; 98.8, 
83, and 96% respectively for maximum values. Organic carbon (OC) values ranged 
from 0 to 62.1%; pH (water) ranged from 2.4 to 9.6, and the sum of bases from 0.3 to 
502 mmolc kg-1. 14 PTFs were analyzed. These PFTs were created for a large variety 
of soils from different locations. They use as estimator parameters: sand, silt and clay 
content, organic carbon (OC), pH, partial sum of cations, and sum of bases. For each 
BD-PTF estimative, the range limits were respected. The Pearson correlation 
coefficient (r) represents the precision of results. i.g., the higher r values are the best, 
the mean standard error (MSE), and the root mean square error (RMSE), were used 
to analyze the accuracy of BD estimate values. Coefficient of variation (CV) was also 
used. The lower MSE and RMSE indicate the higher accuracy in the prediction.  
 
Results and discussion 

 
The 14 BD-PTF equations used in this study, the location where the most data are 
from, the predictive soil parameters and the precision and accuracy indices are shown 
in Table 1. The best indices (r, RMSE and MSE) were observed for the Benites – B, 
Botula and Souza PTFs (Table 1). Due to the dispersion of measured values in relation 
to deviations, the Benites – B function showed greater variation, especially for low BD 
values (Figure 1). The proposed function considered few samples with low BD, as well 
as high BD samples. Thus, low BD values are underestimated, and high BD values 
are overestimated. Similar trend was observed with the PTFs proposed by Botula 
(2013) and Souza et al. (2016). Our dataset has many sandy soil samples, which 
differs from the datasets used to generate these three PTFs, presenting a BD 
maximum value of 2,1 g cm-3.  

 
Boschi et al. (2016) obtained good performance for the PTF proposed by Benites et al. 
(2006) – B (RMSE=0.19) and other, after evaluating 25 PTFs for a set of 222 soil 
profiles from all Brazilian biomes. 

 
Table 1 – Statistical metrics of precision and accuracy to describe the performance of 14 PTFs to 
estimate Bulk Density. 

PTF Location Parameters n r MSE RMSE 
CV 
% 

Alexander (1980) California – USA OC 2627 0.37 0.00 0.22 11 

Manrique & Jones (1991) 
– A 

USA OC 2630 0.39 0.00 0.22 12 

Manrique & Jones (1991) 
– B 

USA OC 2626 0.42 0.00 0.20 9 

Bernoux et al. (1998) – A Amazon - Brazil Clay 2538 0.45 0.00 0.28 7 

Bernoux et al. (1998) – B Amazon - Brazil Clay, OC 2282 0.61 0.00 0.25 9 

Bernoux et al. (1998) – C Amazon - Brazil Clay, OC, pH 1103 0.44 0.00 0.25 8 



 

 

 

 

 

Bernoux et al. (1998) – D Amazon - Brazil 
Clay, sand, OC, 
pH 

1054 0.44 0.00 0.24 8 

Tomasella & Hodnett 
(1998) 

Amazon - Brazil Clay, silt, OC 1769 0.50 0.00 0.23 10 

Kaur et al. (2002) Almora - India Clay, silt, OC 2413 0.58 0.01 0.38 30 

Benites et al. (2006) – A Brazil Clay 2635 0.49 0.00 0.20 7 

Benites et al. (2006) – B Brazil Clay, OC 2385 0.63 0.00 0.19 11 

Benites et al. (2006) – C Brazil Clay, OC, SB* 963 0.40 0.00 0.18 9 

Botula (2013)  Lower Congo Clay, sand, OC 2047 0.46 0.00 0.19 3 

Souza et al. (2016) 
Rio Doce Basin - 
Brazil 

Clay, OC, pH, SB 688 0.35 0.01 0.18 10 

SB*: partial sum of cations (Ca. Mg and K); n: number of samples; r: Pearson correlation coefficient; 
RMSE: root mean square error; MSE: mean standard error; CV: coefficient of variation.  
 
 

   
Figure 1 – Measured BD values vs deviation of estimates of three PTFs: Benites et al. (2006) 

– B (A). Botula (2013) (B), Souza et al. (2016) (C). 
 

 
Conclusions 
 

BD predictions from all PTFs tested, show relatively low accuracy. It may be 
unacceptable in some BD data applications. New PTFs using hierarchical approaches 
to estimate BD are already under analysis. 
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Thematic Session: 02: Legacy data: How turn it useful? 
 
Abstract 
In this paper we evaluate the agricultural efficiency of the municipalities of the state Rio de 
Janeiro and assess the influence of contextual variables on the performance. The scores are 
computed by means of Data Envelopment Analysis (DEA) models, where inputs are land, labor 
and capital (or technology), and the value of crops and of livestock productions are the outputs. 
Covariates are related to soil evaluation (susceptibility to erosion and land use suitability) and 
to socioeconomic factors. The results show that high levels of susceptibility to erosion influence 
negatively and significantly the efficiency scores. The land suitability to agriculture and the land 
suitability to livestock are positively associated with performance. The presence of family-
based farmers favors the agricultural performance of the assessed municipalities.  
Keywords: Agricultural performance; Soil erosion susceptibility; Land use suitability; Data 
envelopment analysis; Fractional regression. 
 

Introduction 
 
The farming sector in the state of Rio de Janeiro, Brazil, comprises mainly vegetables, 
fruits and grains productions. Dairy and beef cattle farming are also present in almost 
all the municipalities. These production chains strengthen the economy in the 
countryside (employment and income), boost rural communities and play an important 
role in food and nutritional security for the population of the State (EMATER-RIO, 2017, 
2019). They are predominantly performed by family-based farmers (IBGE, 2019). 
 
Given the importance of this activity, here we evaluate the agricultural efficiency of 
these municipalities by means of Data Envelopment Analysis (DEA) models. Input 
dimensions are proxies for land, labor and capital. Outputs are defined by the value of 
agricultural productions. These data were obtained from the 2017 Brazilian agricultural 
census (IBGE, 2019). In addition, we seek to identify exogenous variables that 
potentially affect performance. These covariates are variables from the PronaSolos 
databases, referring to soil evaluation (classes of soil susceptibility to erosion and to 
the different land use suitability), and socioeconomic factors from the 2017 census. 
 

Methodology 
 
DEA (COOPER et al., 2007) is a mathematical programming approach that computes 
efficiency scores for a group of observations (so-called DMU). These measures are 
based on the level of resources used (inputs) and the results obtained (outputs) in a 



 

 

 

 

 

production process. Each individual observation is optimized to estimate a piecewise 
linear efficient frontier, composed of the best practices from the sample (benchmarks). 
 
Here we assume the variable returns to scale hypothesis (VRS) and output orientation, 
in accordance with other similar studies, as Souza et al. (2020). The envelope 
formulation of this DEA model is presented in (1), where h0 is the efficiency score of 
DMU 0 under evaluation; xik is the input i, i=1...r, of DMU k, k= 1...n; yjk represents the 
output j, j= 1...s, of DMU k; xio and yjo are the inputs i and the outputs j of the DMU 0; 
λk is the contribution of DMU k to the target of DMU 0 (benchmarks have non-zero λk). 
 

 (1) 

 
We considered three input dimensions: land, labor and capital. Land was defined as 
the sum of crops, forestry and livestock areas (hectares). Labor was represented by 
the total expenses on salaries (thousand R$). Capital, or technology, included 
expenses on different inputs, as services, fertilizers, seeds, pesticides, medicines for 
animals, salt, feed, transportation, electricity, machinery, fuels, among others 
(thousand R$). The outputs are the value of crops production (thousand R$) and the 
value of animal production (thousand R$). This approach allows municipalities with 
specialized production or with a good combined production arrangement to be efficient, 
as in Gomes et al. (2009). There were 89 municipalities with valid production data. 
 
Due to the nature of DEA type responses (scores between 0 and 1), Ramalho et al. 
(2010) proposed fractional regression models to identify covariates that affect DEA 
scores. Let zj be the vector of covariates for municipality j. A fractional regression 

assumes , where G(.) is a non-linear function with values in 

(0,1] and δ is a vector of parameters. The model can be estimated by non-linear least 
squares or quasi-maximal likelihood.  
 
The covariates used in the regression fit were: percentage of areas with susceptibility 
to erosion (ps1 =  very low; ps2 = low; ps3 = moderate; ps4 = high; ps5 = very high) 
(FERRAZ et al., 2021); percentage of areas with regular or restricted suitability for 
crops (paplav); percentage of areas with regular or restricted suitability for pastures 
and crops (pappast); percentage of areas with restricted suitability for forestry or 
unsuitable (papoutra) (CARVALHO FILHO et al., 2003); percentage of family-based 
farmers (paf); percentage of farmers that received technical assistance (pat); 
percentage of farmers that received credit/financing (pfin) (IBGE, 2019). 
 

Results and discussion 
 
Figure 1 shows the distribution of the efficiency scores. The average efficiency was 
55.1%. This non-homogeneity in performance agrees with Souza (2019), regarding 
rural development in the State.  



 

 

 

 

 

 

 
Figure 1: Geographical distribution of the DEA efficiency scores in Rio de Janeiro. 
 
In Table 1 we can see the fractional regression fit. pat and pfin were not significant and 
were dropped from the model. Correlation between observed and predicted values is 
72.1%. Municipalities with higher proportion of family-based farms are more efficient. 
The higher are the percentages of areas with moderate, high and very high 
susceptibility to erosion, the lower are the efficiency scores. Suitability to crops affects 
positively the efficiency. Suitability to livestock and crops has marginal positive effect.  
 
Table 1: Fractional regression fit. Covariates were measured in log scale. 

 Coefficient Standard error z P>|z| 95% Confidence interval 

paf 1.235 0.342 3.61 0.000 0.565 1.904 
ps1 0.020 0.100 0.20 0.843 -0.175 0.215 
ps2 -0.247 0.204 -1.21 0.225 -0.647 0.152 
ps3 -0.797 0.280 -2.85 0.004 -1.346 -0.248 
ps4 -0.343 0.096 -3.58 0.000 -0.530 -0.155 
ps5 -0.433 0.186 -2.33 0.020 -0.797 -0.068 
paplav 0.167 0.063 2.65 0.008 0.044 0.291 
pappast 0.364 0.224 1.62 0.105 -0.076 0.804 
papoutra -0.045 0.095 -0.48 0.633 -0.231 0.140 

constant -1.552 1.690 -0.92 0.359 -4.864 1.761 

 

Conclusions 
 
The agricultural economic activity in the state of Rio de Janeiro has a medium overall 
performance. Soil evaluation factors are influential: moderate and higher levels of 
susceptibility to erosion affect significantly and negatively the performance; suitability 
to crops and to livestock productions have a positive association with performance. 
The presence of family-based production is also positive. These results may support 
(i) public policies related to soil governance (e.g., PronaSolos and the National Policy 



 

 

 

 

 

for Soil and Water Conservation in Rural Environments), and (ii) the achievement of 
international agendas commitments at a national level, such as the Sustainable 
Development Goals (e.g., SDG 2) and the Global Soil Partnership. 
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Thematic Session: Legacy data: How turn it useful? 
  
Abstract 

Some hydrogeological models demand many spatially distributed data, which are often 
scarse or absent. Among them, the thickness of soil and saprolite and the depth to the rock 
basement are necessary for the understanding of the vadose zone processes. This work 
aimed to evaluate some interpolation procedures to map the soil and rock depth, based on 
the brazilian well database, and some geomorphometric covariates from the digital elevation 
model. The results indicate that the ranger procedure was the best ranked, but the soil depth 
results were much better than those for rock, measured by explained variance and mean 
relative error (RME). 
Keywords: soil thickness, interpolation methods, SIAGAS, Carinhanha river, Verde Grande 

river 
 

 Introduction 

The use of models to aid the water resources’ management is often precluded by the 
lack of data and the poor scale of the current environmental maps. This is specially 
true in central areas of Brazil, where the low density of geological and pedological 
information limits the reliability of the results. Nevertheless, the growing water scarci-
ty is pushing the government agencies to adopt rational policies for water manage-
ment, and they must to be based on sound data. This work is part of a project to 
supply such basic data, and is focused on some of the core properties demanded by 
the hydrogeological models that are being developed for critical areas in central Bra-
zil. 
 
Methodology 

The study area is located in central Brazil, in the states of Minas Gerais and Bahia. It 
is drained by two tributaries of the São Francisco river, the Verde Grande and 
Carinhanha rivers (Figure 1). The regional climate is a transition from dry tropical to 
semiarid. The main soil types are Oxisols and Ultisols, according to the Brazilian Soil 
Map 
(http://geoinfo.cnps.embrapa.br/layers/geonode%3Abrasil_solos_5m_20201104). 
The main hydrogeological domains are associated with the cretaceous sandstones of 
the Urucuia and Areado formations and with the karstic rocks of the Bambuí Group. 
The karstic features are widespread in the Verde Grande watershed, and are a chal-
lenge for the modelling of the aquifers. A set of 6238 wells were selected from the 
Brazilian Underground Water Information System (SIAGAS database 
http://siagasweb.cprm.gov.br/layout/), and contains the information of location and 
lithological description of the well’s profiles. The well profile layers were classified as 

mailto:joao.herbert@embrapa.br
mailto:joao.herbert@embrapa.br
mailto:joao.herbert@embrapa.br
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soil, saprolite and rock, considering some key words in the lithological description. A 
set of rules was created for the determination of the soil lower limit and the rock 
depth, applied by a visual basic script. After the classification was done, the result 
was checked for all well profiles of the database by a soil expert. The classification 
was also done manually for those profile layers that could not be classified by the 
script. We are aware that this classification is strongly influenced by the quality of the 
data of the well profiles, which contain imprecisions, due to the lack of standards for 
description. A subset of the original SIAGAS’s dataset was chosen in a polygon 
around the study area, and 2031 wells were used for the analyses. Additionally, a set 
of rock outcrop data was added to the data (+650 datapoints). For the soil layer data, 
a confidence interval based on all the soil data was used and the points with soil lay-
ers thicker than the 95% interval were discarded (soil depth bigger than 24 m). The 
interpolation was performed in a regular grid of 500 x 500 m, where the covariates 
were measured. The covariates were a set of ALOS_PALSAR’s Digital Elevation 
Model geomorphometric derivatives, generated in QGIS 3.20.3-Odense 
(https://www.qgis.org). The best correlated covariates were chosen, based on the R2 
and the p value (Table 1), and with minimum correlation in between. The interpola-
tion was performed in R environment, using the packages "sp", "sf", "stars", 
"ggplot2", "GSIF", "randomForest", "ranger", "quantregForest" and "raster" and the 
best model was chosen based on the mean relative error (RME) and variance re-
sults. The outputs were the soil and rock depth maps and their variance counterparts. 
  
Results and discussion 

The results of the correlation analyses indicate that the covariates have low values of 
R2, though they are statistically significant with very low p values (Table 1), for both 
soil and rock depths. The soil depth map and its variance map are plotted in the Fig-
ure 2. The result of the model validation shows that the “ranger” model performed 
much better than the other models, explaining 70% of the variance and with a lower 
RME (Table 2). The rock depth map and its variance map (Figure 2) also were best 
fit by the “ranger” model, but with just a small difference among the models and a 
relatively poor fit (35%) and higher RME (Table 2). We speculate that the high num-
ber of rock outcrops, specially in the karstic area of the Verde Grande basin, may 
have an impact on the overall model performance, precluding better results and pro-
ducing a result that can be seen only as a general trend. 



 

 

  

 

 

Figure 1 – Location of the watersheds in Brazil and the distribution of the wells and 

outcrops in the study area. DATUM SIRGAS 2000, UTM 23S. 

Figure 2 – Soil depth map and soil depth variance map. DATUM SIRGAS 2000, UTM 
23S. 

Figure 3 – Rock depth map and rock depth variance map. DATUM SIRGAS 2000, 
UTM 23S. 

 

Table 1 – Results for the best correlated attributes, used in the model fitting. 
Rock depth   
Attribute R2 p value 

Terrain Ruggedness Index -0.1700 0.0000 
Latitude -0.1000 0.0000 
Valley Index -0.0680 0.0021 

Soil thickness   
Attribute R2 p value 

Altitude 0.1200 0.0000 
Multiresolution Index of Ridge Top Flatness (MRRTF) 0.0830 0.0004 
Minimal Curvature 0.0690 0.0006 
Slope Index 0.0680 0.0009 

 



 

 

  

 

 

Table 2 – Results of the evaluation of the models. 
Rock depth   
Method RME, meter (validation)  Var explained       

“ranger” 11.15 35.1% 
“random Forest” 11.23 34.2% 
“quantregForest’ 11.54 30.4% 
“rpart” 11.71 28.5% 
“GLM” 11.82 27.1% 

Soil thickness   
Method RME, meter (validation)   Var explained       

“ranger” 3.001 70.4% 
“random Forest” 4.444 35.0% 
“quantregForest’ 4.612 30.0% 
“rpart” 4.694 27.8% 
“GLM” 4.724 26.6% 

 
Conclusions 

The use of geomorphologic covariates for the interpolation of soil and rock depth 
produced better results for soil than for rock. The “ranger” algorithm was the best 
ranked, but the results for rock depth were poor, which could be the effect of a large 
number of rock outcrops in the karstic region of the river Verde Grande. 
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Abstract 
 

Saturated hydraulic conductivity and steady infiltration rate are essential parameters 
in irrigation, and drainage projects, as well as in hydrological and climatological 
modelling. These data are hardly found in widely used soil databases in Brazil, and 
they are still reported in dispersed publications. This study aims to rescue SIR and Ks 
data for the state of Rio de Janeiro and make them available to users. In total 934 
measurements of Ks and 24 of SIR were compiled. The soil types most frequent 
measured were Gleissolos and Neossolos, as well agriculture and pastures for the 
land-use system. The most popular methods to evaluate the Ks were constant head in 
the lab and the Guelph permeameter in field evaluations, and for the SIR, the double 
ring method. The data ranged from 0.40 to 1073 mm h-1. The lack of information in 
some regions of the Rio de Janeiro States indicates priority areas for increasing Ks and 
SIR determination. 
 
Keywords: constant head, Guelph permeameter, double ring 
 

Introduction 

Evaluating soil water dynamics involves the determination of soil hydraulic parameters 
such as saturated hydraulic conductivity (Ks) and steady infiltration rate (SIR). These 
parameters have been largely used in hydrological models, irrigation, and drainage 
projects, as well as in studies related to the fate of nutrients and pesticides and water 
erosion. The saturated hydraulic conductivity (Ks) characterizes the capacity of the soil 
to transmit water in saturated conditions. Its measurement can be done in the 
laboratory using methods developed under transient conditions or under steady-state 
conditions, or even under field conditions, with the popular use of the Guelph 
permeameter. However, the determination of soil hydraulic properties is costly and 
time-consuming, and very difficult to be evaluated in large areas due to the high spatial 
variability of these parameters. SIR and Ks data for the state of Rio de Janeiro have 
been retrieved and compiled. This study is part of a national effort of the Brazilian Soil 
Science Society (SIBCs) to rescue and make available the data of SIR and Ks to Brazil.  

Methodology 
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The study was performed by obtaining data on basic SIR and/or Ks obtained from lab 
or field evaluations in soils located in the state of Rio de Janeiro - Brazil.  These studies 
were found by a bibliographic survey of articles, theses and dissertations, conference 
announcements, technical publications, and reports. The SIR and Ks data were stored 
in a soil database (SDB) structured including other information related:  sampling 
location (site description, geographic coordinates, land use), physical, chemical 
properties, and water retention at different matric potential. The measuring methods 
used to evaluate SIR and Ks are also included in the SDB. Some parameters were 
mandatory, such as the county, soil classification, land use, granulometry, saturated 
hydraulic conductivity (Ks – mm/h) (obtained in laboratory or in the field) or steady 
infiltration rate (SIR – mm/h) and methods for determination of Ks or SIR. The land-use 
systems and soil classification were harmonized using the rules of classification used 
in the Project MapBiomas (MAPBIOMAS, 2020) and soil classification using the first 
order of classification of the last version of the Brazilian Soil Classification System 
(Santos, 2018). The data were classified according to land use and soil type. 
Descriptive statistics of mean, maximum, and minimum values for soil types in 
combinations with land use were calculated. 

Results and discussion 

The results totalizing 934 data of Ks and 24 data of SIR (Bernardes, 2005; Bhering 
2007; Duarte, 2004; Fabian, 1997; Instituto do Açúcar e do Álcool, 2011; Nacinovic, 
2013; Silva, 2011). The county of Campos dos Goytacazes does have probably the 
largest Ks and SIR data base in Brazil. The most frequent soil types evaluated were 
Gleissolos (26%) followed by Neossolos (26 %) and Cambissolos (22%). Agriculture 
and pastures were the land uses systems more evaluated for SIR and Ks in Rio de 
Janeiro (Figure 1) 

 

Figure 1 - Number of available data of Saturated Hydraulic Conductivity (Ks) or Steady 
Infiltration Rate (SIR) for different soil type and land uses in the State of Rio de Janeiro 
- Brazil.  

The most frequent method to evaluate de Ks was the constant head soil core for lab 
and well permeameters (i.e Guelph permeameter) for field evaluations. To evaluate 
the SIR, in a total of 24 data, the most frequently method was the double ring. The 



 

 

 

 

 

highest Ks value was 1073 mm h-1 measured in a Neossolo and lowest values (0,4 mm 
h-1) in a Neossolos and Latossolo covered with pastures. Espodossolos show the 
minimum value of Ks 249 mm h-1. The Ks values > 500 mm h-1 repeated in soil types 
were a consequence of the maximum rate of the method used. The SIR evaluations 
were also concentrated in Gleissolos and Argissolos. The lowest values 1 mm h-1 G 
were measured in Gleissolos covered by pastures. However, Gleissolos also showed 
a SIR of 114 mm/h with an average of 140 mm/h (Table 1). 
 

Conclusions 

 

The State of Rio de Janeiro has more than 900 measurements available for Ks or SIR. 
However, the most part of the data are concentrated in Gleissolos and Neossolos in 
the north part of the state near the cost. The soil covered by original Atlantic Forest is 
poorly measured. The most popular methods for Ks measurements were constant head 
soil core and well permeameters in the field. The Ks and SIR are valuable data for many 
applications. This rescue of dispersed data may be useful for many projects. The lack 
of information about hydraulic information in some regions or soil may indicate priority 
areas for evaluations. This soil database will be available together with the data from 
other states of Brazil in a public data bank. 
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Table 1 - Descriptive statistics of saturated hydraulic conductivity (Ks) and steady 
infiltration rate (SIR) for different soil types and land used in the state of Rio de Janeiro.  

Soil Type Land Use Ks [mm h-1] SIR [mm h-1] 

SiBCs Mapbiomas  average maximum minimum average maximum 

Gleissolo Agriculture 1 29 >500 7 140 338 

Pasture 1 38 >500 1 57 114 

Non forest 2 39 161 - - - 

Neossolo Agriculture 1 156 1073 - - - 

Pasture 0,4 403 >500 - - - 

1Non forest 1 9 31 - - - 

Cambissolo Agriculture 1 42 748 - - - 

Pasture 1 23 >500 - - - 

Argissolo Agriculture 3 131 >500 17 48 83 

Pasture 2 117 819 - - - 

Non forest 1 8 30 - - - 

Latossolo Agriculture 38 113 226 - - - 

Pasture 0,4 27 177 - - - 

Forest 17 316 998 - - - 

Organossolo Agriculture 12 67 152 - - - 

Pasture 44 66 88 98 98 98 

Luvissolo Pasture - - - 12 74 180 

Espodossolo Agriculture 249 416 >500 - - - 

1 - Non forest natural vegetation (Mapbiomas classification system. SiBCS – Sistema Brasileiro de Classificação de Solos. 
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Thematic Session: Legacy data: How turn it useful? 

 
Abstract 

The study goal is to assess the performance of recursive feature elimination (RFE) to reduce the 

covariates from input dataset to predict Fe2O3, Nb and TiO2 contents through Gradient Boosted Machine 
(GBM) and Random Forest (RF), in Morro dos Seis Lagos-AM, Brazil. The input dataset gathers 344 
sample points (soil, sediments and rock materials) with topographic covariates and remote sensing data, 
from Sentinel-2A. The best performance to modeling the elements was achieved with RFE and RF model 

(Nb R2=0.19, TiO2 R2=0.19 and Fe2O3 R2=0.24). 

 
Keywords: Pedometrics; Soil chemical attributes; Data mining. 

 
Introduction 

In the last decades, machine learning models has been widely used in mineral 
prospection. These techniques can support mineral prospection of Fe, Nb, Ti to attend the 
increasing demand of this elements for industrial and energetical purposes (MITCHELL, 2015). 
Nowadays, the availability of multiple geographic data is useful for geological mapping and 
mineral prospection, and contributes for high-quality and low-cost predictions. Recent studies 
by Cracknell et al. (2014), Costa et al. (2019), Pinheiro (2021) and Wang et al. (2021) have 
used machine-learning techniques in geological analysis. When multiscale hyperspectral 
sensing techniques were integrated it tend to upgrade conventional surveys techniques. 

Morro dos Seis Lagos complex contain a thick laterite crust (>200 m), where weathering 
processes of siderite carbonatite produced a goethite/hematite crust (CPRM, 2019). 
Carbonatites and laterites host trace minerals with elements that have economic potential (as 

Nb and TiO2, for example). This occurrence is located in Amazon biome under dense forest on 
environment protection areas, with difficult access. The goal of the study was to assess the 

performance of REF and Stepwise methods to select covariates to predict Fe2O3, Nb and TiO2 

contents through of data mining methods (GBM and RF) at Morro dos Seis Lagos, São Gabriel 
da Cachoeira, Amazonas, Brazil. 

 
Methodology 

This research used 344 samples from the geochemical dataset from the Geological 
Survey of Brazil (CPRM), available on the GeoSBG platform (CPRM, 2019). A 20m spatial 
resolution hydrologically consistent digital elevation model (DEM) was obtained by interpolation 
of vectorial data (contour lines, quoted points and hydrography), from the cartographic database 
of Brazilian Institute of Geography and Statistics (IBGE)- with scale 1:25.000. The terrain 
covariates derived from the DEM were generated in SAGA-GIS v.2 .1.2 software (CONRAD, 
2007), and they are:Catchment Area; Surface Area; Aspect; Flow Accumulation; Curvature; 
Profile Curvature; Plan Curvature; Slope; Geomorphons; LS Factor; Topographic Wetness 
Index (TWI); Convergence Index; Relative Slope (RSP); Terrain Ruggedness (TRI); Valley 
Index. The remote sensing data from the MSI Sentinel-2A sensor were used, as well derived 
indexes from spectral bands: Ferrous Silicates, Laterite, Iron Oxide and Gossan (VAN DER 
MEER et al., 2014). 
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As a first criteria to select input covariates a Spearman correlation analysis was 
performed to eliminate highly correlated covariates, with a threshold of 0.95 (KUHN et al., 2013). 
Excluding Topographic Wetness Index, Mass Balance Index, Multiresolution Lower Valley 
Flatness Index (MRVBF), B7, B8, B5, Terrain Ruggedness Index (TRI), Slope degre, 
Longitudinal Curvature, Ferrous Silicate, once they present self-correlation (0.95 threshold). 
Subsequently, Recursive Feature Elimination -RFE (JEONG et al. 2017) method was tested to 
select an optimized covariate dataset, aiming to reduce the dimensionality of the input 
covariates for each mapped element. To assess the performance of the predictive models, 
leave-one-out cross-validation (LOOCV) method was applied, via the Caret package (KUHN et 
al., 2017). 

Gradient Boosted Machine (GBM) and Random Forest (RF) were applied in the spatial 
modelling procedures through gbm and randomForest packages (LIAW and WIENER, 2018; 
GREENWELL, et al. 2019) in R environment. The RF hyperparameters were 500 mtry (default) 
and 1/3 of the set of covariates for each element; and GBM hyperparameters were adjusted as 
Gaussian parameter (square error), number of trees equal 300 (n.trees), interaction depth equal 
to 5, shrinkage equal 0.3, and for bag.fraction 0.1 was used. A synthesis of methodological 
procedures is presented in Figure 1. 

 

Figure 1. Flowchart of the methodological procedures. 

 
Results and discussion 

 
In general, the predictor covariates for both models presented heterogeneity in the 

composition of their sets (Table 1). According to the degree of importance to predict the 
elements, it was notice that the terrain covariates presented greater influence when compared 
with indexes from Sentinel -2A sensor.  

The models presented similar behavior, for the importance of covariates through RFE. It 
is probably due the similar structure from tree-based models, adopting similar predictive 
variables based on the importance ranking (LIAW and WIENER, 2012; GREENWELL, et al. 
2019). In this study, both models showed similar covariates and validation values to accuracy 
indexes to predict Fe2O3, Nb AND TiO2. Wang et al. (2020) in a study for detection of 
geochemical anomalies in the Jingdezhen region, found good performance by using this hybrid 



 

approach (RFE-RF) to select covariates to map the anomalies. 
In the GBM model, the covariates Elevation, SAGA Wetness Index and Gossan showed 

more importance. The importance of covariates ranked by Random Forest showed that 
Elevation, Terrain surface and Gossan, were more important to predict the elements. 

Table 1. Performance of the RFE and Spearman with Random Forest (RF) and Gradient 

Boosted Machine (GBM) models to predict Nb, TiO2, and Fe2O3. 
Elements 

(% Wt) 
Methods Selected Covariates Model RMSE MSE R² 

Nb RFE Elevation +Standardiz height + 
Aspect + 

Terrain Surface + Mid- Slope 
Positon + B11 

GBM 0.81 0.65 0.17 

RF 0.75 0.57 0.19 

Only 
Spearman 

Terrain Surface + SAGA Weteness 
Index + MRRTF + B4+B3 

GBM 1.05 1.10 0.003 

RF 0.83 0.70 0.05 

TiO2 RFE SAGA Weteness Index+ Elevation + 
Real Surface Area+ Terrain Surface 

GBM 4.08 16.65 0.15 

RF 3.68 13.71 0.19 

Only 
Spearman 

Vector Terrain Ruggedness (VRM) 
+ Standardiz height + SAGA 

Weteness Index + Normalized+ 
MRRTF+ Ferric Oxide + Elevation+ 

Flow line Curvature 

GBM 4.17 17.40 0.12 

RF 3.76 14.19 0.15 

Fe2O3 RFE Elevation + SAGA Weteness Index 
+ Gossan + Vector Terrain 

Ruggedness (VRM) 

GBM 22.75 517.65 0.17 

RF 19.90 398.10 0.24 

Only 
Spearman 

Aspect+ Vector Terrain 
Ruggedness (VRM) + Terrain 

Surface + Terrain1 + Standardiz 
height +Real Surface+ Normalized+ 

Mid- Slope Positon + Elevation+ 
Curvature total+ Tangential 

curvature +Curvature profile+ 
Curvature plan+ Curvature 

maximum+ General curvature + 
+Convergence Index + Cross- 

Sectional Curvature +B4+B3+B2 

GBM 20.72 429.47 0.24 

RF 19.41 376.94 0.28 

 RF: Random Forest; BRT: Boost regression tree; RMSE: Root mean square error; MSE:  Mean 
square error; R²: Rsquared. 

 

 
 

 

In general, models related to RFE, showed satisfactory performance according the 
accuracy indexes obtained from cross-validation. The Random Forest model, presented better 

performance through RFE selection (Table 1). Regarding the use of RFE, both methods to 

reported similar variability to fit the observed values according to the metrics (RMSE and MSE). 
The results showed that RFE optimized the prediction of the elements to both machine 

learning models. The method works eliminating covariates recursively by interaction between 
the covariates and the predicted variable, considering collinearity among the covariates 
(multicollinearity) (SVETNIK et al., 2004). 

 
Conclusions 

The Random Forest model showed better performance to predict the elements, 
indicating as important covariates: Elevation, Gossan and SAGA Wetness Index, which were 
pre-selected through recursive feature elimination (RFE) method. In this sense, future research 
should to address other spectral indices from remote sensing to improve the resulting models, 
as well other predictive algorithms, as artificial neural networks for example. 
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Thematic Session: Legacy Data: How turn it useful? 
 

Abstract 
The present study aimed to create spatial predictive models for soil pH H2O in an important 
grape growing region from the south of Brazil, assessing the relationships between this soil 
attribute and continuous environmental covariates. The study was carried out in the Vale dos 
Vinhedos, an 81,180 km² wine-producing region located in the Rio Grande do Sul State 
(Brazil). The soil dataset was obtained from “Os Solos do Vale dos Vinhedos” project. The 
results of soil pH analysis of 163 soil profiles were used in this study, in three fixed depth 
intervals: 0–5, 5–15, 15–30 cm. A set of 25 morphometric maps derived from a DEM, 2 
vegetation indexes derived from a Sentinel-2 image, soil classification and 5 climate 
variables from the WorldClim Data Portal were used as covariates. Linear regression (LM) 
and random forest (RF) were performed, and the accuracy of each predictive model were 
evaluated. The best performance was achieved with the random forest models to predicting 
soil pH between 0 and 30 cm in this study, with the best values of RMSE and MAE. 
Keywords: Regression Kriging; Linear Model; Random Forest; Vineyard. 

 
Introduction 
 

The Rio Grande do Sul State is one of the most relevant producers of grapes 
and wines of Brazil (MELLO; MACHADO, 2020). The Vale dos Vinhedos (Vineyard 
Valley), located in the Rio Grande do Sul State, has national recognition as one of 
the most traditional wine producing centers in Brazil (TONIETTO et al., 2012, 2013). 
Some soil attributes, such as pH, have a direct influence on the composition and 
quality of wines (COIPEL et al., 2006). Knowledge of its spatial distribution is 
necessary both to improve the management of vineyard sites, as well as to 
understand the functioning of the soil in the ecosystem and indicate how it can be 
better managed. (ODEH et al., 2007). 

For pedometrics, the soil variability can be investigated in two ways: through 
non-geostatistical techniques (multiple linear regression, generalized additive model, 
etc.) or using geostatistical techniques (ordinary kriging, simple kriging, etc.) 
(McBRATNEY et al., 2000; ODEHA et al., 1994). The combination of these methods 
(hybrid methods) often results in more accurate local predictions of soil attributes 
(GOOVAERTS, 1999), as they use secondary information available as auxiliary 
variables in making the predictions (YIGINI; PANAGOS, 2016; ZHU; LIN, 2010). 

The present study aimed to create spatial predictive models for soil pH H2O in 
an important grape growing region of Brazil, assessing the relationships between this 
soil attribute and continuous environmental covariates. Additionally, it was also 
sought to apply appropriate DSM functions to map this attribute. 

 



 

 

 

 

Methodology 
 

The study was carried out in the Vale dos Vinhedos, an 81,180 km² wine-
producing region (29.08–29.14° S latitude, 51.29–51.37° W longitude) located in the 
Rio Grande do Sul State (Brazil). The climate is classified as Cfb, subtropical with a 
mild summer (ALVARES et al., 2014). The soil dataset were obtained from the 
project: “Os Solos do Vale dos Vinhedos” (FLORES et al., 2012). Sampling was done 
with 163 soil profiles described and analyzed following Brazilian standard methods 
(EMBRAPA, 1997, 2006). The soil pH H2O results were used in three fixed depth 
intervals (0–5, 5–15, 15–30 cm), following GlobalSoilMap.Net specifications 
(ARROUAYS et al., 2014). For this, an interpolation with an equal-area spline 
function was performed (MALONE et al., 2009). 

In total, 88 covariates were selected to model the spatial distribution. The 
covariates were: morphometric maps derived from a 5 x 5 m grid resolution DEM 
(FLORES et al., 2012), to be listed: analytical hillshading (AH), aspect (AS), 
convexity (CV), direct insolation (DI), elevation (EL), flow direction (FD), LS factor 
(LS), curvature (maximal (Cmax), minimal (Cmin), total (CT), plan (CPL) and profile 
(CPF)), mass balance index (MBI), mid slope position (MSP), multi-resolution valley 
bottom flatness (MRVBF), normalized height (NH), overland flow distance to channel 
network (OFD), slope (SL), slope height (SH), standardized height (STH), 
topographic position index (TPI), topographic wetness index (TWI), valley depth 
(VD), vertical distance to channel network (VDCN) and vector ruggedness measure 
(VRM); a soil class map converted to Soil Taxonomy classification (12th ed, 2014); 
NDVI and SAVI obtained from a Sentinel-2 image (2016-09-10); maps with the 
annual temperature (mean (Tme), maximal (Tmax) and minimal (Tmin) in °C), annual 
precipitation (mm) (Prec) and solar radiation (kJ m-2 day-1) (SR) from the WorldClim 
Data Portal (FICK; HIJMANS, 2017). The covariate maps were interpolated onto a 
common grid of 15 m resolution. 

A classical test for association between paired samples using Pearson's 
product–moment correlation coefficient was applied and p-value less than 0.05 was 
considered to represent a significant correlation. Then a Mantel test was used to 
determine the spatial structure for soil pH, being considered significant a p-value less 
than 0.20. Linear regression (LM) and random forest (RF) were performed with only 
correlated landscape covariates. We evaluated the accuracy of each predictive 
model by calculating the Root Mean Squared Error (RMSE) and Mean Absolute Error 
(MAE) using 10–fold cross-validation. The most accurate models were selected to fit 
residual variograms and apply the regression kriging (RK). The final RK predictions 
were produced using a sum of the regression and simple kriging parts. 

 
Results and discussion 
 

The results of Pearson's correlation analysis showed that, at all depths, there 
was a significant correlation for the covariates: EL, LS, SL, SH, STH, VD, Prec02-12, 
SR01-03, SR07, SR10, Tmax01-12, Tmed01-12 e Tmin01-12. The AH and MBI 
covariates showed a significant correlation only for the most superficial layer. MRVBF 
was significantly correlated at depths 0-5 and 5-15 cm, while TPI showed a 
significant correlation only at depths 0-5 and 15-30 cm. The SR05 and SR06 



 

 

 

 

covariates showed a significant correlation in depths 5-15 and 15-30 cm, respectively 
(Table 1). The Mantel test showed significant values at all depths evaluated, with p-
values remaining lower than specified (Table 1). 

 

Table 1. Number of environmental covariables correlated, Mantel p-values and 
accuracy metrics of predictive models. 

Variable 
Total of 

correlated 
covariates 

Mantel 
p-value 

LM 
RMSE 

RF 
RMSE 

LM 
MAE 

RF 
MAE 

1RF 
∆RMSE% 

pH.1 62 0.14 0.62 0.45 0.49 0.37 +37.8 
pH.2 60 0.11 0.65 0.47 0.53 0.39 +38.3 
pH.3 60 0.14 0.68 0.49 0.56 0.40 +38.8 
1 ΔRMSE% indicates improvement in RMSE in percentages compared to the LM model. 

 

At all 3 depths that the soil pH attribute was evaluated, the best values of 
RMSE and MAE were achieved with the RF models. The RMSE ranged between 
0.45 – 0.49 with RF models and between 0.62 – 0.68 with GLM models, while the 
MAE ranged between 0.37 – 0.40 with RF models and between 0.49 – 0.56 with 
GLM models (Table 1). The column ΔRMSE% in Table 1 shows the relative 
improvement in accuracy of the RF models compared to the LM models. The relative 
improvement between 37.8–38.8% of random forests models show that its use 
improves the evaluated soil pH mapping accuracy. 

Random forests can fit complex non-linear relationships and has no 
requirements considering the probability distribution of the target variable (HENGL et 
al., 2015), unlike linear regression. These two factors may be the answer to the 
better performance of RF models to predicting soil pH in this study. 

 

 
Fig. 1. Spatial prediction of soil pH at depths of 0-5, 5-15 and 15-30 cm based on the RK and 
respective variograms of residuals. 

 
Conclusions 
 
The correlation analysis indicates a significant correlation between soil pH and 62 
covariates at depth 1 and 60 covariates at depths 2 and 3. The Mantel test was 
significant at all depths evaluated. The best performance was achieved with the 
random forest models to predicting soil pH in this study. 
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Thematic Session: Advances in Soil Sensing 

 
Abstract 
With the advancement of Agriculture 4.0, the use of proximal sensors is one of the most 
innovative solutions in the search for optimizing time and inputs, maximize profitability and 
reducing environmental impact. In this context, the aims of this work were to evaluate the 
prediction capacity of soil C and N stocks by diffuse reflectance spectroscopy (DRS) and 
magnetic susceptibility (MS), and evaluate the spatial variability of this attributes. Soil 
samples were collected at 372 sites. Were used partial least squares regression (PLSR) for 
DRS data and linear regression for MS. Good prediction accuracy parameters were obtained 
between the C stock with DRS (r = 0.87; RMSE = 1.24) and MS (r = 0.88; RMSE = 1.98), as 
well as the N stock with DRS (r = 0.82; RMSE = 2.1) and MS (r = 0.78; RMSE = 2.4), 
revealing that these are good predictors of important soils properties. Therefore, these close 
sensing techniques have the potential to meet the demand of modern agriculture. 
Keywords: pedometrics; chemometrics; soil informaton systems; spectral signature; 
magnetic signature. 

 
Introduction 
 
Soil total C and N perform essential roles in soil health and ecosystem dynamics. Soil 
total C is the driving force of biological activity, serving as a primary source of energy 
and nutrients for many soil organisms and an important factor affecting N 
mineralization and immobilization in soils. While total N, an essential macronutrient 
for plant growth, is also one of the main determinants and indicators of soil fertility 
and quality. Thus, the prediction of these stocks is necessary for a range of 
agricultural and environmental applications. 
 
For decades, classic laboratory methodologies have been used to obtain soil 
attributes. However, these methods are time-consuming, expensive, destroy the soil 
sample during analysis and generate chemical residues. Thus, the development of 
fast, accurate and low-cost methods to quantify soil attributes is of paramount 
importance. In this sense, proximal sensors such as diffuse reflectance spectroscopy 
(DRS) and magnetic susceptibility (MS) meet this need, as they are two tools used to 
effectively estimate soil attributes (MCBRATNEY et al., 2006; BAHIA et al. al., 2017). 
Therefore, the objectives of this work were to investigate whether DRS and MS can 
be applied to predict soil C and N stocks in a sandstone-basalt transition region and 
characterize the spatial distribution of these attributes. 
 
Methodology 
 



 

 

 

 

The 900 ha study area is located in the São Paulo State in Guatapará Town, Brazil 
(21º28'45''S and 48º01'01''W). This area was chosen due to the presence of great 
variation in soil classes, landscape forms and a geological transition between 
sandstone-basalt in the geomorphological unit of the Western Paulista Plateau, close 
to the limit of the Basaltic Cuestas. This type of geological transition represents about 
44,000 ha in the state of São Paulo (IPT, 1981). So the results can be extrapolated to 
other regions. In the study area, a regular sampling grid containing 372 points was 
installed, with spacing between points varying from 142 to 174 m. Soil samples were 
collected at a depth of 0.0-0.2 m. 
 
The total contents of C and N in the soil were determined by dry combustion, in the 
LECO CN-2000 equipment. The stocks of C and N (in t ha-1) were calculated based 
on the equivalent soil mass. Reflectance values were recorded on a 950 UV/Vis/NIR 
spectrophotometer, equipped with an integrating sphere 150 mm in diameter, at 0.5 
nm intervals along the visible (Vis) and near infrared (NIR) range (380 to 2300 nm). 
MS was analyzed in soil samples by the MS2 Bartington meter. 
 
Data were submitted to descriptive statistics using the SAS software. In order to 
verify the statistical differences between the mean values of the attributes studied 
considering the compartments, the Tukey test at 5% probability was applied to the 
data. To develop pedotransfer functions (PTFs) based on soil spectra and laboratory 
data, partial least squares regression (PLSR) using Parles was used (VISCARRA 
ROSSEL, 2008). The PTFs based on MS were calibrated by linear regression 
between magnetic and laboratory data. The evaluation of the precision of the PTFs 
was made through the analysis of the coefficients of determination (R2) and 
correlation (r), RMSE (root mean square error), RPD (residual prediction deviation) 
and the Willmott agreement index (d). The characterization of the spatial variability 
was performed through geostatistical analysis with modeling of experimental 
variograms and subsequent interpolation by ordinary kriging. 
 

Results and discussion 
 
Soil C and N stocks ranged, respectively, from 19.5 to 52.6 t ha-1 (mean 36.6 t ha-1) 
and from 2.9 to 4.4 t ha-1 (mean of 3.7 t ha-1). Positive correlations were found for C 
stock with ERD (R2 = 0.75; r = 0.87; RMSE = 1.24; RPD = 2.11; d = 0.96) and MS (R2 
= 0.78; r = 0.88; RMSE = 1.98; RPD = 2.621; d = 0.92), as well as for N stock with 
ERD (R2 = 0.68; r = 0.82; RMSE = 2.10; RPD = 2.76; d = 0.73) and MS (R2 = 0.61; r 
= 0.78; RMSE = 2.40; RPD = 2.89; d = 0.71). The PTFs presented good precision 
and accuracy parameters (higher values of R2 and RPD > 2, and lower values of 
RMSE), mainly for the prediction of C. The good performance of FPTs by DRS is due 
to the fact of the NIR region of the spectrum present information related to these 
elements, due to various chemical bonds (CC, C=C, CH, CN, NH). On the other 
hand, MS is directly related to C and N because these attributes are related to the 
dynamics of microbial activity in the soil. 
 



 

 

 

 

All attributes analyzed presented spatial dependence, expressed through 
adjustments of variograms. The spherical model was adjusted for all attributes (Table 
1). This model adjusts to attributes that present abrupt variations across the 
landscape (CAMBARDELLA et al., 1994). These variations may be related to the 
types of source material (geology), relief and soils found in the study area, showing 
the relationship between these factors and the detailed characterization of spatial 
variability and the definition of mapping units. The C stock showed a strong degree of 
spatial dependence (SDD ≤ 25%), while the N stock showed moderate DGE (25% < 
SDD ≤ 75%) (CAMBARDELLA et al., 1994). All had high ranges, and the values were 
similar comparing the observed and predicted data. Thus, it can be inferred that both 
DRS and MS are indicated to predict these attributes in a more similar way to real 
field data. 
 
Table 1. Spherical variogram parameters of best fit to soil C and N stocks in the 
prediction dataset (observed laboratory data and predictions made by DRS and MS). 

Data set C0 C0+C1 
SDD 
(%) 

A (m) R2 SSR 

Cross 
validation 

a  b 

C stock 

Observed 3.02 16.50 21 1562 0.90 2.65 -0.01 1.00 

DRS 3.05 16.11 22 1548 0.90 2.15 0.01 1.00 

MS 2.70 15.28 13 1721 0.90 2.95 0.01 1.03 

N stock 

Observed 0.01 0.047 30 1640 0.99 1.7E-05 0.00 1.00 

DRS 0.01 0.045 29 1718 0.99 2.0E-05 0.00 1.00 

MS 0.02 0.052 33 1855 0.99 3.2E-06 0.00 1.04 

N=372. C0- nugget effect; C0+C1- step; SDD- degree of spatial dependence [C0/(C0+C1)]*100; 
A- range; R2- coefficient of determination of the adjusted model; SSR- sum of squares of the 
residuals; a- linear regression coefficient; b- angular coefficient of regression.  

 

 

Figure 1. Spatial distribution maps of soil C and N stock in the prediction dataset 
(observed laboratory data and predicted by DRS and MS). 



 

 

 

 

The spatial pattern of the mapped attributes was similar, as shown in Figure 1. It is 
observed that the map predicted by the DRS, mainly, was the one that most 
resembled the map obtained with the observed data, which is confirmed by the 
accuracy parameters in the models obtained and cross-validation (Table 1). It is 
known that the determination of soil attributes for mapping purposes requires a large 
amount of sample and this becomes onerous, making it difficult to carry out detailed 
mapping of large areas (BAHIA et al., 2017). For this reason, the calibration of 
mathematical models using DRS and MS is promising in order to predict these 
attributes in unmeasured samples, showing advances in soil sensing. 
  

Conclusions 
 
The DRS and MS correlate positively with the values of C and N stocks in the soil, 
and can be used in prediction models for these attributes. The interpolated maps 
based on the prediction of attributes by DRS and MS show a pattern of variability 
similar to maps based on observed data, which is confirmed by the accuracy and 
cross-validation parameters. Therefore, both DRS and MS have the potential to 
predict C and N stocks in unknown samples, which can be used for fast and efficient 
evaluation of these attributes. This demonstrates the importance of these tools in 
mapping large areas and with a detailed scale, showing advances in soil sensing. 
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Thematic Session: Advances in soil sensing 

 
Abstract 
The objectives are to use ground penetrating radar (GPR) to: (a) find a suitable length and 
location for a future underground dam; and (b) model the shape and estimate the volume of 
its water reservoir. Radargrams were obtained in a 0.85-ha area in northeastern Brazil along 
five survey lines parallel to, and eight lines transverse to the slope, starting from the 
proposed location of the dam. The 13 radargrams were pre-processed and migrated. The 
terrain surface and the top of the regolith delineated in the radargrams were interpolated, 
plotted in 3D showing the shape of the water reservoir, and used to estimate its volume. 
From the radargrams, the future dam should be 45 m longer and centered 22 m south of the 
proposed location, increasing the water reservoir by 50% to a total of 6 million L. By 
assessing the terrain surface and regolith, the GPR allows to adjust the length and position 
future underground dams and assess their water reservoir shape and volume non-invasively. 
Keywords: GPR; Geophysics; Brazilian semiarid region; Soil depth; Regolith  

 
Introduction 
In the Brazilian semiarid region, underground dams have been used to bar and store 
rainwater in the subsurface providing water for reuse (SILVA et al., 1998). Despite its 
importance, the volume of water stored by the underground dam is typically not 
quantified due to the high cost of the identification and mapping of the impermeable 
layer that limits the vertical flow of water at the bottom of the reservoir, which requires 
drilling or opening soil trenches. 

The ground penetrating radar (GPR) has been used to map soil restrictive layers 
(NOVÁKOVÁ et al., 2013; SCHALLER et al., 2020) and to find the ideal location for 
building an underground dam (LIMA et al., 2018). However, the estimation of the 
water reservoir volume in the underground dam accumulation area from GPR data 
remains an open research task.  
  
Thus, the objectives are to use a GPR to: (a) find a suitable length and location for a 
future underground dam; and (b) model the shape and estimate the volume of its 
water reservoir.  
 
Methodology 
The area is located in Santana do Ipanema, Alagoas state, in the semiarid region of 
northeastern Brazil, at coordinates 9°23'47.5" S and 37°13'39.4" W. The area has a 
3% slope gradient and lies around an intermittent stream, where an underground 
dam will be built. Soils include Neossolos Flúvicos (Fluvisols; Fluvents), Neossolos 
Regolíticos (Regosols; Psamments), and Planossolos Háplicos (Planosols; Aqualfs). 



 

 

 

 

A survey was done using a MALÅ GroundExplorer GPR (Guideline Geo AB, 
Sundbyberg, Sweden), carrying a 450-MHz shielded antenna, consisting of five lines 
parallel to, and eight lines transverse to the slope (Figure 1a), with line 1 representing 
the proposed length and location of the future dam (Figure 1a, hatched feature). 

Soil trenches were opened at nine sites close to the GPR survey lines (Figure 1a, b) 
to classify the soil and mark the top of the regolith, which constitutes the bottom of 
the water reservoir. The GPR radargrams were pre-processed (zero-time correction, 
dewow, gain, eigenvalue filter, constant offset correction, time-to-depth conversion) 
and migrated (Kirchhoff), and the top of the regolith was delineated in all radargrams 
(HUBER; HANS, 2019; R CORE TEAM, 2020). The terrain surface and the top of the 
regolith elevations were interpolated with 2-m resolution across the area by multilevel 
B-splines.  

The soil pore volume in each pixel was calculated by multiplying the soil depth 
(terrain surface minus top of regolith) by the pixel area (4 m2) by a soil porosity of 
0.38 m3 m-3 estimated from similar soils of the region (JACOMINE et al., 1975). The 
water reservoir volume was estimated by summing up the pore volume of all pixels.  

For this exercise, it is assumed that: the water reservoir is limited at the top by the 
terrain surface, at the bottom by the top of the regolith, and laterally by the 
boundaries of the GPR survey lines; a single soil porosity value represents the whole 
reservoir both horizontally and vertically; and all pores are available to store water.  
  
Results and discussion 
Along the slope, the soil depth increases from the upper (northwest) to the lower part 
of the area close to the dam (southeast) (Figure 1b, red lines). Across the slope, it 
increases from both sides towards the intermittent stream thalweg, which is closest to 
line 10 and trenches P1, P4 and P7 (Figure 1a, b). The soil depth varies between 45 
(P8) and 160 cm (P5 and P7) as observed in the soil trenches.  

The radargram of survey line 1 corresponds to the proposed length and location of 
the future underground dam (Figure 1c). The shape of the terrain surface and top of 
the regolith at line 1 shows that the proposed dam is not centered at the intermittent 
stream thalweg and its length of 65 m is too short to bar the underground water flow 
in the southern side of the area. Thus, the underground dam should be extended 
about 45 m, and centered about 22 m to the left (southwards), assuming that the 
cross-sectional shape of the slope is symmetrical.  

The interpolated terrain surface, and top of the regolith elevations ranged between 
213.5 and 215 m, and 210 to 213.5 m, from the dam to the top, respectively (Figure 
2). In this exercise, their map extent represents the underground dam accumulation 
area of about 0.85 ha, and the region between them corresponds to the shape of the 
water reservoir. The water reservoir is thickest close to the dam along the slope, and 
to the thalweg across the slope (Figure 2).  

The estimated water reservoir volume in this 0.85-ha area is 4013 m3. Extending the 
underground dam 45 m southwards to a total of 110 m in length and centering it at 
the stream thalweg would increase the accumulation area to about 1.44 ha, 
assuming a proportional increase keeping its rectangular shape. The water reservoir 



 

 

 

 

volume would increase to about 6020 m3, assuming that the area is symmetrical 
across the stream. Also, this would stop the underground water from flowing 
outwards laterally at the southern border. Additionally, the top of the dam should be 
built above the terrain surface to store water aboveground for irrigation, animal 
watering, and other uses, and capture surface and runoff water during heavy rains.  
 
Conclusions 
The results obtained from this exercise show the potential of the GPR to non-
invasively identify, visualize and map the terrain surface and the top of the regolith, 
supporting adjusting the length and location of a future underground dam and 
estimating its water reservoir shape and volume, with minimal need for soil trenches. 
The individual radargrams and derived terrain surface and top of the regolith maps 
can be plotted in 3D to show their variations and the shape of the water reservoir 
vertically and horizontally, along and across the slope.  

The analytical methods, functions, and tools provided by the free and open-source 
RGPR package in R covered the whole framework of GPR data processing. Thus, 
using the RGPR package is recommended for its completeness and to reduce the 
cost of data analysis by replacing proprietary software. 
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(a)  (b)  

(c)  
Figure 1. (a) GPR survey lines (1 to 13) and soil trenches (P1 to P9); (b) Migrated 
radargrams showing the delineated top of the regolith as red lines; and (c) 
Radargram of line 1 corresponding to the proposed length and location of the future 
underground dam, showing the delineated top of the regolith (thin dashed line), and 
the position of the top of the regolith recorded in P1 (thick dash).  

 
Figure 2. Terrain surface and top of the regolith elevations interpolated from the 13 
GPR survey lines. The region between them corresponds to the shape of the water 
reservoir. Elevations (z) are exaggerated relative to x and y coordinates. 
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Thematic Session: Advances in soil sensing 
 
Abstract 
Proximal sensors are drawing attention in many pedological studies. Pedological 
investigations using proximal sensors are increasing in tropical regions, but more in-depth 
studies on spatial variability of properties at short distances are still scarce. This study 
evaluated the spatial variability of three Ultisols profiles in a hydrosequence by digital 
morphometrics, combining sensors data. Soil samples were collected for elemental 
distribution mapping on a regular grid design (0.2 x 0.2 m) and analyzed via portable X-ray 
fluorescence (pXRF) spectrometry. The spatial evaluation showed great variations in 
elementary content distribution. Being possible to identify changes on parent material along 
the hydrosequence and into the soil profiles. 
Keywords: Ultisols with different drainage; proximal sensors; digital morphometrics. 
 
Introduction 
 
Pedological investigations using proximal sensors for in-depth evaluations of soil 
properties variability at short distances are still scarce in tropical regions, although 
proximal sensors have become very helpful for soil-related studies (Stockmann et al., 
2016). The spatial variability of attributes in a profile, as the elemental contents, has 
been explored in few studies (Gauer-Gray, Hartemink, 2018; Silva et al., 2018; Sun 
et al., 2020, Mancini et al., 2021). However, understanding the spatial dynamic of soil 
profile attributes can aid in numerous studies related to pedology or agricultural 
management. In this regard, Hartemink and Minasny (2014) proposed the soil digital 
morphometrics approach, which is a technique that measures and quantifies the soil 
profile attributes and its spatial variability with the aid of proximal sensors. 
 
This study evaluated the spatial variability of three Ultisols profiles in a 
hydrosequence via portable X-ray fluorescence (pXRF) spectrometry. This study 
hypothesizes that the profile position on the landscape rules the attributes variations. 
This study aims to investigate the causes of the soil profiles differences along the 
hydrosequence, characterize and evaluate the attributes that varied more in the 
Ultisols, with proximal sensors associated with the morphological description. 
Therefore, the portable X-ray fluorescence spectrometer (pXRF) and magnetic 
susceptibilimeter (MS) data were analyzed individually and combined to understand 
the soil profile genesis, elemental, and magnetic minerals interactions. 
 

Methodology 
 



 

 

 

 
We analyzed three Ultisols profiles located at Lavras county, Minas Gerais state, 
Brazil (Figure 1). All the profiles were located under the native vegetation (Atlantic 
Forest), and the parent material of the Ultisols is the gneiss. 

 
Figure 1. Location, topography, altitude, and sample points of the three Ultisol 
profiles: Typic Rhodudult, Typic Hapludult, and Inceptic Hapludult, in Lavras, Minas 
Gerais state, Brazil. 
 
Samples were collected in a regular grid design (0,2 x 0.2 m) throughout the profiles 
and were air-dried and sieved to 2 mm. Approximately 10 g were analyzed via a 
Bruker® spectrometer model S1 Titan LE, on trace mode, in triplicate, for 60 seconds 
(Weindorf; Chakraborty, 2016).  The spatial analyses of the elemental contents 
obtained by pXRF were conducted via interpolation through the Multilevel B-splines 
(Lee et al., 1997) using the software QGIS 3.16 (QGIS Development Team, 2021).  
 

Results and discussion 
 

All profiles showed high MS values (Table 1) on the surface and lower in-depth. The 
Typic Hapludult and Inceptic Hapludult profiles probably received sediments 
deposition from soils derived from mafic rocks with magnetic minerals on their 
constitution, as maghemite and magnetite (Dearing, 1999) present in upper areas of 
the study area (Curi et al., 2017). The pXRF analyses showed that total Fe contents 
(Figure 2) tended to decrease in-depth. The Typic Rhodudult had the highest MS 
value on the horizons A and AB. Since this profile is located at the upper third of the 
hillslope, its better drainage probably favored more magnetic minerals formation than 
the other profiles increasing its magnetism. Moreover, a gneiss lithologic discontinuity 
from the Typic Rhodudult to the other profiles is possible, modifying its elemental 
composition. 
 
Table 1. Results from magnetic susceptibility of the analyzed profiles. 
Soil Typic Rhodudult  Typic Hapludult  Inceptic Hapludult 
Horizon A AB Bt1 Bt2 BTC  A AB BA Bt1 Bt2  A AB Bt1 Bt2 Bt3 
MS* 7.7 9.9 7.5 5.9 4.6  5.3 4.6 3.9 3.3 3.9  8.5 5.5 3.8 2.9 2.3 



 

 

 

 
*MS= magnetic susceptibility (10-7 m3 kg-1). 
 
In Figure 2, the total elemental contents are higher in the Inceptic Hapludult than the 
Typic Hapludult. Only the K content is higher on the latter profile. In the Typic 
Rhodudult, Al, Si, and K, total contents are higher than the contents of the other 
profiles. More weathered soils generally have high contents of non-mobile elements 
as Al, Ti, and Fe because the mobile elements have already been leached out from 
these soils (Stockmann et al., 2016). Still, the elemental contents depend on the 
dominant soil-forming process and slight variations in the soil parent material. 
Stockmann et al. (2016) and Mancini et al. (2021) used the Ti and Zr total contents 
as parent material tracers, indicating, for example, lithologic discontinuities in some 
profiles. These residual elements here show a uniform distribution in Typic Rhodudult 
and Typic Hapludult, which did not occur with the Inceptic Hapludult, which can 
indicate a parent material variation. Mancini et al. (2021) found a wide variation in the 
gneiss composition when studying a 4.5m Oxisol profile, verifying laminations richer 
in biotite, others in muscovite, in an area near this Ultisols hydrosequence study. 

 

Figure 2. Maps of total elemental distribution obtained with the pXRF aid for the 
profiles: Typic Rhodudult (a), Typic Hapludult (b), and Inceptic Hapludult (c), in 
Lavras municipality, Minas Gerais state, Brazil. 
 

Conclusions 
 
The profiles differed by their color and elemental distribution. Although the soils have 
as parent material the gneiss, the area seems to have a lithologic discontinuity from 
the Typic Rhodudult to the other profiles distinguishing their elemental distribution. 
The Inceptic Hapludult may have a deposition of sediments from upper areas of the 
landscape, which is shown by its elemental contents and magnetic susceptibility 
variation comparing to other horizons. The spatial analyses, mainly with pXRF data, 
demonstrated that even morphologically homogenous horizons of the same profile, 
there might be a wide variation in the distribution of the elements as Fe, Si, and Al. 
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Thematic Session: ADVANCES IN SOIL SENSING

Abstract
Soil  reflectance  spectra  have  a  great  potential  to  be  directly  used  as  auxiliary  tool  for
pedogenesis studies and for soil surveys, classification, and mapping, but not simply as input
for quantitative models. However, there is a lack of studies about spectral pedology using
mid-IR  data.  So,  we  aimed  to  classify  20  soil  profiles  by  integrating  reflectance  and
pedological metrics and evaluate the influence of soil  properties in  this classification.  We
used 20 soil classes (profiles), mid-IR spectra (Nicolet 6700 FTIR), and taxonomic distance
implemented in the OSACA program. A coherent classification of profiles was possible by
combining  spectra  and  pedological  metrics,  since  20  profiles  were  reorganized  into  11
clusters and 30 % of them were individually clustered as follows: Nitisol, 2 Gleysols, Humic
Ferralsol, Rhodic Ferralsol, Acrisol. Combining mid-IR spectra and pedological metric is very
effective for pattern recognition of representative profiles of some Brazilian soil classes.

Introduction

How can Brazil reach an efficient production combined with conservation of natural
resources  without knowing soils? Suitable knowledge of soil  spatial  and temporal
variability inevitably implies in a large amount of fieldwork and sampling necessarily
resulting in large amounts of analyses, waste generation, and high financial costs.
Proximal soil sensing by reflectance spectroscopy is based on obtaining information
by reflected  energy  after  macroscopic  and  microscopic  interactions  between
electromagnetic  radiation  and  soil  components  (organic,  mineral,  and  water)
(Baungardner  et  al.,  1985).  So,  this  technique shows  great  utility  in  pedological
assessments  where soil spectra can be applied on preliminary evaluation of large
areas with higher sampling density, quickly, cost-effectively and without impacting the
environment.  Soil reflectance spectra have a great potential to be directly used as
auxiliary  tool  for  helping  and  optimizing  pedogenesis  studies  and  soil  surveys,
classification, and mapping, but not only and simply as input for predictive models of
soil properties. Soil spectra from visible to shortwave infrared (400 to 2500 nm) have
been  tested  in  pedological  studies  (Demattê  e  Terra,  2014;  Terra  et  al.,  2018).
However,  there  is  still  a  lack  of  researches  about  spectral  pedology  using  mid-
infrared  spectra  (mid-IR:  4000  to 400  cm-1),  which  can  be  efficiently  used  to
distinguish and cluster soil profiles. By only using mid-IR, our aims were to a) classify
20  soil  profiles  by  integrating  reflectance  data  and  pedological  metrics  and  b)
evaluate the influence of weathering and pedogenesis in this resulting classification. 

Methodology



A soil  database with physic-chemical  and mineralogical  analyses was used for it,
where the sampling sites are scattered over four Brazilian States: São Paulo, Minas
Gerais,  Mato  Grosso  do  Sul,  and  Goiás.  Soil  mid-IR  reflectance  spectra  were
obtained by the Nicolet 6700 Fourier-Transform Infrared equipped with Smart Diffuse
Reflectance (1.2 nm spectral  resolution and 64 readings  per spectrum), and they
were log-transformed into absorbance values, baseline corrected, and transformed
by  the  mean-centered  Principal  Component  Analysis  (PCA).  For  clustering  soil
profiles  taking  into  account differences in spectral  behavior  in  depth  comparing
horizon  by  horizon,  we  used  20  soil  classes  (profiles)  from  the  database  with
similarities  and  differences  among  them  mainly  regarding  to  clay  content  and
mineralogy. The taxonomic distance (pedological metric) implemented in the OSACA
(Outil  Statistique  d’Aide  à  la  Cartogénèse  Automatique)  program  (Carré  and
Jacobson, 2009)  was applied as an automatic system for clustering soil profiles by
comparing their properties in depth (horizon by horizon). Similarities between two soil
profiles  are calculated  as  a  mean  distance  between  horizons  of  each  profile
(Equation  1).  This metric  takes in account sequence of horizons in a soil  profile.
Having a profile more horizons than other one, the deepest horizon of the shallowest
profile is used once and again in calculations.

                                                       (1)
Where: Dped is the taxonomic distance (pedological metric) between two soil profiles
A (Sa) and B (Sb), M is the number of horizons of each profile, Dh is the Euclidean
distance (Equation 2) between horizons (h) of each profile.

                                                                                  (2)
Where: V is a vector of F variables (soil properties) describing each horizon.
In OSACA, fitting a profile into a cluster is defined by the shortest taxonomic distance
between a profile and central profile of a cluster, and the optimization of this process
is achieved by changing a profile from a cluster to another in order to reduce the
squared  error.  We performed  two clustering  analyses,  where  firstly  the  following
properties were used as variables:  sand; clay; organic carbon (OC); exchangeable
phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and aluminum (Al3+);
potential acidity (H++Al3+); sum of bases (SB); cation exchange capacity (CEC), clay
activity (CA); base (V%) and aluminum (m%) saturations; and pH in water, important
for soil  management,  survey, and classification.  Secondly, the PCA’s scores from
mid-IR data were tested. Contingency matrices were used to assess the efficiency of
the spectra in performing pattern recognition of soil profiles by comparing the number
of resulting clusters after each clustering.

Results and discussion

According  the IUSS Working Group WRB (2015), the soil classes (acronym of the
Brazilian classes  between parentheses)  selected were: Arenosol (profile 1), Acrisol
(profile  2),  Lixisol  (profile  5),  Nitisol  (profile  14),  Cambisol  (profile  15),  Gleysol



(profiles  17  and  20),  Planosol  (profile  18),  Leptsol  (profile  19),  Haplic  Ferralsol
(profiles 3, 6, and 7), Rhodic Ferralsol (profiles 4, 9, 10, 11, 12, and 13), Xanthic
Ferralsol (profile 8), Humic Ferralsol (profile 16).  For each soil property, the mean
and standard deviation values were: 462 and 305 g kg-1 for sand, 438 and 270 g kg-1

for clay, 8 and 5 g kg-1  for OC, 5 and 13 mg kg-1 for P, 1.3 and 2 mmolc kg-1  for K, 9
and 9 mmolc kg-1 for Ca, 4 and 4 mmolc kg-1 for Mg, 9 and 11 mmolc kg-1 for Al3+, 35
and 20 mmolc kg-1 for H++Al3+, 14 and 14 mmolc kg-1 for SB, 50 and 26 mmolc kg-1 for
CEC, 152 and 106 mmolc kg-1 for CA, 27 and 19% for V%, 43 and 32% for m%, and 5
and 0.6 for pH in water.

Using soil properties, the twenty profiles were divided into 7 clusters (figure 1a). The
profiles 4, 13, 16, and 18 were grouped in the cluster 1 based on higher values of
OC,  H++Al3+, and CEC (distances from 5% to  9%). Ferralsols 7 and 12 (cluster 2 -
distance  of  14%)  were  grouped  because  similarity  in  number  of  profiles,  higher
contents of P, K, Ca, Mg, and SB. Cambisol (15) was separately clustered due to its
clay  particle  distribution  and  lower  values  of  CA.  Ferralsols  3,  9,  and  11  were
grouped in the cluster 4 (distances from 5% to 7%) because intermediate values of
all properties. Profiles 17 and 19 were grouped in the cluster 5 (distance of 15%) due
to reduced number of profiles (2 profiles). Profiles 1, 2, 5, 6, 8, and 20 were grouped
in the cluster 6 (distances from 7% to 21%) based on higher contents of sand and CA
and lower values of OC. The cluster 7 joined the profiles10 and 14 with distance of
10% due to higher values of clay, OC, and H++Al3+.

Figure 1.  Matrix representation of the relative  taxonomic distances (in %) between
soil profiles and center of clusters using soil properties (A) and mid-IR spectra (B).



In Based on mid-IR spectra, 11 clusters were obtained basically based on variations
of reflectance intensity and absorption features of these soil profiles represented by
their PCA’s scores. A better discrimination among soil profiles was possible due to
contributions of mineralogy, weathering and pedogenetic processes brought by the
profiles’ spectral behaviors. The following soil profiles were individually clustered: 2,
11, 14, 16, 17, and 20. Ferralsols 3 and 9 were grouped in the cluster 1 (distance of
13%). Profiles with higher sand content by horizons (1, 5, 6, and 8) were grouped in
the cluster  5 (distance up to  24%). The cluster 9  jointed profiles with  the fewest
number of horizons (distance of 14%).  Profiles 13 and 15 were clustered together
(cluster 10 - distance of 17%) due to similar clay content and lower values of SB and
V% influenced by mineralogy. The cluster 11 grouped Rhodic Ferralsols (4, 10, and
12) and Planosol (18) with ferric characteristics and considerable contents of Al3+, H+

+Al3+, and m% (distances from 10% to 21%).

Conclusions

Combining mid-IR  spectra and  pedological  metric is  very  effective  for  pattern
recognition of representative profiles of some Brazilian soil classes, since soil spectra
bring information  about  particle  size  distribution,  mineralogy,  and  some chemical
properties.  Ferralsols,  Nitisol,  Acrisol,  Lixisol,  Arenosol,  Gleysol,  Cambisol,  and
Leptsol  can  be  correctly  discriminated.  Based  on  our  results,  mid-IR  spectral
behavior of soil profiles can be reliably integrated with conventional properties and
morphological characteristics for a better automated discrimination and clustering of
soil classes. Mid-IR is presented here as a useful auxiliary tool for direct applications
in  pedological  assessments,  particularly,  in  soil  survey  and  classification  and
optimizations of these activities.
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Thematic Session: ADVANCES IN SOIL SENSING 

 

Abstract 

Remote sensing is a key way to identifying surface salinity and its particularities. The 
scenario of this study is Marajó Island, located in the Amazon River mouth. This fluvial-
marine ecosystem has one of the largest areas of salinity in Brazil. The main goal is to 
present the applicability of spectral indices in the recognition of surface salinity using 
Sentinel-2. The work was developed in three main stages: (i) fieldwork for soil sampling; 
(ii) laboratory procedures for obtaining electrical conductivity; and (iii) digital processing 
of Sentinel-2 for obtained the salt plains data. As result, salinity indices are satisfactory 
for recognize salt-affected soils and its particularities. The eastern Marajó Island showed 
a great geodiversity, with potential to increase Holocene landscape evolution and climate 
change projections by its salinity environments.  

 

Introduction 

Salts accumulation on the earth’s surface results from physic-chemical and 
human processes, representing considerable environmental hazard (Gorji et al., 
2017). Remote sensing is a key way to identifying surface salinity and its 
particularities, be analysing spectral signatures and algebra between sensor 
bands (Wu et al., 2018). Marajó Island is the largest fluvial-marine archipelago 
on the planet, with one of the most extensive areas of salt-affected soils in Brazil. 
Saline soils at coastline are result of seawater intrusion, intensive 
evapotranspiration, or improper soil and water management (Paz et al., 2020; 
Wu et al., 2018). The excess of soluble salts (saline soils), the dominance of 
exchangeable sodium in the soil exchange complex (sodic soils), and both 
combination (saline-sodic) can affect several chemic-physical landscape 
processes (Gorji et al., 2017). In this context, the main goal of this work is to 
present the applicability of spectral indices in the recognition of surface salinity in 
Marajó Island, using Sentinel-2 images. The study is justified by necessity of 
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increase knowledge of soil salinity in Brazil, and its particularities in a fluvial-
marine ecosystem.  

 

Methodology 

The study was developed in three main stages: (i) field work for soil sampling and 
in situ observations; (ii) laboratory procedures for obtained the electrical 
conductivity of soil samples; and (iii) digital processing of Sentinel-2A image. In 
the first step, five pedological horizons were obtained according the landscape 
diversity of non-saline areas, apicums and salt plains. The second stage 
consisted in obtained the electrical conductivity of saturated soil past extract (Ec) 
(USDA, 2014). In the last step, the Sentinel-2 image was obtained from 2020 
January; corrected the atmospheric effects by Sen2Cor plugin (Main-Knor, 2017); 
applied the Normalized Difference Salinity Index (NDSI re1) (Wang et al., 2019), 
Intensity Index (Int1) (Fourati et al., 2015), Salinity Index 1 (SI1) (Khan et al., 
2001), Salinity Index red-edge 1 (SI1 re1) (Wang et al., 2019), and Normalized 
Difference Vegetation Index (NDVI) (Tab 1), and obtained the spectral signature 
of each horizon sampled.  

Tab.1: Spectral indices of salt-affected soils 

Index Equation Sentinel-2 equation Reference 
NDSI re1 (red-edge 1 – NIR)/ (red-edge1 + NIR) (B5 – B8A)/(B5+B8A) Wang et al. (2019) 

Int1 (G + R)/2 (B3+B4)/2 Fourati et al. (2015) 

SI1 (G X R) 0.5 (B3 x B4) 0.5 Khan et al. (2001) 

SI1 re1 (B + red-edge1) 0.5 (B3 x B5) 0.5 Wang et al. (2019) 

NDVI (NIR – R) / (NIR + R) (B4 – B8A)/(B4+B8A)  

 

Results and discussion 

The spectral indices showed high concentrations of salts in almost of 59.1 km² of 
the study area, with potential to be applicably in the entire open plains of Marajó 
Island. Were identified considerable diversity of salt land distribution patterns. 
The northern portion reveals tendency to accumulate superficial rainfall with high 
evapotranspiration processes, that causes high salt concentrations at the surface 
and the most tendence to form saline crusts during dry periods. In the context of 
climate change, the sea-level rising has potential to raising water base level of 
Marajó Bay, enhancing the saline accumulation (Fig. 1).  

The southern portion reveals predominance of salt dispersed within the soils, and 
less subjected to waterlogging. The main indicator of salinity in the landscape are 
wide saline plains associated with low-lying halophyte plants, such as Sesuvium 
portulacastrum and palm trees as Copernicia prunifera (Miller) H.E. Moore 
(Arecaceae) (carnaúba). This portion has extensive apicums associated to 
Marajó’s mangrove ecosystem, that made a very fragile landscape in front of 
climate change and sea-level rise (Fig. 1).  

The spectral signatures and the saline indices attained better results where salt 
is concentrated near the surface. The NDVI is an indirect indication of the saline 
concentration (Adj. R² 0.669), by inference of vegetation stress. Higher 
concentrations of salts imply in an environment with greater setbacks for most of 
the plants, revealed by the lower NDVI values (Fig. 2).  



 

 

Fig. 1: Salt-affected soils in the eastern Marajó Island, Brazil 

 

 

Fig. 2: Indices and spectral signature of salt-affected soils 

The salinity indices (NDSI re1, Int1, SI1, and SI1 re1) showed good association 
with the electrical conductivity varying. The better index was SI re1, with Adj. R² 
0.920, followed by SI1 (Adj. R² 0.854), Int1 (Adj. R² 0.852), and NDSI re1 (0.831). 
The spectral signatures showed a reflectance peak at 1610 nm (Sentinel-2, B11) 



 

for most salt-affected soils, such as P2 (Ec 16.2 mS/cm-1) and P3 (Ec 6.10 mS/cm-

1), suggesting a specific signature for salinity in Marajó Island (Fig. 2). The P1 is 
a non-saline soil (Ec 0.09 mS/cm-1), which spectral signature indicate the most 
development vegetation, with reflectance peak between 600 and 900 nm. 

Conclusions 

The saline indices are satisfactory for the spatial distribution analysis of salt-
affected soils in Marajó Island. The electrical conductivity (Ec) was best explained 
by the saline indices SI re1 (R²adj 0.92), SI1 (R²adj 0.85), Int1 (R²adj 0.85), and 
NDSI re1 (R²adj 0.83). NDVI showed R²adj 0.66 with Ec, represented an indirect 
indication of salinity according inference of vegetation stress. The salt-affect soils 
of eastern Marajó Island indicated a great geodiversity, with signs of marine 
incursion, tidal effects, rainfall accumulation, intensive evapotranspiration 
processes, and sea-level rising tendences. The study evidenced the great 
potential of remote sensing in recognize saline areas in Brazil, especially in a 
fluvial-marine ecosystem such as Marajó archipelago.   
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Thematic Session: Advances in soil sensing 

 
Abstract 
The objectives are to delineate soil management zones from soil proximal sensor data, and 
compare soil property values among zones in a 72-ha crop field in southeastern Brazil. 
Apparent electrical conductivity (aEC) and magnetic susceptibility (aMS), and equivalent Th 
(eTh) and U (eU) were measured across the field by a Geonics EM38-MK2 and a Medusa 
MS1200 sensors, respectively. These properties were kriged and used as input for 
delineating three management zones by fuzzy k-means clustering. Soil properties were 
measured at 0-10 cm at 72 sites, and their means were compared among the zones. Soil 
clay, organic C and exchangeable Ca and Mg vary significantly among the zones, according 
to Brown-Forsythe and Games-Howell tests (p=0.05), while pH, available P and 
exchangeable K do not. Zone delineation from proximal sensor data constitutes an efficient 
data-driven approach to separate the field into meaningful parts for soil, irrigation and crop 
management based on soil variation. 
Keywords: Geophysics; Electrical conductivity; Gamma radiometrics; Geostatistics; Precision 
agriculture 

 
Introduction 
Site-specific crop management has been proposed as an alternative to conventional 
cropping that accounts for the within-field variation of soils, relief, crops and other 
factors aiming to increase profitability by increasing productivity, optimizing inputs 
and minimizing negative environmental impacts. This can be accomplished by 
splitting the field into homogeneous zones, so-called management zones, based on 
the variation of soils and/or other factors across the field. Then, each zone is 
managed differently by varying the rates of sowing, fertilizers, amendments, 
pesticides, irrigation, and other inputs, according to the characteristics of the zone. 

However, assessing the soil variation can be costly if soil samples are taken on a grid 
with, say, one sample per hectare. Proximal and remote sensors can efficiently 
provide input soil data for management zone delineation, expediting sampling and 
reducing costs by measuring (usually electromagnetic) soil properties at many 
(hundreds to thousands) sites covering the field in a single survey. These sensors 
have been used in different regions and soil types to delineate management zones 
(BENEDETTO et al., 2013; HAGHVERDI et al., 2015; SCUDIERO et al., 2018; 
ORTUANI et al., 2019; VALLENTIN et al., 2020).  

Thus, the objectives are to: (a) delineate soil management zones from soil proximal 
sensor data; and (b) compare soil property values among zones.  
 
 



 

 

 

 

 
Methodology 
The study was conducted in a 72-ha crop field under no-till crop rotation system and 
central pivot irrigation located in Itaí, São Paulo, southeastern Brazil, with central 
coordinates 23.5854° S and 48.9395° W. Soils in the area are Latossolos (Oxisols, 
Ferralsos). 

To delineate soil management zones, a EM38-MK2 sensor (Geonics, Mississauga, 
Canada) (1-m coil spacing, vertical orientation) dragged on a rubber mat behind a 
pickup truck, and a MS1200 gamma radiometer (Medusa, Groningen, Netherlands) 
mounted on the bull bar of the truck, were used to take 4306 apparent electrical 
conductivity (aEC) and magnetic susceptibility (aMS), and 4896 equivalent thorium 
(eTh) and uranium (eU) measurements, respectively, along 25 parallel lines about 40 
m apart across the field (Figure 1a). The four proximal sensor variables (aEC, aMS, 
eTh and eU) were kriged across the area with 5-m spatial resolution, and the kriged 
maps were used as input to delineate three soil management zones by fuzzy k-
means clustering.  

To compare soil property values among the delineated zones, a regular grid 
comprising one site per hectare (Figure 1a) was derived across the study area, and 
soil samples were taken at 0-10 cm at the 72 sites and analyzed for clay, organic C 
(OC), pH, available P, and exchangeable bases, according to Teixeira et al. (2017). 
Soil property means were compared among soil management zones by Brown-
Forsythe tests (p=0.05), followed by Games-Howell post hoc tests (p=0.05). 
 
Results and discussion 
The spatial variations of aMS and eTh are very similar, and differ from those of aEC 
and especially eU (Figure 1b-e). The aEC, aMS and eTh variograms were best fitted 
by spherical models, while a Gaussian model was used for eU, explaining the 
smoother eU spatial patterns. Variogram ranges were 500, 495, 668 and 443 m for 
aEC, aMS, eTh and eU, respectively. 

The distinct spatial features in the southwest portion of the area, observed in the aEC 
and aMS maps (Figure 1b, c), are due to the presence of a catchment area of a 
spring at the extreme southwest. This constitutes one of the delineated management 
zones (Figure 1f, “Southwest” zone). In comparison, the “North” zone has distinct 
eTh and eU values from the other zones, and the “Southeast” zone differs in aEC, 
aMS, eTh and eU from the other two zones (Figure 1b-e).    

Soil clay, OC and exchangeable Ca and Mg vary significantly among the zones, 
according to Brown-Forsythe tests, with significant differences found between the 
“North” and “Southeast” zones for all of them, and between the “North” and 
“Southwest” zones for clay, according to Games-Howell tests (Table 1). Mean soil 
pH, available P and exchangeable K are not statistically different among zones, but P 
and K have noticeably larger means in the “Southeast” zone, especially against the 
“Southwest” zone, though they vary too much for the differences to be statistically 
significant (Table 1). 

The “North” and “Southwest” zones could be merged based on the similarity of aMS 
and eTh (Figure 1c, d), and of soil properties at 0-10 cm (Table 1). However, the 



 

 

 

 

“Southwest” zone has steeper slopes and higher clay content as it encompasses a 
catchment, while the “North” zone has plain terrain and smaller clay content. Also, 
the “Southwest” zone has wetter soils, due to its relief position, which is evident from 
the aEC map (Figure 1b). Thus, keeping the “Southwest” zone apart from the other 
zones for soil and irrigation management is recommended. 

On the other hand, the northernmost portion of the area has similar aEC, aMS and 
eTh values to the “Southeast” zone (Figure 1b, c, d, f) in contrast to the “North” zone 
where it belongs. It also has higher clay, OC, Ca, Mg and K compared to the rest of 
the “North” zone (not shown). Thus, it could be split from the “North” zone, and 
whether managing it separately is worth the extra effort could be evaluated.  
 
Conclusions 
Proximal soil sensors capture soil variation patterns across the field, providing a large 
amount of data that can be used to delineate soil management zones efficiently. The 
properties the sensors measure (aEC, aMS, eTH and eU) are affected by the soil 
constituents and by relief and water dynamics, and thus, they indirectly carry 
information on soil formation factors and processes, which is encapsulated in the 
delineated zones, reducing the need for extra data. 

In turn, the proposed delineated zones need to be judged from: a soil perspective 
with the aid of field soil samples besides proximal sensor data; a terrain perspective, 
if the area has variable, irregular terrain, which is the case in the “Southwest” zone; 
and from an agronomic and logistic perspective, pondering soil, irrigation, and crop 
management. As such, the results presented in the study are open for discussion, 
field testing and decision making, for which the farmer needs to be involved.  
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Table 1. Variation of soil properties among management zones. Equal letters indicate 
equal means among zones, according to Games-Howell tests at p=0.05.  

Property 
N Mean Stdev   N Mean Stdev   N Mean Stdev 

North   Southeast   Southwest 

Clay (g kg-1) 33 392b 49 
 

27 430a 38 
 

12 433a 21 
OC (g kg-1) 33 14b 1 

 
27 16a 1 

 
12 15ab 2 

pH 33 6.6a 0.3 
 

27 6.6a 0.3 
 

12 6.4a 0.4 
P (mg dm-3) 33 141a 83 

 
27 151a 63 

 
12 127a 55 

Ca (cmolc dm-3) 33 6.0b 0.8 
 

27 6.7a 0.8 
 

12 6.4ab 1.0 
Mg (cmolc dm-3) 33 1.8b 0.2 

 
27 2.1a 0.3 

 
12 1.9ab 0.3 

K (cmolc dm-3) 33 451a 880   27 583a 1094   12 197a 52 
N, number of observations; Stdev, standard deviation. 

 

(a)  (b)  (c)  

(d)  (e)  (f)  
Figure 1. (a) Proximal sensor survey lines (black lines) and soil sampling sites (red 
dots); (b-e) Kriged maps of aEC (mS m-1), aMS (ppt), eTh (ppm) and eU (ppm), 
respectively; and (f) Delineated soil management zones. Coordinates are in UTM 
zone 22S. 
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Thematic Session: Advances in Soil Sensing 

 
Abstract 
Usually, Soil Color is visually estimated in the field with the Munsell Soil Color Charts. Visual 
definitions are subject to uncontrolled effects that can change results. Our work aimed to 
evaluate the influence of granulometry in the determination of soil color using the sensor Nix 
Pro 2. Eighteen soil samples in different granulometries (2 mm, 0.297 mm, 0.149 mm and 
0.074 mm) were used and analyzed with Nix Pro 2. The RGB values obtained in the analysis 
with the sensor were converted to Munsell standard through an R software script. The 
particle size changes the spectral behavior of soil samples for frequencies in the visible 
region and the Nix Pro 2 color sensor can optimize soil color determination. 
Keywords: Soil sensing, Tropical soil, Munsell Soil Color Charts, RGB 

 

Introduction 

 
Soil Color is used to soil identification and classification, for estimate various soil 
properties such as the presence of iron, organic matter, drainage conditions and 
texture. Spectral measuring instruments make it possible to determine colors 
accurately and there are many color sensors. The Nix Pro 2 is a low-cost, proximal, 
active color sensor that emits a light beam with a spectrum in the visible region (“Nix 
Sensor”, 2021). It’s necessary to improve techniques using sensors for color 
determination in tropical soils and sample preparation. The objective of this work was 
to evaluate the influence of sample particle size in the determination of soil color 
using the Nix Pro 2 sensor. 
 

Methodology 

 
Eighteen samples of soil profiles collected in the states of Goiás and Tocantins were 
air-dried, ground in an agate mortar and sieved in a stainless steel sieve with an 
opening of 2 mm, 0.297 mm, 0.149 mm and 0.074 mm. 9 g of each sample were put 
in a bottle and the surface was covered with plastic PVC food film. The sensor 
settings were made so that all samples were analyzed under the same conditions of 
light (D50), opening angle (10º) and humidity with 15 repetitions of readings. 
 



 

 

 

 

The RGB values obtained by Nix Pro 2 were used to calculate the hue, value and 
chroma. And from these three variables were possible to calculate the correspondent 
variable in Munsell color system. This analyses were made through the R software 
(R CORE TEAM, 2020) and the packages: aqp (BEAUDETTE; ROUDIER; O’GEEN, 
2013) , dplyr (WICKHAM et al., 2021), modest (PALLMANN, 2017), patchwork 
(PEDERSEN, 2020), readr (WICKHAM; HESTER; FRANCOIS, 2020), WriteXLS 
(SCHWARTZ, 2021). 
 

Results and discussion 

 
The influence of soil granulometry on color is related to the specific surface of the soil 
components and the spectral response. The uniformity of the analyzed material 
influences the performance of the sensors. Sifting the soil is an alternative to 
homogenize. However, in the breaking process, quartz grains from sand particles 
and other soil minerals will have their granulometry reduced, which may change the 
perception of colors. Studies indicate that in sandy-textured soils, small variations in 
organic matter can lead to large variations in color (DEMATTÊ et al., 2011; 
MORITSUKA et al., 2014).  
 

When converting to the Munsell system, there were small variations in value and 
chroma for practically all soil samples in the four particle sizes used, but 11 of the 18 
samples showed equal results in the 2 mm and 0.297 mm particle sizes. Five soil 
samples (1, 5, 7, 16 and 17) had a variation in hue, which represents an important 
change in color nomenclature (Table 1). In general, the 2 mm and 0.297 mm particle 
sizes presented a performance similar to the readings taken in the field. In the field 
classification, the samples were grouped into ten classes up to the second 
categorical level, as follows: ARGISSOLO AMARELO (17,18); ARGISSOLO 
VERMELHO (8); CAMBISSOLO HÁPLICO (4,9,14,15); LATOSSOLO AMARELO 
(6,7); LATOSSOLO VERMELHO (11); NEOSSOLO QUARTZARÊNICO (5); 
NITOSSOLO VERMELHO (10); ORGANOSSOLO HÁPLICO (12, 13); 
PLINTOSSOLO HÁPLICO (1); PLINTOSSOLO PÉTRICO (2,3,16) (SANTOS et al., 
2018). 
 

Red soils have 10R and 2.5YR hues, red-yellow soils have 5YR hues and yellow 
soils have 7.5YR and 10YR hues (SANTOS et al., 2018). Of the seven soil samples 
classified with color in the second categorical level, only two soil samples did not 
match with the determination made in the field with Munsell Soil Color Charts 
(MSCC) when analyzed using a Nix Pro 2 color sensor. Sample 8 (ARGISSOLO 
VERMELHO) was classified as red-yellow, 5YR hue regardless of particle size. 
Sample 7 (LATOSSOLO AMARELO) was classified as yellow-red (hue 7.5YR) in the 
particle size 0.074 mm and red-yellow (hue 5YR) for the other particle sizes. 
 

 

 



 

 

 

 
Table 1: Colors of soil samples in Munsell Soil Color Charts (MSCC) in different particle sizes 

Soil mm MSCC* Color name Soil mm MSCC* Color name 

1 

2 2.5YR 6/4 Light yellowish brown 

10 

2 2.5YR 3/4 Dark olive brown 

0,297 2.5YR 6/4 Light yellowish brown 0,297 2.5YR 4/5 Olive brown 

0,149 5YR 6/5 Light reddish brown 0,149 2.5YR 4/6 Olive brown 

0,074 5YR 6/5 Light reddish brown 0,074 2.5YR 4/6 Olive brown 

2 

2 2.5YR 5/6 Light olive brown 

11 

2 2.5YR 4/5 Olive brown 

0,297 2.5YR 5/6 Light olive brown 0,297 2.5YR 4/5 Olive brown 

0,149 2.5YR 6/6 Olive yellow 0,149 2.5YR 4/5 Olive brown 

0,074 2.5YR 5/7 Light olive brown 0,074 2.5YR 4/5 Olive brown 

3 

2 5YR 5/6 Yellowish red 

12 

2 5YR 3/1 Very dark gray 

0,297 5YR 5/5 Reddish brown 0,297 5YR 3/1 Very dark gray 

0,149 5YR 5/5 Reddish brown 0,149 5YR 4/2 Dark reddish gray 

0,074 5YR 6/5 Light reddish brown 0,074 5YR 4/2 Dark reddish gray 

4 

2 7.5YR 6/4 Light brown 

13 

2 5YR 3/1 Very dark gray 

0,297 7.5YR 6/4 Light brown 0,297 5YR 3/2 Dark reddish brown 

0,149 7.5YR 6/4 Light brown 0,149 5YR 4/2 Dark reddish gray 

0,074 7.5YR 7/4 Pink 0,074 5YR 5/2 Reddish gray 

5 

2 5YR 5/4 Reddish brown  

14 

2 5YR 4/5 Reddish brown 

0,297 7.5YR 6/4 Light brown 0,297 5YR 4/5 Reddish brown 

0,149 7.5YR 7/4 Pink 0,149 5YR 5/5 Reddish brown 

0,074 7.5YR 7/3 Pink 0,074 5YR 5/5 Reddish brown 

6 

2 7.5YR 5/3 Brown 

15 

2 5YR 4/5 Reddish brown 

0,297 7.5YR 5/3 Brown 0,297 5YR 4/5 Reddish brown 

0,149 7.5YR 6/4 Light brown 0,149 5YR 5/5 Reddish brown 

0,074 7.5YR 6/3 Light brown 0,074 5YR 5/5 Reddish brown 

7 

2 5YR 6/5 Light reddish brown 

16 

2 7.5YR 6/4 Light brown 

0,297 5YR 5/5 Reddish brown 0,297 5YR 6/4 Light reddish brown 

0,149 5YR 6/5 Light reddish brown 0,149 5YR 6/4 Light reddish brown 

0,074 7.5YR 6/5 Light brown 0,074 5YR 6/4 Light reddish brown 

8 

2 5YR 4/4 Reddish brown  

17 

2 7.5YR 5/4 Brown 

0,297 5YR 5/5 Reddish brown 0,297 7.5YR 5/5 Brown 

0,149 5YR 5/5 Reddish brown 0,149 10YR 6/5 Light yellowish brown 

0,074 5YR 5/5 Reddish brown 0,074 10YR 6/4 Light yellowish brown 

9 

2 7.5YR 7/3 Pink 

18 

2 7.5YR 5/4 Brown 

0,297 7.5YR 7/3 Pink 0,297 7.5YR 5/4 Brown 

0,149 7.5YR 7/3 Pink 0,149 7.5YR 6/4 Light brown 

0,074 7.5YR 7/3 Pink 0,074 7.5YR 6/4 Light brown 

 

Conclusions 

 

The particle size changes the spectral behavior of soil samples for frequencies in the 
visible region. The 2mm and 0.297mm grain sizes performed similarly to field 
readings. The Nix Pro 2 color sensor can optimize soil color determination, however 



 

 

 

 

analytical procedures require a careful methodology to ensure reproducibility and 
repeatability. 
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Thematic Session: Soil Sensing 

 
 
Abstract 
The importance of evaluating the level of carbon in soils affects ecological and agricultural 
decisions. In addition, soil sensing techniques are very useful and are allowing a revolution in 
agriculture and environmental management, providing to decision makers important 
information. To demonstrate the usefulness of soil sensing technique applied to a mapping of 
nutrients in a determinate area, the objective of this study was to determine carbon content 
and distribution, comparing two different interpolation algorithms to perform geoprocessing 
mapping of an ice-free area in the Antarctica. We tested two different algorithms mapping 
processes. Both algorithms (IDW and Kernel) did confirm that carbon is concentrated at the 
northern part of the ice-free area, but also can be founded at the eastern part. This levels of 
carbon concentration are evidences of nutrient contribution that bird colonies perform to soil 
nutrient, mainly to the surface soil layer as presented in the results.   
 
Keywords: climate change; environmental management; geoprocessing. 

 
 

Introduction 
 
The importance of carbon level in soils has its bulwarks on the ecological and 
agricultural point of view (Bhattacharyya et al., 2015). In addition, soil sensing 
techniques are very useful to agricultural and environmental management, providing 
important information about the projects sites peculiarities to decision makers.  
 
Using soil sensing as a technique applied in pedometric and pedology science, is 
useful and cheaper in several situations. Nowadays it can be used in a well-
developed and perfectly controlled agronomic projects in the tropics, e.g. agriculture 
4.0 or precision agriculture. By the other hand, can be applied to studies or research’ 
missions on extreme environments where time and weather are not predictable and 
may change in seconds, like both Arctic and Antarctic polar environments.  
 
The latter environment is well researched by the Terrantar (scientific group part of the 
National Institute of Science and Technology – INCT/Federal University of Viçosa - 
UFV) regarding to pedology and soil classification. To demonstrate the usefulness of 
soil sensing technique applied to a mapping of nutrients in a determinate area, the 
objective of this study was to determine carbon content and distribution, comparing 
two different interpolation algorithms to perform geoprocessing carbon contend 
mapping in an ice-free area in the Antarctica.  
 



 

 

 

 

Methodology 
 
Study area 
The Stansbury peninsula (62°15 S 58°59 W) is located in the northern part of Nelson 
Island, part of the South Shetland Islands, with a total area of 165 km², and only 5% 
of ice-free areas (Rodrigues et al. 2020). The sub-Antarctic maritime climate 
classification, according to Köppen, includes strong winds, high weather variability, 
and relatively mild temperatures varying from average annual air temperature of -2.2 
° C and the average summer air temperature slightly greater than 0 ° C (Ferron et al. 
2004). Precipitation varies from 350 and 500 mm per year with rainfalls during 
summer. 
 
Sample Physics and Chemic variables 
We used 33 sampling points across the ice-free area collecting soil samples in the 
superficial soil layer (0 to 5 cm depth). Soil texture was determined by dispersion in 
distilled water, sieved and weighted to separate the coarse and fine sand fractions, 
followed by sedimentation to determine the silt and clay fractions (Gee and Bauder, 
1986). The chemical analysis was performed by routine process to determine the 
main soil variables (pH2O, pKCl, Ca, Mg, K, Na, P, Al, Al+H, SB, t, T, V, m, Isna, C 
and Prem), in the Soil Fertility Laboratory of the University of Viçosa – UFV. The 
specific attribute that was object of this study, total organic carbon (TOC) content, 
was estimated after the determination of organic carbon using Walkley Black adapted 
method, without heating (Bhattacharyya et al., 2015).  
 
Exploratory Statistical and Geospacial analysis 
  
Using the results obtained by the physical and chemical analysis performed to the 
soil samples, we performed a descriptive and experimental statistical analysis and a 
statistically correlation through Pearson’s Matrix among the attributes. The attributes 
that show correlations with carbon have been discussed. We used all values in a 
dataset converted to points georeferenced to perform an interpolation test for TOC 
using Geostatistical Analyst Tools of the ArcGIS 10.3 software. We tested two 
different algorithms mapping processes: Inverse distance weighted (IDW) 
interpolation; and Kernel Interpolation. Both these maps will be used to discuss 
concentration of TOC in the soil superficial layer across the ice-free area. 
 
 
Results and discussion 
 
At the surface layer, soils presented textural class mostly Sandy loam, with a 
maximum clay content of 25%, and an average contend of 16,33%. The chemical 
characteristics suggest an incipient process of soil formation, a general eutrophic 
character and high bases saturation (Vmean = 85,24%). 
 
The soil attributes studied of the ice-free area, show that TOC in the according to 
Pearson’s correlation matrix (Figure 1) had positive correlation (in blue circles) with 
coordinate y (metric - UTM), phosphorous (Pmean = 144,10 mg.dm-³ / Pmedian = 78,30 



 

 

 

 

mg.dm-³) and modest correlation with potential acidity (H+Almean = 4,91 cmolc.dm-³). 
In the other hand, TOC presented negative correlation (in red circles) with pH2O and 
base saturation (V), and also a discrete negative correlation with Calcium (Ca). 
 

 
Figure 1. Person’s correlation matrix of all variables of the 33 sampling points. Red 
indicates negative correlation, blue positive correlation and white no correlation. 
Circle radius determine magnitude of correlation (From 1 to -1). 
 
 

 
Figure 2. Comparison of maps produced by the two different interpolation algorithms 
IDW and Kernel, of the ice-free area in Nelson Island, Antarctica. 
 
 
The positive correlation with the metric attribute “coordinate Y” (projection used was 
Universal Transversa of Mercator – UTM 21S) reveals the gradient that latitude is 
producing for TOC contend in the soil surface layers around the ice-free area. The 



 

 

 

 

most at north of the peninsula Stansbury you may go, more soil carbon there you will 
find.   
 
The detached correlation indicated by Persons Matrix over the position in the 
environment discussed in this brief abstract can be confirmed when performing the 
mapping process with interpolation algorithms as presented in Figure 2. Both 
algorithms (IDW and Kernel) did confirm that carbon is concentrated at the northern 
part of the ice-free area, but also can be founded at the eastern part. This levels of 
carbon concentration are evidences of nutrient contribution that bird colonies perform 
to soil nutrient, mainly to the surface soil layer as presented.   
  
 
Conclusions 
 
There is an expressive concentration of soil organic carbon at two different regions of 
the ice-free area, with predominance to the northwest region followed by the east 
side, both next to the sea. These areas can be distinguished by the rest of the ice-
free area, once the latter lacks on wild life presence. Both areas where TOC was 
higher demonstrate in numbers the pronounced difference in the maps produced by 
both algorithms. In addition, comparing which differences were observed among 
them, IDW had higher sensibility and detached more pronouncedly the northwest 
region to the eastern region, in comparison to Kernel.  
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Thematic Session: Advances in soil sensing 
 
Abstract 
Mapping the salinization in irrigated cropland is a challenging practice. As an alternative, data 
from proximal and remote sensors have been implemented together via datafusion and 
machine learning algorithms. The present work was carried out on a farm with 11 ha and used 
data from the proximal sensor EM38-MK2 associated with radar C-band data obtained by the 
Sentinel1 satellite. The salinization classes were created from electrical conductivity data 
measured at 35 points using a 50 x 50 m sampling grid and at three depths: 0 – 10, 10 – 30, 
and 30 – 50 cm using conventional laboratory approach. The accuracy values of the class 
prediction models presented values between 0.66 and 0.74 and Kappa values between 0.43 
and 0.59 using Random Forest. The salinization decreased in layers 0 - 10 and 10 - 30 cm 
due to implementing a surface drainage system but the depth 30 - 50 cm had the highest 
occurrence of Salic classes, with a potentially harmful effect on the roots. 
 

Introduction 
 
The salinized regions in high-temperature areas occur via water evaporation from the 
soil, transpiration for vegetables and the carry-over of salts that settle on the surface. 
Some agricultural techniques have been proposed to mitigate these effects, such as 
using water with lower electrical conductivity values and applying drainage systems to 
remove salts. However, methods to monitor the occurrence of salinization after the 
application of mitigating activities are challenging, as identifying the occurrence of soil 
salinization requires a high number of soil samples for laboratory analysis through the 
analysis of electrical conductivity in saturated paste this being a financially costly 
method that does not allow covering large areas. 
Proximal sensors have been proposed as an alternative to monitoring areas where 
salinization occurs. Apparent electrical conductivity and apparent magnetic 
susceptibility data have been reported as potential attributes that allow to identify and 
map salinization advance or retreat since these sensor attributes are closely related to 
clay content, moisture, cation exchange capacity, and pH (LOPES; MONTENEGRO, 
2019). As an aid to mapping the occurrence of salinization in irrigated plantation areas, 
it is also possible to combine data from proximal sensors with other data sources, such 
as radar data obtained by satellites (HUANG; PROCHAZKA; TRIANTAFILIS, 2016) 
and which are freely available for use. 
Therefore, the objective of the work was to spatialize the occurrence of soil salinization 
from the predictive mapping of the salinization classes reflected by the electrical 
conductivity measured in the laboratory as a function of proximal and remote sensor 
data via machine learning algorithm Random Forest. 
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Methodology 
 
The study was conducted on a family farm at Baixo Açu irrigated perimeter and has 
approximately 11 ha. It is in northeastern Brazil in the region of Alto do Rodrigues – 
RN (Figure 2). The region's climate is Aw via Köppen-Geiger and has a rainfall regime 
with an average annual occurrence of 400 mm and an average annual maximum 
temperature of 34°C. Due to its semiarid conditions, the area is subject to natural soil 
salinization processes that have been increased by irrigated crop production.  
The EM38-MK2 (Geonics Limited, Mississauga, Canada) was used for continuous 
aEC and aMS readings (N=5,168 points) on zig-zag footstep tracks in "1 m" (aEC and 
aMS 1 m) and "0. 5 m" (aEC and aMS 0.5 m) coil separation mode on vertical 
orientation. These data were spatially characterized using semivariogram adjustments 
and then interpolated by ordinary kriging with 10 m resolution. One thousand five 
hundred fifty-one points or 30% of the original dataset were intended to validate the 
four maps produced (Figure 2). 
The two vertical-vertical and vertical-horizontal polarizations present in the C-band of 
the Sentinel-1 satellite were selected (Figure 1. h. and i.). 
For soil salinity from laboratory analysis, soil core samples were collected in a 35 points 
uniform grid (50 x 50 m; Figure 1), at 0 – 10, 10 – 30, and 30 – 50 cm depth, and the 
samples were analyzed using the method of the electrical conductivity measured in the 
saturated paste (EClab) as described in Embrapa's methods manual (TEIXEIRA et al., 
2017). In addition, the pH data at the 35 points were also measured, and then these 
were spatialized using the inverse square distance method. 
The salinity data for the three depths were classified according to their degree of 
salinization using the limits defined for the characteristics "Not saline" (EClab < 4 dS m-

1), "Saline" (4 dS m-1 < EClab < 7 dS m-1), and "Salic" (7 dS m-1 < EClab) using the limits 
defined in the Brazilian Soil Classification System (SANTOS et al., 2018). 
The set of covariates comprises four maps of proximal sensors stacked with the two 
radar polarized band maps and the three pH maps, totaling nine predictor covariates. 
EClab data were modeled and mapped from the model's fit for each salinity class by 
depth using the Random Forest classifier present in the caret package in the R 
software and will be evaluated for accuracy using the kappa index and leaving one out 
cross-validation. 
 
Results and discussion 
 
The aEC and aMS maps showed higher values in the central locations with a tendency 
to grow to the east, agreeing with the direction of drainage (Figure 1; a., b.). The pH 
maps show high values (> 7) for the entire study area, reinforcing the presence of salts 
in the soil (Figure 1; e., f., g.). The radar C-band also showed higher values in the west 
and northwest regions of the study area, agreeing with the drainage orientation (Figure 
1; h., i.). 
The aEC and aMS maps showed external validation errors less than 80 mS/m and 0.2 
ppt, respectively. The pH covariates for all depths were the most important in all 
salinization Random Forest models (Table 1). While the 1 m aMS was the second most 
important for the 10 – 30 and 30 – 50 cm salinization models considering the data from 



 

 

 

 

 

proximal sensors. The 0 – 10 cm salinization model did not show high significance 
between remote and proximal sensor data. Accuracy values for all models were around 
0.7, while kappa values were close to 0.5 (Table 1). 
The depth salinity map (Figure 3) shows a higher concentration of the "Not saline" 
class in the center and northeast of the maps, in agreement with the behavior of the 
aEC maps shown in Figure 2. The occurrence of salinization shows a decrease as it 
approaches the surface due to the existence of drainage channels built to drain the 
water used, represented in figure 3 in blue lines. The 30 - 50 cm map has a higher 
occurrence of the "Salic" class, demonstrating that it is a layer with toxic effects for 
some crops where the drainage activity may not have been enough to cannot attenuate 
the effects of salinization. 
 
Conclusions 
 
The data from proximal electromagnetic sensors combined with radar data obtained 
by remote sensors allowed to spatialize the phenomenon of salinization in an irrigated 
crop area with good accuracy via adjustments to prediction models using the Random 
Forest algorithm. 
The pH data measured in the laboratory was fundamental for the construction of 
predictive models of salinization. 
Data from remote and proximal sensors proved to be essential tools for monitoring and 
mapping the effects of salinization on the soil.   
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Figure 1: a. aEC 1 m; b. aEC 0.5 m; c. aMS 1 m; d. aMS 0.5 m; e. pH 0-10 cm; f. pH 
10-30 cm; g. pH 30-50 cm; h. C-band vertical-vertical Sentinel-1; C-band vertical-
horizontal Sentinel-1. 



 

 

 

 

 

 
Figure 2: Location map of the study area and the sampling design. 
 

 
Figure 3: Spatialized occurrence of soil salinization in depth. A) 0 – 10 cm in depth; B) 
10 – 30 cm in depth; C) 30 – 50 cm deep. 
 
Table 1: Ranking of the importance of covariates in the Random Forest model and the 
accuracy and kappa values for each layer. 

Salinity 0 - 10 cm importance Salinity 10 - 30 cm importance Salinity 30 - 50 cm importance 

pH 0 – 10 cm 100 pH 0 – 10 cm 100 pH 30 – 50 cm 100 
B2 10.943 pH 10 – 30 cm 62.58 pH 0 – 10 cm 57.38 

pH 10 – 30 cm 9.17 aMS 1 m 48.3 aMS 1 m 52.05 
aMS 0.5 m 5.27 aEC 0.5 m 44.64 B1 27.35 
aMS 1 m 4.998 pH 30 – 50 cm 43.51 aEC 0.5 m 25.41 

aEC 0.5 m 3.835 aEC 1 m 32.86 pH 10 – 30 cm 19.91 
pH 30 – 50 cm 3.485 B2 30.38 aEC 1 m 13.13 

aEC 1 m 3.028 aMS 0.5 m 20.16 aMS 0.5 m 12.02 
B1 0 B1 0 B2 0 

      

 Salinity 0 - 10 cm Salinity 10 - 30 cm Salinity 30 - 50 cm 

Accuracy 0.74 0.71 0.66 
Kappa 0.59 0.52 0.43 
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Thematic Session: Advances in soil sensing 

 
Abstract 

The Ipojuca river watershed carries several environmental impact activities that can 
contribute to soil and water contamination by potentially toxic elements (PTEs). 
Monitoring PTEs concentrations is important for controlling transfer processes to 
water bodies, but traditional analytical methods present several limitations. Thus, the 
aim of this work was to create calibration models based on near-infrared (NIR) 
spectroscopy for PTEs prediction in soil and sediments from Ipojuca river watershed. 
It were collected 101 soil and sediments samples, which had its spectra measured at 
the range of 1000 - 2500 nm. Optical emission spectrometry was carried out for 
measuring 24 PTEs concentrations. Three sample sets were subdivided and models 
were generated for each one: I. All samples; II. Channel banks III. Bedload 
sediments. Reasonable results were obtained, strengthening the idea of infrared 
spectroscopy as a viable tool for predicting the concentrations of several potentially 
toxic elements. 
 
Keywords: Spectrometry; pollution; proximal sensing; watershed management. 
 

Introduction 
 
In Ipojuca river watershed there are several economic activities presenting high 
potential environmental impact (Barros et al., 2013), such as intensive agriculture, 
lack of basic sanitation in urban areas (Sobral et al., 2016), and also Suape port 
industrial complex (Muniz et al., 2005). The presence of such activities raises 
concerns regarding the environmental quality within this watershed, which can be 
affected due to the input of pollutants. 
Potentially toxic elements (PTEs) are those which present a relative impact in human 
health and environmental quality. Common examples of PTEs are heavy metals and 
rare earth elements (Liu et al., 2021). The contamination of these elements in soil 
pose threat to human health (Shaheen et al., 2020), and the association of PTEs with 
sediments is known to occur in processes of transference from soil to water 
environments (Usman et al., 2021), leading to environmental, social and economic 
issues (Samiee et al., 2019). PTEs concentrations in bed sediments can be used as 
indicators of contamination (Silva et al., 2017), and can also provide geochemical 



 

 

 

 

and pedogenetic information when combined with soil data (Fernandes et al., 2018; 
Bantan et al., 2020). 
The analysis of PTEs concentrations is a basic step on monitoring the presence of 
these elements in the environment. However, the traditional analytical methods for 
determining PTEs concentrations are mainly expensive, destructive, time-consuming, 
and use hazardous reagents (Cozzolino et al., 2016). Near-infrared (NIR) 
spectroscopy is an alternative method for predicting several elements concentrations 
using chemometric calibration models (Camargo et al., 2018; Zhang et al., 2019). 
Thus, the aim of this work was to test near-infrared spectroscopy as an alternative 
method for prediction of several PTEs in soil and bed sediments samples from 
Ipojuca river watershed. 
 
Methodology 
 
The study area comprises the Ipojuca river watershed (3400km²) which is completely 
inserted in Pernambuco state, with its main water course extending for 320 km from 
upstream semiarid to downstream Atlantic forest and coastal outlet. It was collected 
101 soil and bed sediments samples distributed in different land uses, in order to 
represent the geological and pedological diversity within the area: Caatinga drylands 
savannah (n=12), sugarcane crops (n=15), channel banks (n=31), unpaved roads 
(n=13), bed sediments (n=25), corn crops (n=2), and pastures (n=3). 
All samples were air-dried and sieved in 2 mm mesh sieves for NIR spectroscopy 
analysis, and a fraction of each sample was separated and sieved in 38 μm mesh 
sieves for total digestion (10 ml HF, 10 ml HNO3, 6 ml HClO4 and 5 ml HCl) and 
posterior analysis in inductively coupled plasma optical emission spectrometry, for 
obtaining Al, Ba, Be, Co, Cr, Fe, Mn, Mo, Ni, Pb, Sn, Sr, Ti, V, Zn, Ce, Gd, La, Nd, 
Pr, Sc, Sm, Y, and Th concentrations. Certified sample SRM 2710a Montana I soil 
(NIST, 2002) was used to ensure the analytical quality. 
The spectra of the samples were measured in 1000 – 2500 nm range using a FT-
IR/NIR Spectrometer (Frontier/PerkinElmer) coupled with a Reflectance Accessory, 
with 2 nm resolution at a 0.5 nm window size and 32 accumulations for each sample. 
PLS models for concentration prediction were built for each element using raw 
spectral data and also Savitzky-Golay and Standard Normal Variate preprocessings. 
The models were built using three different sample sets: all samples, channel banks 
and bed sediments. Calibration and cross-validation steps were evaluated through 
determination coefficient (R²), root mean square error (RMSE) and bias. Also, the 
elliptical joint confidence region (EJCR) test was used in calibration to assess the 
occurrence of systematic errors in the models. 
 
Results and discussion 
 
The elements average concentrations decreased in the following order (mg kg-1): Al 
(91,159.5), Fe (30,627.77), Ti (4,662.93), Ba (924.39), Mn (505.64), Sr (196.83), Ce 
(131.8), Zn (62.53), La (58.4), V (51.21), Pb (48.5), Cr (33.78), Th (30.49), Nd 
(30.25), Ni (14.81), Y (14.77), Pr (11.44), Sm (7.62), Co (6.83), Sn (6.48), Sc (5.94), 
Gd (5.6), Mo (2.15), Be (2.02). 



 

 

 

 

The models which obtained the best results (higher R², lower RMSE and bias) and 
were also evaluated in EJCR test (has no systematic errors in calibration step) were 
marked in bold at Table 1. 
 
Table 1. R² values for cross-validation step (R²cv) 

Elements 
All samples (n=101) Channel banks (n=31) Bed sediments (n=25) 

RD SG SNV RD SG SNV RD SG SNV 

Al 0.87 0.89 0.87 0.89 0.89 0.88 0.81 0.85 0.90 

Ba 0.58 0.57 0.51 0.51 0.56 0.58 0.43 0.28 0.07 

Be 0.59 0.52 0.57 0.35 0.51 0.52 0.62 0.55 0.66 

Ce -0.04 0.18 0.02 0.11 0.30 0.20 -0.38 -0.02 0.02 

Co 0.51 0.56 0.42 0.21 0.28 0.55 0.19 -0.19 -0.04 

Cr 0.41 0.52 0.46 0.07 0.23 0.18 0.21 0.21 -0.24 

Fe 0.84 0.85 0.83 0.75 0.68 0.72 0.83 0.81 0.83 

Gd 0.37 0.43 0.49 0.53 0.58 0.74 0.28 0.43 0.50 

La 0.27 0.25 0.19 0.16 0.35 0.51 -0.46 0.03 -0.11 

Mn 0.05 0.22 0.16 0.22 -0.06 0.38 0.13 0.05 -0.11 

Mo 0.77 0.80 0.79 0.74 0.79 0.74 0.80 0.61 0.68 

Nd 0.17 0.15 -0.01 0.26 0.32 0.53 0.15 0.28 0.29 

Ni 0.52 0.58 0.55 -0.03 0.41 0.37 0.07 -0.04 -0.10 

Pb -0.11 -0.08 -0.18 -0.19 -0.08 -0.47 0.27 0.12 0.32 

Pr 0.20 0.16 0.08 0.20 0.38 0.30 -0.68 -0.19 -0.11 

Sc 0.77 0.78 0.73 0.68 0.61 0.70 0.56 0.65 0.64 

Sm 0.16 0.23 0.22 0.21 0.26 0.30 -0.48 0.28 0.30 

Sn 0.31 0.50 0.40 0.06 0.18 -0.43 0.04 -0.03 -0.05 

Sr 0.30 0.53 0.26 0.42 0.34 0.18 0.21 0.31 0.37 

Th 0.13 0.04 -0.26 -0.04 0.05 -0.03 0.04 0.10 -0.42 

Ti 0.88 0.90 0.91 0.88 0.87 0.80 0.86 0.89 0.89 

V 0.79 0.82 0.80 0.72 0.78 0.81 0.61 0.70 0.71 

Y 0.56 0.61 0.59 0.59 0.63 0.79 0.44 0.54 0.58 

Zn 0.36 0.16 -0.06 0.24 0.32 0.20 0.06 -0.26 -0.67 

RD Raw data, SG Savitzky-Golay, SNV Standard Normal Variate 

 

Considering the models that were validated in calibration step and also kept a 
R²>0.80 in cross-validation step, it is possible to highlight: for all samples, Ti and V 
using SG; for channel banks, Al using raw data, SG and SNV and Ti using raw data 
and SG; for bed sediments, Al, Fe and Ti using raw data, SG and SNV and Mo using 
raw data. Al, Fe and Ti are the elements with higher concentrations in the samples, 
and have also presented good or reasonable result in the models for all three sample 
sets. It is possible that high concentrations of the elements and the performance of 
the models are correlated. The good result of Mo in bed sediments set using raw 
spectral data is possibly explained by the adsorption correlation of Fe-minerals and 
chemical species of Mo in anoxic sediments (Xu et al., 2006), since the average 
concentration of the element is low (2.15 mg kg-1). 
 
Conclusions 
 
It is possible to build viable calibration models for prediction of potentially toxic 
elements concentrations in soil and bed sediments from Ipojuca river watershed. 
Overall, the results support the idea of NIR spectroscopy as a viable alternative 
method for prediction of chemical elements in soil and bed sediments in general.
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Abstract 

 

The present work aimed at monitoring soil moisture through geotechnologies, mainly 

through active remote sensing, by obtaining undeformed soil samples in different 

locations in the Federal District in order to analyze and understand the relationships 

between soil moisture and radar (Sentinel-1) images from each location.  

Keywords: Pedology, Remote Sensing, Sentinel-1, Water. 

 

 

Introduction 

 

Soil moisture content is considered an indicator of climate change. The water crisis 

that occurred in the Federal District (DF) in 2017 led to the rationing of water resources 

that impacted social and agro-environmental activities. Thus, the need to monitor soil 

moisture arises since, in the water balance, soils are the means by which rainwater 

supplies groundwater and water bodies, including water reservoirs.  

 

Methodology 

 

By consulting cartographic material, references on soil properties and 

geotechnologies, especially remote sensing, it was possible to subdivide the region 

into 4 sectors and thus determine 40 sampling points. Subsequently, field trips were 

made to collect deformed samples, which were submitted to laboratory tests to 

determine the physical and chemical attributes, as well as the pedological classification 

according to the Brazilian Soil Classification System - SiBCS. As for the undeformed 

samples, necessary for determining soil moisture, they were collected synchronously 

with the dates of the Sentinel-1 satellite passages. The measured soil moisture data 



 

 

 

 

were modeled by means of simple linear regression with the radar data as a covariate 

for moisture recovery. 

 

Results and discussion 

 

The pedomorphogeological relationships of the soils and the land use and occupation 

helped for a characterization and classification of the soils. The data generated 

enabled the preparation of correlation graphs necessary to observe the relationships 

between variables such as soil attributes and the Sentinel-1 data backscatter values. 

The Sentinel-1 images allowed for a reasonable mapping of the soil moisture indices 

of the Federal District, representing the distribution of soil moisture in each of the 4 

predetermined sectors. 

 

 

Figure 1 - Moisture rate map of the DF soils produced from the treatment of the 

obtained data. 

 



 

 

 

 

Conclusions 

 

Variations in soil moisture produce significant changes in the energy balance of the 

earth's surface. Thus, this soil attribute configures an effective parameter in the 

modeling of hydrological processes and soil formation and consequently shows the 

importance of its determination by remote sensing data, since the spatial analysis of 

large areas makes the work unfeasible. The use of remote sensing, geoprocessing of 

images and other geotechnological tools, makes spatial analysis feasible because 

classic survey techniques present difficulties such as lack of multi-temporal data, the 

need for many field measurements, etc. However, environmental factors that affect the 

soil moisture recovered by radar data such as vegetation cover and soil roughness 

must be considered. 
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Thematic Session: Advances in soil sensing 

 
Abstract 
This work aimed to use a GPR equipped with a 450 MHz antenna to identify the depth of the 
clayey horizon marked with iron rods in Planosols. This study was carried out in an 
agroecological farm (Fazendinha Agroecológica do km 47), located in Seropédica 
municipality, Rio de Janeiro state, Brazil. First, three Planosols were described, and iron rods 
with dimensions of 80 cm in length and 0.8 cm in diameter were inserted in the transitions 
among soil horizons. Next, radargrams from the soil profiles and from one transect with those 
profiles were acquired using a GPR porting a shielded monostatic antenna of 450 MHz. 
Then, a depth model was adjusted to the transect radargram using the arithmetic average 
from the pulse velocities measured among the individual radargrams from the soil profiles. 
As the result, the average velocity created a depth model for the transect radargram that 
produced similar depths to those transitions viewed in the field for the argillic horizon. 
Keywords: soil survey; shallow geophysics; Planosols. 

 
Introduction 
 
The ground penetrating radar (GPR) has been shown potential to identify and map 
soil features (Ucha et al., 2002). One of those features can be the bottom of the E 
horizon in Planosols, that is, the depth to the argillic horizon. Its estimation is 
essential in order to study the soil water storage volume, the depth of the sandy 
horizons for soil tillage purposes, and other uses. In addition, this feature could also 
be used to locate the boundaries among soil types in the field, possibly expediting 
soil survey (Ucha et al., 2002). Then, this work aimed to analyze the feasibility of iron 
rods in support of a GPR porting a monostatic antenna of 450 MHz to determine the 
depth of the argillic horizon in an area with Planosols. 

Methodology  
 

This work was carried out in an agroecological farm (Fazendinha Agroecológica do 
km 47), located in Seropédica municipality, Rio de Janeiro state, southeastern Brazil. 
Three trenches were opened, where soil profiles were described according to Santos 
et al. (2015) and classified according to the World Reference Base (IUSS Working 
Group WRB, 2015) as Planosols, named of P2 (with six horizons), P5 (with seven 
horizons) and P6 (with six horizons). Disturbed soil samples were collected at each 
horizon and analyzed in the laboratory to measure the particle size fractions (PSF) 
and the gravimetric water content, according to Teixeira et al. (2017). 
Iron rods with dimensions of 80 cm in length and 0.8 cm in diameter were inserted in 
the transitions among soil horizons. Then, the three soil profiles (2-m long by 1.5-m 
wide by 1.20 to 1.72-m deep) and one transect (220-m long) with those profiles were 
imaged using the GPR MALÅ GroundExplorer (Guideline Geo AB, Sundbyberg, 



Sweden), creating radargrams using a monostatic shielded antenna of 450 MHz. The 
radargrams obtained in the field were processed using the ReflexW software 
(Sandmeier, 2009), and two pre-processing procedures were done in sequence: 
static correction and dewow. After pre-processing, the hyperbolas from the iron rods 
were identified in the radargrams, and the pulse velocity estimations were obtained in 
ReflexW, followed by the conversion of the Y-axis of the radargram from time (ns) to 
depth units (m). 

Results and discussion 
 
The main results of the physical attributes from the horizons are shown in Table 1, 
which identify the abrupt transitions (the top of the argillic horizon). Each soil profile 
has a higher clay content in the B horizon concerning the E horizon, leading to a 
higher K (dieletric constant) contrast between these horizons (De Benedetto et al., 
2010), which may help see the argillic horizon in the 450 MHz radargram. 
 

Table 1. Physical attributes of the P2, P5, and P6 soil profiles. 

Profile Horizon Horizon Depth PSF (g kg-1) Gravimetric 
water (%) 

Horizon 
transition   number (cm) Sand Clay 

P2 
E 3 22-69 831 92 2.1  3 

Bt1 4 69-92 564 388 5.9   

P5 
E5 6 145-158 717 20 6.1  6 
Bt 7 158-172+ 621 267 4.2   

P6 
E 3 32-44 878 45 4.1  3 

Btg1 4 44-66 703 216 12.3   

 
Then, the GPR was used on the soil profiles and the pulse velocities were measured 
in the radargrams using the ReflexW (Table 2). From those velocities was calculated 
an average to apply to the depth model in the transect radargram (Figure 1).  
 

Table 2. Pulse velocities acquired at the horizon transitions in the radargrams. 

Profile Horizon transition Pulse velocities 

P2 1, 2, 3 0.11 m ns-1 
P5 1, 2, 3 0.11 m ns-1 
P6 1, 3, 4 0.10 m ns-1 

 
The iron rod at the abrupt change in P5 (Table 1) was not possible to observe (Figure 
1b). It may be caused by its higher depth (at 1.58 m) in relation to P2 (at 69 cm) and 
P6 (at 44 cm) (Porsani, 1999), even with the upper horizons with low water content 
and composed by sandy texture (Doolittle and Collins, 1995). 
The arithmetic average from those velocities is 0.107 m ns-1 for that specific day of 
soil survey. It means that according to the environmental conditions of the day, those 
velocities may change, for instance, due to the water content in the soil (Doolittle and 
Collins, 1995). Then, considering that average to the transect radargram, the depths 
of the argillic horizons were very similar to those viewed in the field description (in P2 
and P6) (Table 1) and for the last rod seen in the P5 (at 38 cm, third transition). This 
means that the iron rods can be feasible to map the argillic horizon in large areas 
where Planosols appear, using the frequency of 450 MHz for shallower argillic 
horizons. However, since antennas with lower frequencies can map deeper regions 
in the soil (Porsani, 1999), iron rods can also help map greater depths. 



 
(a) 

(b) 

Figure 1. In (a), the transect radargram with the P2, P5, and P6 profiles (in red) and the top of the argillic horizon marked in 
yellow, when it is possible to be seen in the radargram. In (b) is represented the detail of each profile from the transect 
radargram. The blue bar in each radargram demarcates the hyperbola of the deepest iron rod in each profile, while the green 
bar represents the real depth seen in the field. In P2 and P6, the green bars are close to the actual depth of the base of the E 
horizon (69 and 44 cm depth, simultaneously). In P5, the yellow bar represents the base depth of the E5-to-Bt transition (at 
1.58 m).



 

 

 

 

Conclusions 
 
The iron rods supporting the 450 MHz antenna showed a good potential to identify 
argillic horizon where Planosols dominate in significant areas, especially when the E-
to-B transitions are placed in shallower depths. 
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Thematic Session: Advances in soil sensing 

 
Abstract 
An optimized sampling design to assess soil property variation across the field and within 
management zones is proposed and validated in a 72-ha crop field in southeastern Brazil. An 
optimized sample (18 sites) was derived by spatial simulated annealing from proximal sensor 
covariates. Soil properties were measured at 0-10 cm and validated against those measured 
at 72 sites on a regular grid. The optimized and regular grid samples had equal global spatial 
trend models and means for soil clay, pH and exchangeable Ca, Mg and K, and different 
ones for organic C and available P. Within zones, equal means between sampling designs 
were found for all soil properties in the “North” zone, and for most properties in the other two 
zones. Soil property correlations against proximal sensor variables were honored by the 
optimized samples in most cases, both globally and within zones. The optimized soil sample 
reduces costs while keeping most soil information for guiding management decisions. 
Keywords: Proximal soil sensing; Spatial simulated annealing; Spatial trends; Precision 
agriculture 

 
Introduction 
Site-specific soil management requires knowing the spatial distribution of soil 
properties that guide management recommendations. Producing this information 
using uniform soil sampling on a regular grid across the field may be expensive due 
to soil sampling and analysis costs. Alternatively, on-the-go field sensors measure 
soil properties at many sites covering the field efficiently (ADAMCHUK et al., 2004) 
and can provide data to delineate management zones (VASQUES et al., 2021) and 
optimize soil sampling (DOMENECH et al., 2017).  

For optimizing soil sampling, it is desirable that the number of sites is reduced while 
keeping enough soil information to support management decisions. For that, an 
optimized sampling design can be proposed, considering management zones and 
soil variation measured by proximal sensors, and validated to confirm that it 
represents soil property variation across the field and within zones.  

Thus, the objectives are to: (a) produce an optimized sampling design to assess soil 
property variation; (b) compare global spatial trend models from optimized versus 
regular grid samples; and (c) compare soil property means and correlations against 
proximal sensor variables from optimized versus regular grid samples, globally and 
within management zones.  
 
Methodology 
Three management zones were delineated on a 72-ha no-till irrigated crop field in 
Itaí, São Paulo, southeastern Brazil, by k-means clustering based on kriged maps of 



 

 

 

 

proximal sensor variables, including apparent electrical conductivity (aEC) and 
magnetic susceptibility (aMS) measured by a EM38-MK2 sensor (Geonics, 
Mississauga, Canada), and equivalent thorium (eTh) and uranium (eU) contents 
measured by a MS1200 gamma radiometer (Medusa, Groningen, Netherlands) 
(VASQUES et al., 2021). Soils in the field are Latossolos (Oxisols, Ferralsos). 

To assess soil property variation across the field, a regular grid sampling design 
comprising 72 sites was derived (Figure 1a, black dots). An optimized sampling 
design comprising 18 sites (Figure 1a, red dots) was derived by selecting six sites in 
each zone by spatial simulated annealing (SAMUEL-ROSA, 2019) reproducing the 
marginal distributions and correlations among aEC, aMS, eTh and eU. Soil samples 
were taken at 0-10 cm at the 90 sites (72+18) and analyzed for clay, organic C (OC), 
pH, available P, and exchangeable bases, according to Teixeira et al. (2017) (Figure 
1b-h). Sensor variable values from their kriged maps were extracted to the 90 sites. 

To check whether the optimized samples capture the global spatial trends of soil 
properties, analyses of variance and F tests (p=0.05) were used comparing first-
degree spatial trend models – soil property=f(x*y) – against full models including the 
sampling design and interaction terms – soil property=f(x*y*sampling design). In 
addition, spatial trend models were derived from optimized and regular grid samples, 
respectively, and compared by Chow’s test (p=0.05).  

Welch’s analysis of variance was used to compare soil property means from the 
optimized versus regular grid samples globally, using all observations from both sets, 
and locally at each zone, respectively. Soil property correlations against proximal 
sensor variables from the optimized versus regular grid samples were compared at 
p=0.05 using Fisher r-to-z transformation of correlation coefficients, both globally and 
at each zone, respectively. 
 
Results and discussion 
The global spatial trend models did not differ significantly between optimized and 
regular samples for all soil properties except OC and available P, according to both F 
and Chow’s tests. Soil OC and available P models differed significantly between 
sampling designs in the regression intercepts, but not in the slopes of either the x or 
y variable, that is, the geographic coordinates. This shows that all soil property trends 
described by the regular grid samples in both the E-W and N-S directions were 
captured by the optimized samples.  

Globally, the Welch’s tests showed that only OC and available P differed significantly 
between optimized and regular grid samples, though OC means were similar (Table 
1). Locally, all soil properties had equal means between sampling designs in the 
“North” zone, while significant differences were found for pH, available P and 
exchangeable Mg in the “Southeast” zone, and for clay, OC and available P in the 
“Southwest”, though their means were similar between designs, except P. Mean soil 
exchangeable K varies between designs, but their high within-group variances hinder 
statistically significant differences.  

Globally, correlations among soil properties and proximal sensor variables from the 
regular grid samples were honored by the optimized samples for all paired variables 
except pH x aEC, and P x eU. The same behavior was observed within the 



 

 

 

 

management zones, where most soil property-proximal sensor correlations were 
respected by the optimized samples. Significant differences in correlations between 
sampling designs were observed for: pH x aEC, Ca x aEC, Mg x aEC, and Mg x aMS 
in the “North”; Ca x eTh in the “Southeast”; and Mg x eTh in the “Southwest”. 

Overall, the optimized samples captured the global spatial trends of most properties 
and honored their mean values both globally and locally within management zones, 
as mean property values were very close between designs (except for available P 
and exchangeable K) despite significant differences in some cases (Table 1). They 
also captured the correlations among soil properties and proximal sensor variables 
both globally and within zones. This represents a reduction of 75% (from 72 to 18 
sites) in soil sampling and analysis costs, while keeping most soil information.  
 
Conclusions 
Soil sampling and analytical costs can be reduced considerably by reducing the 
sample size while keeping most soil information across the field and within 
management zones. For that, a combination of proximal sensor surveys that catch 
soil variations efficiently across the field and a sample optimization algorithm like 
spatial simulated annealing can be used with positive results, as shown in this paper.   

In principle, management decisions based on soil data obtained at the optimized 
sampling sites would be mostly correct. Along these lines, whether investing in more 
samples, say one sample per hectare, provides more accurate management 
decisions that are worth the extra cost is open for debate and further research. 
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Table 1. Soil property means from regular grid and optimized samples. Equal letters 
indicate equal means between sampling designs globally, and within management 
zones, respectively, according to Welch’s tests at p=0.05. 

Property 

N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean 

Global North Southeast Southwest 

Grid Optimized Grid Optimized Grid Optimized Grid Optimized 

Clay (g kg
-1

) 72 413
a
 18 424

a
 33 392

a
 6 367

a
 27 430

a
 6 463

a
 12 433

b
 6 443

a
 

OC (g kg
-1

) 72 15
a
 18 14

b
 33 14

a
 6 13

a
 27 16

a
 6 15

a
 12 15

a
 6 13

b
 

pH 72 6.6
a
 18 6.5

a
 33 6.6

a
 6 6.6

a
 27 6.6

b
 6 6.7

a
 12 6.4

a
 6 6.2

a
 

P (mg dm
-3

) 72 143
a
 18 99

b
 33 141

a
 6 137

a
 27 151

a
 6 79

b
 12 127

a
 6 81

b
 

Ca (cmolc dm
-3

) 72 6.3
a
 18 5.9

a
 33 6.0

a
 6 5.7

a
 27 6.7

a
 6 6.2

a
 12 6.4

a
 6 5.9

a
 

Mg (cmolc dm
-3

) 72 1.9
a
 18 2.0

a
 33 1.8

a
 6 1.9

a
 27 2.1

b
 6 2.2

a
 12 1.9

a
 6 1.9

a
 

K (cmolc dm
-3

) 72 458
a
 18 501

a
 33 451

a
 6 173

a
 27 583

a
 6 1110

a
 12 197

a
 6 220

a
 

N, number of observations; Stdev, standard deviation. 

 

(a)  (b)  (c)  

(d)  (e)  (f)  

(g)  (h)  
Figure 1. (a) Soil management zones, regular grid samples (black dots) and 
optimized samples (red dots); (b-h) Soil clay (g kg-1), organic C (g kg-1), pH, available 
P (mg dm-3), and exchangeable Ca, Mg and K (cmolc dm-3), respectively. Optimized 
samples are circled in the soil property maps. Coordinates are in UTM zone 22S. 
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Sessão temática: 03 - Avanços em Sensoriamento do solo

Resumo
O presente trabalho teve como objetivo analisar o comportamento espectral de duas classes
de solos, afim de identificar suas assinaturas espectrais e verificar a relação entre as
propriedades mineralógicas e granulométricas. As amostras foram extraídas de um perfil de
Planossolo e de um Luvissolo, oriundas da região semiárida da Bahia. Os procedimentos
metodológicos aplicados foram, análise de granulometria e espectroscopia de reflectância
VIS-NIR-SWIR, em seguida os dados obtidos foram analisados e interpretados a partir dos
valores granulométricos e comportamento espectral das amostras de solo. Os resultados
encontrados na granulometria sinalizam as mudanças texturais abruptas entre horizontes A
e B de ambos perfis. Os resultados obtidos por meio da espectroscopia de reflectância
proporcionou a verificação da mudança textural por meio do padrão de absorção no
horizonte B textural, com destaque para a concentração de argilominerais 2:1. Desse modo,
é possível afirmar que associação entre mineralogia e granulometria contribuíram para a
diferenciação entre horizontes e perfis, representando uma diversidade pedológica numa
mesma região.

Palavras-chave: Espectrorradiometria; Sensoriamento Remoto; Solos.
 
 Introdução
 
Os solos oriundos do clima semiárido, apresentam diversidade de processos
pedogenéticos, isso se dá aos fatores de formação relevo e material de origem que
potencializam os diversos processos de formação dos solos, consequentemente,
promove uma diversidade pedológica. São solos com peculiaridades, onde se
destaca a predominância do intemperismo físico em detrimento do químico, a
conservação dos materiais de origem e também a presença de minerais primários
intemperizáveis e argilominerais 2:1 (SOUZA, 2020). Assim, o estudo e a
investigação da mineralogia e da granulometria das diversas frações dos solos,
atrelado a sua caracterização morfológica, física e química é de extrema relevância
para compreensão dos atributos pedológicos para suas aplicações em
melhoramento na escala cartográfica dos mapas, como também suporte para
manejo adequado dos solos (OLIVEIRA, 2007).
A grande demanda acerca de informações pedológicas para maiores intervenções,
seja na exploração agrícola como na sua compreensão com a relação dos sistemas
naturais (BAPTISTA et al., 2019), necessita cada vez mais de rapidez nos
resultados, como também baixos custos. A espectrorradiometria surge como uma
alternativa, sendo uma técnica rápida e de baixo custo, e que contribui na diminuição



do tempo e na quantidade de resíduos laboratoriais não impactando negativamente
o meio ambiente, além de ser eficiente na predição de diversos atributos do solo e
análises envolvendo grandes quantidades de dados (BELLINASO, 2009).
Deste modo, a presente pesquisa tem como objetivo analisar o comportamento
espectral de duas classes de solos, afim de identificar suas assinaturas espectrais e
verificar a relação entre as propriedades granulométricas e mineralógicas.

Metodologia

As amostras analisadas correspondem aos horizontes dos perfis de Planossolo e
Luvissolo que foram coletadas nos municípios de Araci e Juazeiro (Figura 1). Ambos
estão localizados no clima semiárido baiano. A escolha de áreas distantes referente
a escala é devido a necessidade de observar de que modo outros fatores como,
material de origem interfere na resposta espectral como também influencia na
granulometria.

Figura 1 – Mapa de localização

Os procedimentos metodológicos seguiram a sequência:

a) Seleção das amostras, tratamento, medição e análise granulométrica: Para a
obtenção das medidas espectrais, as amostras foram tratadas de acordo com o
protocolo de Bendor et. al, (2015). Em seguida, foi feita a coleta das medidas
espectrais, onde se utilizou o espectrorradiômetro ASD FieldSpec® 4 Hi-Res, que
abrange um intervalo de 350 a 2500 nm.



b) Análise granulométrica: a execução para análise granulométrica foi por meio da
Embrapa (1997) - Análise Granulométrica (Dispersão total).

c) Processamento das curvas, análise e interpretação dos resultados: O
Software utilizado foi o ViewSpec Pro 6.0 ASDInc, com o objetivo de reduzir os
ruídos, seguido da análise e interpretação que se deram a partir das curvas
espectrais, que foram caracterizadas com o auxílio do Software ENVI 5.3 (Harris
Geospatial Solutions).

Resultados e Discussão

Com os dados obtidos do fracionamento das partículas, foi possível analisar a
mudança textural abrupta entre horizontes em ambos perfis (Tabela 1) em seus
horizontes diagnósticos – Bt, onde há uma maior concentração de partículas em
tamanho argila. Esta característica também influencia em suas classes texturais,
onde no Perfil 1, Planossolo háplico há uma mudança significativa de g/kg de argila
entre os horizontes A e Bt. O mesmo acontece no perfil 2, Luvissolo crômico, que
embora indique uma classe textural franca, apresenta o valor de 2,08 de gradiente,
atributo fundamental na definição de sua ordem (SANTOS et al. 2018).

Tabela 1 – dados granulométricos

Are – Arenosa; Fr – Franca; Arg – Argilosa.

As assinaturas espectrais geradas por reflectância com contínuo removido (Figura 2)
mostraram padrões de absorções, sinalizando a presença de minerais do tipo 2:1
montmorillonite, que agrega aos solos concentrações de argila, principalmente no
horizonte B de ambos os perfis. E além disso, é possível diagnosticar no perfil 2 a
concentração de calcita, o que classifica o mesmo em hipocarbonático (altos teores
de CaCO3). É importante destacar também que, os altos valores de areia são
resultados da presença de minerais primários nesta fração.



Figura 2 – Assinaturas espectrais dos perfis

Conclusões

Verificou-se, a partir da identificação espectral e a associação entre mineralogia e
granulometria, que a diversidade pedológica do semiárido deve ser cada vez mais
investigada e estudada. A presença de minerais primários facilmente
intemperizáveis na fração areia, atribui percentagem alta na granulometria,
entretanto, por meio da espectroscopia é possível verificar a concentração de
argilominerais e a natureza dos mesmos.
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Thematic Session: ADVANCES IN SOIL SENSING 
 
Abstract 
Investigations about the pedomorphogeological dynamics can answer to several 
characteristics of soil classes. Such conditions alter the soil attributes, in turn, must they 
influence the spectral response. In this sense, this paper aimed to relate soil attributes with 
their spectral behavior. For this purpose, five soil profiles in a tropical toposequence on 
metasedimentary rocks of the Paranoá group were classified and characterized according to 
physic-chemical attributes. Afterward, these data were related to the spectral curve for each 
soil class. The morphological interpretation of reflectance spectra supported the qualitative 
assessments. We observed the main features which characterize the soil class, namely, 
goethite (0.48 and 0.95 µm) and hematite (0.53 and 0.85 µm), kaolinite (1.4 and 2,205 µm), 
gibbsite (2.265 µm), 2:1 clay mineral (1.405 and 1.9 µm). Iron oxide features are highlighted 
in Ferralsols and organic matter obliterating Haplic Gleysol and Hemic Histosol curves. 
 

Introduction 
 
Factors such as climate, organisms, relief, rocky matrix, age, and soil arrangement in 
space are responsible for pedogenesis. These factors provide characteristics and 
attributes that allow the distinction between soils, for instance: texture, natural fertility, 
structure, water-holding capacity (LACERDA et al., 2016).  
Such characteristics can be determined by morphological in the field, physical and 
chemical laboratory analysis, including remote sensing techniques such as 
reflectance spectroscopy (from 0.35 µm to 2.5 µm) (DEMATTÊ et al., 2014). The 
spectral behavior reveals several soil compounds and characteristics, such as 
mineralogy, texture, moisture and organic matter (NOVAIS et al. 2021). 
Thereby the objective was to classify the soils and evaluate them regarding the 
influence of pedological attributes on the spectral behavior of soils in a tropical 
toposequence formed on metasedimentary rocks, Paranoá Group. 
 
Methodology 
  
This work was developed in a microwatershed in the Água Limpa experimental Farm 
(FAL), belonging to the University of Brasília (UnB), in Federal District, Brazil and it 
was performed between 2019 and 2020. It was performed at the Laboratory of 
Geoprocessing and Pedomorphogeology – GeoPed, which is linked to the Faculty of 
Agronomy and Veterinary Medicine – FAV of UnB.  
Fieldworks followed Soil Survey Staff (2014) recommendations in a toposequence 
formed by five soil profiles (Figure 1). Thus, the samples were collected at depth 0-20 
cm, for the surface, and 10-100 cm for the subsurface layer. These samples were air-
dried, mashed, and sieved (particles lower than 2 mm). Then, they were submitted to 



 

 

 

 
physical (texture) and chemical (assortment complex) analyses in the laboratory, 
according to Teixeira et al. (2017). With results, the profiles were classified according 
to World Reference Bases for soil resources (IUSS WORKING GROUP WRB, 2014).  

 
Figure 1. Localization map of the study area showing a) digital elevation model, b) 
geological groups, c) geomorphological surface, and d) slope. All with the sampling 
spots studied. MNPpa: slates, MNPpr3: clayey metarrythmits; GS-1 High Plateaus 
and GS-2 Region of Intermediate Dissection. 
 
Surface soil samples also were analyzed by reflectance spectroscopy from visible 
and shortwave infrared (SWIR) range, using the Fieldspec Pro hyperspectral sensor 
(MALVERN PANALYTICAL Inc, 2021), which were morphologically interpreted 
according to main absorption features, identifying some attributes that characterize 
the soils, such as mineralogy, organic matter, and texture (DEMATTÊ et al., 2014). 
Finally, the soils were interrelated according to position in the landscape, tracing a 
profile of soil evolution based on the silt/clay ratio, which the pedomorphogeological 
relationships conditions were considered as factors that alter soil spectral behavior.  
 

Results and discussion 
 
Typically, the soil presented texture ranging from very clayey to loam-sandy. 
According to IUSS Working Group WRB (2014), base saturation below 50% 
characterize Dystric soils. Tropical soils tend to present low natural fertility, acidic 
character, and high iron oxides and aluminum content (NOVAIS et al., 2021).   
The soil classes were determined as P1 – clayic, dystric, Rhodic Ferralsol; P2 – 
clayic, dystric, Rhodic Ferralsol; P3 – clayic, petroplinthic, dystric, Haplic Ferralsol; 
P4 – clayic, dystric Haplic Gleysol; P5 – loam-sandy hemic Haplic Histosol. 
As long as the altitude decreases, the weathering action also decreases in a 
toposequence because of the insufficient local drainage, which favors the formation 



 

 

 

 
of hydromorphic soils (LACERDA et al., 2016). Profiles in the upper of toposequence 
exhibited a high degree of evolution than the bottom.  
It was possible to note the occurrence of specific processes of soil formation such as 
Ferratilization in P1, P2, and P3 and plinthization and oxidation in the P4 and P5 
profiles, caused by reductions in the internal water flow, such changes gradually 
influence the general behavior of the spectra. However, more detailed studies in the 
domain of time and space are necessary to explain the pedogenetic relationship that 
confers the distinctive properties of soils within spectral reflectance (Figure 2). 

 
Figure 2. Topographic profile of toposequence and relative location of soil profiles 
(P) on geomorphological surfaces (SG). 
 
The Morphological interpretation of reflectance spectra showed the typical features of 
primary and secondary minerals, as well as oxides influence and obliterating action 
of organic matter throughout the spectra. Different features were observed in the 
toposequence profiles. Basically, they presented features of iron oxides such as 
goethite (0.48 and 0.95 µm) and hematite (0.53 and 0.85 µm), kaolinite (1.4 and 
2,205 µm), gibbsite (2.265 µm), 2:1 clay mineral, and water adsorbed on the particle 
surface (1.405 and 1.9 µm), as described by Demattê et al. (2014) and Novais et al. 
(2021). These features are highlighted in Figure 3, at the end of this paper.  
 

Conclusions 
 
Features of primary and secondary minerals, iron oxides, and organic matter were 
observed in the spectral curves in the toposequence. They were related to chemical-
physical analyses, reinforcing their utility for soil classification. A quantitative 
approach can support the potential of spectral information for soil mapping. 
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Figure 4. Morphological interpretation of soil horizons spectra with features 
highlighted. Where: a) and b) Rhodic Ferralsol; c) Haplic Ferralsol, d) Haplic Gleysol; 
e) Hemic Histosol and f) Spectral library of studied soils; (Kt) kaolinite, (Gb) gibbsite, 
(Ht) hematite, (Gt) goethite, and (SOM) Soil Organic Matter. 
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Thematic Session: 04 Pedometric protocols for systematic soil surveys 
 
Abstract 
 
Land use management requires knowledge about the properties and attributes that 
characterize. The objective of this work was to test the use of machine learning in soil 
prediction, aiming to compare the respective performances. The selected area is located in 
the region of Tabuleiros Interioranos of Recôncavo da Bahia, Brasil. The adopted method 
used for training the observation points and legacy data models, the variables were 
generated through maps of source material, land use, geomorphometric data and satellite 
images. In the R software, prediction calculations were performed. The tested algorithms 
were: Random Forest (RF), Decision Trees (C5), K-Nearest Neighbors (KNN), Gradient 
Boosting Machines (GBM) and Support-vector machine (SVM). The accuracy of digital 
mapping was measured using the index Kappa and general accuracy. The C5 model showed 
the highest kappa and accuracy index. 

Keywords: soil class prediction; algorithm test; pedometrics; land use planning. 
 

Introduction 
 
The earth's natural resources are not inexhaustible, and the growing demand 
imposed exceeds the natural capacity to replenish those resources. Land use 
management requires knowledge and information about the properties and attributes 
that characterize it (CARVALHO JUNIOR et al., 2014). 
 
The MDS is a current, quantitative technique, which through mathematical models 
integrate environmental covariates that influence the soil formation factors to perform 
the classification (BAGATINI; GIASSON; TESKE, 2015). According to ten Caten et 
al.,2012 one of the main classifiers used in digital soil mapping in Brazil until 2011 
are decision trees. 
 
The objective of this paper was to investigate the performance of machine learning 
algorithms on soil mapping in interior tablelands, area that encompasses the campus 
of the Universidade Federal do Recôncavo da Bahia (UFRB) in the city of Cruz das 
Almas – Bahia. 
 
Methodology 
 
The area is located in UFRB, with an area of 1.367 hectares. There are three distinct 
geological units: Pre-Cambrian metamorphic rocks from the Granulitic Complex; 
tertiary sediment (detritic-latetritic deposits) and quaternary alluvial sediments. The 



 

 

 

 

geomorphology is mainly presented as a board, in the dissection phase, classified in 
the geomorphological unit of the Inland Tablelands by RADAMBRASIL (1981), 
belonging to the morpho-structural domain of the Platores Inumados. The 
classification by Köppen (Köppen classification system), indicates that the climate is 
“Af” typy, the average annual rainfall is 1.200 mm and temperature of 24.2 °C. 
 
Using legacy data from previous traditional surveys, 43 complete soil profiles were 
described up to the fourth taxonomic level identified according to the Brazilian Soil 
Classification System - SiBCS (Santos et al., 2018). Additionally, 100 extra samples 
were collected (mini-pits and auger samples), characterized, and classified by a 
senior pedologist, for a total of 143 sites of soil sampling. The soils were correlated 
with the geomorphic surfaces in which they occur prospecting (along topo 
sequences) by this method, it is possible to establish correlations between classes of 
soil, texture, drainage, depth, slope, length and shape of slopes and position and 
exposure of soils in relation to slopes according to IBGE (2015).  
 
Thirty existing soil classes were identified in the study area, these classes were 
divided into 10 mapping units, namely: 1 – LATOSSOLO AMARELO Distrocoeso 
típico (LAdx1), 2 - CAMBISSOLO HÁPLICO Tb Distrófico petroplíntico + 
ARGISSOLO AMARELO Distrocoeso abrúptico (PAdx+C1), 3 - CAMBISSOLO 
HÁPLICO Ta Eutrófico vertissólico (C2), 4 – CHERNOSSOLO EBÂNICO Órtico 
vertissólico (ME), 5 - VERTISSOLO HÁPLICO Órtico gleissólico (V), 6 - 
PLANOSSOLO HÁPLICO Eutrófico solódico (P), 7 - ARGISSOLO VERMELHO-
AMARELO Eutrófico típico (PVAe), 8 - ARGISSOLO ACINZENTADO Eutróficos 
típico + PLANOSSOLOS NÁTRICOS Órticos gleissólicos + GLEISSOLO HÁPLICO 
Tb Eutrófico típico (PSG), 9 - GLEISSOLO MELÂNICO Ta Eutróficos vertissólico 
(G1), 10 - LATOSSOLO AMARELO Distrocoeso argilsólico (LAdx2). 
 
Using the R 4.1.1  (R Development Core Team, 2016)  with the RSaga package 
(Brenning et al., 2018) to access the SAGA GIS 6.2 software tools, variables were 
generated (flow accumulation, aspect, capitation area, watercourse, curvature, profile 
curvature, planar curvature, slope, flow direction, shading, Topographic wetness 
index, stream power index) through the digital elevation model - DEM generated from 
Advanced Land Observing Satellite (ALOS), 12.5 m of spatial resolution. Spectral 
imagery of the CBERS 04A satellite, acquired on November 23, 2019: band 1 blue 
(0.45 – 0.52 µm), band 2 green (0.52 – 0.59 µm), band 3 red (0.63 – 0.69 µm), band 
4 infra-red (0.77 – 0.89 µm), were obtained through the Instituto Nacional de 
Pesquisas Espaciais (INPE), from the CERBS 4A satellite – WPM sensor with a 
resolution of 8 meters. The Land Use Map was produced with ESRI's ArcGis Pro 
software using CERBS 4A images. The material map was adapted from the map 
published by the SRTM de Geologia do Brasil at a scale of 1:250,000. 
 
For this work the training used 10-fold cross-validation repeated 3 times. This method 
is suggested as the fairest method in evaluation of performance to comparing 
machine learning algorithms. Were tested the control parameters that resulted in 
better prediction performance of the mathematical models Random Forest (RF), 
Decision Trees (C5), K-Nearest Neighbors (KNN), Gradient Boosting Machines 



 

 

 

 

(GBM) and Support-vector machine (SVM) with help of Caret package (Kuhn, 2013). 
To evaluate the algorithms, was used the confusion matrix (Congalton and Green, 
2009) to derive the Kappa indexes (Landis e Koch, 1977) and the overall accuracy. 
Statistical results such as mean, median and variance were analyzed to compare the 
predictors. 
 
Results and discussion 
 
The results show that classifiers C5.0 and Random Forest have great potential for 
predicting soil classes for the data set used. The machine learning algorithms 
exhibited Kappa index ranging from 0.16 to 0.39 and means of overall accuracy 
ranging from 0.25 to 0.45, this variance shows that not all models were efficient for 
class prediction in this study (Figure 1). 
 

 
Figure 1: Prediction maps of Soil Classes of a tropical Interior Tablelands for 
different algorithms. 
 
Observing the generated maps, it is possible to see that, except for the algorithms 
C5.0, RF and Rpart, there is difficulty in separating the mapping units (UM), 
analyzing the UMs LAdx1 and LAdx2 it is possible to recognize areas of LAdx2 
located in the center of the tablelands, which is not a field reality. The Rpart algorithm 
was not able to identify all mapping units, showing high BIAS with a tendency to 
underfitting compared to the other tested algorithms. RF and C5.0 are decision family 
models, both have a low bias, fit well to the dataset and tend to overfit, in the present 
study, these characteristics enabled a good separation of the mapping units, 
satisfactorily approaching the field reality. 



 

 

 

 

 
Conclusions 
 
Comparing the results found, was observed that the C5.0 classifier obtain the best 
performance in digital soil mapping classes of a tropical interior tablelands with the 
data set used. The variance of the results indicates that using more than one 
algorithm for prediction is a good practice in digital soil mapping. The distribution of 
cartographic units is consistent with the field reality and with previous surveys. 
Predominance of Latossolos in the flat tops and upper third of the landscape, 
followed by Argissolo on the slope, Cambissolo in the lower third and in the lowlands 
a complex composed of Vertssolo, Chernosoil and Planossolo and finally, along the 
drainage line, the predominance of Gleissolo. 
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Thematic Session: (1) - Pedometrics: Innovation in tropics 

 
Abstract 
Currently, there are many digital elevation models (DEM) with different spatial resolutions that 
can be used for digital soil mapping. Overall, it is assumed that the higher the DEMs spatial 
resolution, the better the digital soil maps would be. To test this assumption, we evaluated the 
suitability of several DEMs to map soil classes for a mountainous area in Brazil, using the 
machine learning model random forest. In general, the 90 m DEMs allowed more accurate soil 
predictions, highlighting the COPERNICUS GLO-90. Among the 30 m DEMs, the TOPODATA 
provided the best results, whereas the ALOS PALSAR of 12.5 m presented accuracy similar 
to the 30 m DEMs. The results did not show a clear pattern between the DEMs spatial 
resolution and the uncertainty of the prediction. We show that finer resolution DEMs are not 
always the best choice for predicting soil classes and that the relationship between the scale 
of the DEMs and the digital soil maps needs to be analyzed more closely. 
Keywords: accuracy; digital soil mapping; machine learning; spatial resolution; uncertainty.  
 

Introduction 
 
Digital Soil Mapping (DSM) was developed from the evolution of the computational, 
mathematical and statistical techniques, being an alternative to overcome the 
limitations of the highly subjective and poorly reproducible traditional soil mapping 
(GOMES et al., 2019). The DSM principle consists in intersecting soil observation 
points and layers of secondary environmental data, so that a model of some structure 
is fitted to describe the relationship between the soil and the environment (MINASNY 
et al., 2014).  
Morphometric predictors extracted from Digital Elevation Models (DEMs) play a key 
role as secondary data for DSM. First, because they represent one of the main factors 
controlling the soil distribution on the terrain surface, and second due to the greater 
availability of DEMs with different spatial resolutions, obtained from spaceborne-
sensor data (SENA et al., 2020).  
Overall, it is assumed that the higher the DEMs spatial resolution, the better the digital 
soil maps would be, due to the increasing acquisition of information as the spatial 
resolution increases. Cavazzi et al. (2013) contest this assumption, stating that fine 
resolutions DEMs can mislead the soil prediction. Actually, we little know about the 
suitability of the distinct DEMs for digital soil maps with varied scales and degree of 
detail. In this work, we evaluated the suitability of 11 freely available DEMs to map soil 
classes at 2nd categoric level for a mountainous area in the Southeastern Brazil.  
 

Methodology 



 

 

 

 

 
The study was carried out for the Belo Horizonte Southern Metropolitan Region 
Environmental Protection Area, located in the Minas Gerais State. The area of 1,627 
km2 has an altitude varying between 700 and 2080 m a.s.l. 
We used 11 DEMs with different spatial resolutions (ALOS PALSAR at 12.5 m; ASTER 
GDEM, ALOS World 3D, COPERNICUS GLO-30, NASADEM, SRTM1 and 
TOPODATA at 30 m; COPERNICUS GLO-90, MERIT, SRTM3 and TanDEM-X at 90 
m), whose predictive capabilities in classifying soils were evaluated using machine 
learning.  
Initially, 42 morphometric variables were derived from each DEM. Then, a principal 
component analysis was used to select the best set of variables from each DEM to be 
used in obtaining the soil samples with the Latin Hypercube Sampling procedure 
(cLHS). The number of cLHS iterations was weighted by the DEMs spatial resolutions. 
Thus, we collected 2,000 points, using the labels of soil classes from the previous 
conventional soil map of the area (CPRM, 2005).  
For the modeling process we used the random forest model. The model was fitted 
separately for each DEM following standardized methodology (GOMES et al., 2019). 
The samples were separated in 75% for training and 10-folds cross-validation and 25% 
for testing. We applied two sequential methods to select the best variables, one by 
correlation and the other by importance (recursive feature elimination). The model's 
performance was evaluated using the Accuracy and Kappa indices obtained from the 
cross-validation and test data. All the process was performed with 100 runs for each 
DEM, randomizing the training and test subsets. 
The final predicted soil maps obtained from the 100 runs modal values were compared 
(overall Kappa) with the conventional soil map as external validation. We also 
evaluated the uncertainty of the prediction through the variety analysis (number of 
different classes that each pixel presented during the 100 runs). 
 

Results and discussion 
 
Considering the Accuracy values, the best performance of training was reached with 
the SRTM3, followed by the COPERNICUS GLO-90, TOPODATA and MERIT. A 
similar pattern was found for the test, with the SRTM3-based model reaching an 
average Accuracy of 0.67 (Fig. 1). 
As to the Kappa values, the Copernicus GLO-90 ensured the best results for training, 
followed by the SRTM3 and TOPODATA. With the test sets, the COPERNICUS GLO-
90-based model kept the best performance (0.36). In turn, the worst performance was 
obtained with the 30 m DEMs NASADEM and ALOS World 3D (Fig. 1). 
Lastly, considering the overall Kappa, we found that the COPERNICUS GLO-90-based 
prediction again had the best performance (0.32), followed by the TanDEM-X and 
SRTM3. The worst prediction happened with the ASTER GDEM and ALOS World 3D 
(Fig. 2). 
Among the 90 m DEMS, the SRTM3 provided the highest certainty in the prediction, 
with 52% of the total pixels presenting only one soil class (the mode) in the final map. 
Among the 30 m DEMs, the SRTM1 and ASTER GDEM provided the best certainty, 



 

 

 

 

with 58% and 57% of pixels presenting one class. In turn, the DEMs MERIT and ALOS 
World 3D provided the highest uncertainty of prediction (Fig. 2). 
 

 
Fig. 1. Accuracy and Kappa for the 100 runs of the random forest algorithm with each 
DEM. 
 
The 12.5 m ALOS PALSAR also presented high uncertainty, which, added to the 
ordinary prediction accuracy and extremely time-consuming processing (predictions 
based on it spent ± 3 times more than on 30 m DEMs and ± 30 times than on 90 m 
DEMs), meant a poor performance of this finer resolution DEM for our soil prediction. 
 

 
Fig. 2. Overall Kappa (a) and variety analysis indicating the uncertainty (b) for 
prediction with each DEM. 
 
We assume that the best prediction’s performance from the DEMs with lower spatial 
resolution (90 m) can be associated with the generalized character of the soil map 
predicted in this work (2nd categoric level). At the same time, the worse performance 
of 30 m and 12.5 DEMs may be associated with the greater amount of information 
which might carry out to a lot of noise that misleads the prediction.  



 

 

 

 

So, we hypothesize that when predicting soil classes at higher categoric levels, and 
consequently producing soil maps at higher scales, the results obtained might be 
different, with finer resolution DEMs being favored by the greater need for more 
detailed information in the prediction. 
Nevertheless, our results show that finer resolution DEMs are not always the best 
choice in DSM, which agrees with other works (CAVAZZI et al. 2013; SENA et al. 
2020). Thus, the relationship between the DEMs' scale and the digital soil maps needs 
to be analyzed more closely for advances in DSM.  Nowadays, this is an approach 
more needed than ever in the context of the Brazilian Soil Program (PronaSolos), 
which aims to soil map all the Brazilian territory at detailed scales using the DSM 
techniques.  
 

Conclusions 
 
In general, the 90 m DEMs allowed more accurate soil predictions, highlighting the 
COPERNICUS GLO-90. Among the 90 m DEMs, the MERIT provided the worst 
results. Among the 30 m DEMs, the TOPODATA provided the best results, whereas 
the ALOS PALSAR of 12.5 m presented accuracy similar to the 30 m DEMs. 
The results did not show a clear pattern between the spatial resolution of DEMs and 
the uncertainty of prediction, with 90 m and 30 m DEMs among the DEMs providing 
the best certainty (SRTM1, SRTM3) and the worst uncertainty of prediction (MERIT, 
ALOS World 3D).  
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Thematic Session: PEDOMETRICS GUIDELINES TO SYSTEMATIC SOIL  

 
Abstract 
 
The objective of this study was to show a methodology to obtain a preliminary legend of a 
soil map, it can guide the pedologists in the field works to elaborate soil class maps in 
detailed scale. The study area is located in a mountainous relief in the Atlantic Plateau, in 
Jundiaí, São Paulo State.. Is a small area with 59 hectares. The original soil map of the area 
was made in 1:10,000 scale. Was generated a digital terrain model (DTM) with 4 m of spatial 
resolution. Based in the DTM are generated derivated maps like altitude, curvature, slope 
and distance from the streams. Soil orders were identified in 104 sampled points. At these 
points, morphometric information was used to classify the soils using the random forest 
method. The digital map produced was interpolated using the R software. The digital map 
generated had a Kappa accuracy index of 0.79, higher than that of the traditional map, which 
was 0.75. Overlapping the two maps overall 70% global equivalence, being satisfactory. 
Keywords: Digital terrain model; digital soil mapping; machine learning; soil survey. 

 
Introduction 
 
This work applied a pedological mapping methodology, in an experimental center of 
“APTA-Frutas” in Jundiaí, SP, using the morfometric parameters and machine 
learning to elaborate pedologic maps. The aim of the work is show a methodology to 
obtain a preliminary legend of a soil map (digital map), it can guide the pedologists in 
the field works to elaborate soil class maps. The objective is compare the preliminary 
map with other map made by tradicional pedological (traditional map) methodologies. 
 
Methodology 
 
The study area is located in a mountainous relief in the Atlantic Plateau, in Jundiaí, 
São Paulo State. The land use and land cover in the area are predominantly apple, 
vineyard, peach, citrus and natural vegetation. Is a small area with 59 hectares. The 
original soil map of the area was made in 1:10,000 scale in the detailed level. Was 
generated a digital terrain model (DTM) with 4 m of spatial resolution based in a 
topographical map in 1:10,000 scale, the level curves are equidistant of 5m. Was 
used the TOPOGRID function with ArcInfo software. Based in the DTM are 
generated derivated maps like altitude, curvature, slope and distance from the 
streams. 
 
Soil orders were identified in 104 sampled points. At these points, morphometric 
information was used to classify the soils using the random forest method 
(BREIMAN, 2001; LIAW & WIENER, 2002). The digital map produced was 
interpolated using the R software. 
 



 

 

 

 

The validation of the digital map and verification of accuracy was performed by 
calculating the Kappa index (K). The digital map was also overlaid with the traditional 
one, and compared. 
 

Results and discussion 
 
The altitude map vary from 690 m to 757 m. The slope map vary from 0 to 72 % 
(Figure 1). The soil identified in the study area was Latosol, Argisol, Cambisol and 
Gleisol. 
 
Considering digital map, of the 104 sampling points used for training, 90% were 
correct in the classification, reaching a K of 0.79, which is considered a very good 
result. Considering traditional map, of the 104 sampling points used for training, 88% 
were correct in the classification, reaching a K of 0.75, result lower than that obtained 
for digital mapping. The class that had the worst classification in the traditional map 
was the Gelisols, as a result of the polygon in the traditional map being very narrow, 
that is, there was an underestimation of the area occupied by this soil class. 
Assessing each class individually, the traditional map was more successful for 
Cambisols and Latosols. And the digital map for Gleisols and Argisols. 
 
The traditional pedological map was crossing with digital soil map (Figure 2), with 
global equivalence of 70%, and K equal 0.38, in the Cambisol the equivalence in 
area was 84%, and in the Gleisol the equivalence was 67%, this two soils types the 
equivalence are high. In the Argisol the equivalence was 46% and in the Latosol the 
equivalence was only 21% in area. The Latosol and Argisol had confuse with 
Cambisol. 
 
Conclusions 
 
This methodology presents in the present work showed adequate to effect the 
preliminary mapping of some types of soils. The methodology cannot completely 
replace traditional mapping and is very useful in guiding sampling and preliminary 
mapping. 
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Figure 1. Maps derived from DEM of CAPTA-Frutas, Jundiaí, SP, Brazil. (a) altitude 
with level curves, hydrography and buffer; (b) curvature; (c) slope. 
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Figure 2. Digital soil map derived from DTM (a), and traditional soil mapping of 
CAPTA-Frutas, Jundiaí, SP, Brazil. CX: Haplic Cambisol; GX: Haplic Gleisol; LA: 
Yellow Latosol; PA: Yellow Argisol. 
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Prediction Of Soil Carbon Stock In The Piaui State Coast By Remote Sensing 
 

PORTELA, Mirya G. T.1; VALLADARES, Gustavo S.; PEREIRA, Marcos G.; 
CABRAL, Léya, J.R.S.; AMORIM, João V.A.; ESPINDOLA, Giovana M. de 

1 Federal University of Piaui, mgagronoma@yahoo.com.br 

 
Thematic Session: PEDOMETRICS GUIDELINES TO SYSTEMATIC SOIL  

 
Abstract 
The objective of this study was to determine the organic carbon content (SOC) and soil 
carbon stocks under five different vegetations in the Parnaíba River Delta (PRD) in the 
Caatinga domain, located in the Brazilian state of Piauí, and to estimate them by using three 
predictive methods and the spectral bands and vegetation indexes derived from the Landsat 
8 images. The Soil samples were collected for 40 points distributed in the area, where SOC 
and carbon stocks were determined, under vegetation classified as Psammophile pioneer 
vegetation (PPV), Dune subevergreen vegetation (DSV), Mangrove evergreen vegetation 
(MEV), Floodplain vegetation (FV), and vegetation associated with Carnaubals (VC). 
Afterward, the SOC of 0-10 cm and carbon stocks of 0-100 cm (CS100) were predicted using 
three predictive methods: multiple linear regression (MLR), ordinary kriging (OK) and 
regression kriging (RK). The results are that the soils under the mangrove evergreen 
vegetation showed the highest averages for carbon concentrations and carbon stocks for all 
stratus. In the SOC and CS100 predictions, it was observed that regression kriging (RK) was 
the best method, and this methodology can be used in soil carbon mapping in other areas. 
Keywords: Parnaíba Delta; digital soil mapping; prediction methods; blue carbon. 

 
Introduction 
 
The SOC is a dynamic property of this compartment and what represents the critical 
component of forest ecosystems, considered as potential carbon stores. 
Coastal environments support biodiverse habitats of conservation interest and 
provide other essential benefits, such as carbon sequestration, due to the high rates 
of soil carbon accumulation. This carbon, called blue carbon, plays an essential role 
in climate change mitigation strategies, and presents variability depending on the 
region and factors such as soil and existing vegetation. 
 
More research is needed in order to map SOC and CS in coastal regions, especially 
tropical rich mangroves. In these areas access is commonly difficult, as is soil 
sampling. Among the main difficulties in soil studies, the fact that SOC 
measurements require soil sampling, being expensive and time-consuming. 
Consequently, the number of samples available in a given area is generally scarce 
and does not reflect the actual level of variation that may be present in the study 
sites. Therefore, the precise interpolation of carbon concentrations in unsampled 
locations is necessary for better planning and management of theses areas. 
 
Some techniques, from simple linear models to sophisticated techniques have been 
used to estimate the soil organic carbon. Multiple linear regression was more 
substantial compared to other methods in predicting organic carbon in soils in 
southern Brazil and in the Central Amazon.  



 

 

 

 

This study aimed to determine the concentrations and carbon stocks in the soils of 
the Parnaíba River Delta (PRD), Piauí, employing digital soil mapping techniques. 
 
Methodology 
 
The study area is located in the state of Piauí, in the western portion of the northeast 
region of Brazil and comprises part of the Parnaíba River Delta Environmental 
Protection Area (APA), and portion of the Parnaíba Delta Marine Extractive Reserve 
(Resex). It occupies, more precisely, the region limited by the Igaraçu River on the 
southeast, Parnaíba River on the west, and the Atlantic Ocean, covering the 
municipality of Ilha Grande and part of Parnaíba, occupying an area of approximately 
282 km2, with approximately 8 km2 of it on the Parnaíba Delta Marine Extractive 
Reserve. This APA is characterized by presenting a mosaic of ecosystems 
intersected by bays and estuaries, also being a very dynamic fluvial-marine region 
formed by the ecological tension between Caatinga, Cerrado, and marine systems. 
 
The study was carried out from December 2016 to February 2017, in five areas with 
different vegetation types, classified as Psammophile pioneer vegetation (PPV), 
Dune subevergreen vegetation (DSV), Mangrove evergreen vegetation (MEV), 
Floodplain vegetation (FV), and vegetation associated with Carnaubals (VC). The 
points for carrying out the soil survey were previously defined, considering areas of 
high representativeness regarding the structure of the vegetation, based on the 
preliminary knowledge of the area, based on the photo interpretation also to obtain 
more significant variability, and on the Normalized Difference Vegetation Index 
(NDVI) and its variations. Through this index, it was possible to verify the density of 
photosynthetically active vegetation and, in this way, highlight the sample points in 
the study area. 
 
Besides, considering that it is an area of native vegetation, the access routes are 
difficult. Consequently, collection points with greater accessibility for the work team 
were chosen, however, making sure to move at least 100 m away from the edges of 
roads and looking for the points preferably closer to those previously defined. 
The soils were collected from 40 sample points of representative areas of the 
different types of vegetation, making a total of 242 samples of layers or horizons of 
soil profiles up to 100 cm deep. The soils collected represents 11 classes. 
 
SOC contents were quantified using the wet oxidation method, which is based on the 
oxidation of organic carbon using dichromate ions in sulfuric medium. To determine 
the bulk density (Bd), the volumetric ring method was used. After determining the soil 
density, carbon stocks were calculated following Batjes (2000). 
 
The spectral variables used to estimate the SOC and CS100, were obtained from 
images of the OLI sensor (Operational Land Imager), Landsat 8, orbit/point 219/062. 
The images obtained from the OLI instrument consist of nine multispectral bands, but 
in the study, only six bands were used (band 2 to band 7), the ones in the rang of the 
visible and infrared spectrums. 
 



 

 

 

 

The image was collected in June 21st, 2016, obtained from the United States 
Geological Survey (USGS), with cloud coverage of 5.7%, solar elevation angle of 
52.20, and azimuth angle of 44.36 degrees. 
From the bands, eight indexes were generated: RVI, NDVI, SAVI, EVI, NDWI, 
GNDVI, MNDWI, CTVI. All remote sensing covariate rasters were assembled in a 
Geographic Information System (GIS) and their values extracted to the field soil data 
in ArcGis deriving the database used to build the forecasting models. 
 
Three methods were used to predict the SOC and CS100, including multiple linear 
regression (MLR), ordinary kriging (OK) and regression kriging (RK). The MLR 
consists of determining the adjusted equations considering the soil variables as a 
dependent variable and all vegetation bands and indexes as the independent 
variables. The Stepwise backward algorithm was used to choose the most significant 
independent variables in the regression. The variable selection model (p <0.05) was 
calculated in XLSTAT, an extension of Microsoft Excel, for the CS100. The OK is a 
univariate method that uses the primary variable (SOC or CS) measured at sample 
points to predict them in non-sampled locations.  In the method, the mean is taken as 
a constant, but unknow, value and its satationary is assumed only within a local 
neighborhood centered on the location being forecast.  The RK is a hybrid 
geostatistical method, as it encompasses two approaches: first, it uses regression to 
predict a variable, and then it uses simple kriging to interpolate the residuals of the 
regression model (Hengl et al., 2004), and by difference improve the estimates. The 
RK used in this study was the type C, which involves an ordinary regression model 
followed by kriging the values of the regression residuals. The models of organic 
carbon concentration and carbon stocks were validated with 20% of the data, using 
three statistical parameters: RMSE, MAE, and R2. 
 

Results and discussion 
 
The SOC under vegetation ranged from 0.03 to 92.76 g kg-1 of soil, with the highest 
average levels observed in soils under mangroove evergreen vegetation and the 
lowest average levels associated with soils under dune subevergreen vegetation 
Among the vegetations, the levels of organic carbon in MEV ranged from 18.02 to 
92.76 g kg-1, in FV ranged from 1.16 to 66.73 g kg-1, in VC ranged from 0.25 to 46.59 
g kg-1, in DSV ranged from 0.03 to 3.67 g kg-1, and in PPV ranged from 0.13 to 6.70 g 
kg-1. 
 
The CS100  values, regardless of vegetation, ranged from 5.83 to 466.63 Mg ha-1. It 
was observed that the highest average value of carbon stock in the soil is associated 
with the mangrove evergreen vegetation, and the lowest averages associated with 
psammophile pioneer vegetation and dune subevergreen vegetation (p <0.01) 
(Figure 1), as well as observed for carbon content. 

 



 

 

 

 

 
Figure 1. Average soil carbon stocks, in the different vegetation types in the Parnaíba 
River Delta, at 0-100 cm depths. MEV = Magrove evergreen vegetation; FV = 
Floodplain vegetation; VC = Carnaubal vegetation; PPV = Pioneer psamophilic 
vegetation; DSV=Dune subvergreen vegetation. Means of the same letter do not 
differ statistically. CV%0-100cm= 18,10%. 
 
In the SOC and CS100 predictions, it was observed that RK had the lowest RMSE 
(5.54 g.kg-1 and 38.35 Mg.ha-1, respectively) and highest R2 (0.97 and 0.95, 
respectively), being considered the best method for predicting these variables in the 
study area. The independent variables that showed the best responses for predicting 
CS100 were band 3, band 6 and band 7 . 
 

Conclusions 
 
Soils under mangrove evergreen vegetation have higher SOC compared to other 
vegetations, as well as carbon stocks. In this environment in sandy soils, the lowest 
SOC and CS values were verified. In all soils, regardless of vegetation, carbon 
concentrations have decreased in depth. Among the prediction methods, RK was the 
most suitable for predicting CS, and the independent variables that presented the 
best responses were band 3, band 6, and band 7 (for CS100). The models used 
were satisfactory in the digital mapping of CS in the soils of the Parnaíba River Delta, 
and can be applied to others areas. 
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Abstract 

Proximal sensing is a tool of relevance to pedology, as it provides suitable and 

quick information about soil attributes. The majority of the studies focus on the 
isolated use of proximal sensors in different wavelengths of the spectrum to getdata 
soil properties. Although sensors work on a specific range, the combination of them 

tends to increase the amount of information about soil. This study aimed to carry out 
a discriminant analysis of soil profiles, through the evaluation of spectral data from 

several bands along the electromagnetic spectrum together, including X-Ray 
fluorescence (XRF), visible (Vis), near (NIR) and short-wave infrared (SWIR), 350 - 
2500 nm, and mid-infrared (Mid-IR, 2500 - 25000 nm). For that, this study had 5 

steps. Fifteen soil profiles were morphologically described and collected in the state 
of Maranhão, Brazil, with subsequent laboratory analyses and taxonomic 

classification (Step 1), followed by the spectral acquisition of soil samples in the 
ranges X-Ray, Vis-NIR-SWIR e Middle Infrared (Step 2). After, was performed the 
Pearson correlation of the raw spectrum with soil attributes to choose of spectrum 

ranges further importants (Step 3). Thereafter, the cluster analysis of the soil profile 
considering color and spectral behavior. Last, the grouped soil was characterized 

and discriminated due to the spectral behavior of the soil profile, generating the 
description of the similarities between the soil profiles grouped together (Step 5). It is 
perceptible that the methodology used in this work was effective in complementing 

the soils discrimination, in terms of soil color, mineralogy and drainage conditions. 
 
 
Keywords: digital mapping; proximal sensing; remote sensing; pedometrics; soil monitoring. 

 

Introduction 

The determination of soil attributes using laboratory methods, such as physical, 

chemical, and X-ray diffraction (XRD) analyses, frequently is not a simple task 
because they are time-consuming, have considerable costs, and usually require wet-

chemistry analyses (Zhang and Hartemink, 2019). As an alternative, diffuse 
reflectance spectroscopy can generate data that captures electromagnetic radiation 
interaction across the spectrum using proximal sensors to the soil sample, providing 

information at low cost, quickly and for a wide range of applications (Linker, 2007), in 
addition to not generating chemical effluents (Silva et al., 2021). 

Proximal sensors can be an effective tool in the obtainment of soil information about 
the physical, chemical, and biological proprieties, performing your characterization 
and discrimination. When we use spectral sensors to analyze a soil profile, we are 



 

 

 

 

making morphometrics, i.e., the application of tools that allow the measurement and 

quantification of the object (Hartemink and Minasny, 2014). Therefore, this study 
aimed to evaluate the joint spectral data obtained from various ranges along the 

electromagnetic spectrum, including X-ray Fluorescence (XRF), visible (Vis), near 
(NIR) and short-wave infrared (SWIR), 350 - 2500 nm, and middle infrared (Mid-IR, 
2500 - 25000 nm) for complementing soil discrimination. We hope that the joint use 

of sensors is a complementary alternative to soil discrimination. 
 

Methodology 

This study had 5 steps (Figure 1). First, we carried out the collection of soil 

samples (Step 1), followed by the spectral acquisition of soil samples in the ranges 
X-Ray, Vis-NIR-SWIR e Middle Infrared (Step 2). After, was performed the Pearson 
correlation of the raw spectrum with soil attributes to choose of spectrum ranges 

further importants (Step 3). Thereafter, the cluster of the soil profile (Step 4.1) was 
done using only the visible range spectrum, due to the importance of soil color for its 

characterization and discrimination (Campos; Demattê, 2004). Then, a second 
grouping strategy (Step 4.2) was made up using the selected spectral bands by the 
Pearson correlation and considering the grouping of soil profiles by the result of their 

color. Last, the grouped soil was characterized and discriminated due to the spectral 
behavior of the soil profile, generating the description of the similarities between the 

soil profiles grouped together (Step 5). 

Figure 1. Flowchart about the methodology of study. 

 
Results and discussion 

First, the color of the soil grouped the profiles by drainage condition (Figure 2a 
and b).  Barbosa et al. (2019) mention that soils with gray and brown colors (Figure 



 

 

 

 

2a) are strongly influenced by hydromorphic processes, generally associated with flat 

areas with seasonal accumulation of water and SOM presence. These colors come 
from the deferrification process that takes place in the soil (Barbosa et al., 2019). In 

agreement with Campos and Demattê., (2004), the yellow and red colors of soils are 
related to the presence of goethite and hematite, respectively (Figure 2b). The 
processes of oxidation and reduction of iron determine morphological characteristics 

of soils, giving them distinct colors (Barbosa et al., 2019). Grouping by spectrum 
presented groups of Vertissolos (MA-02 and MA-09), Plitossolo (MA-03) and 

Planossolo (MA-04), Plitossolo (MA-12) and Gleissolo (MA-13), and Espodossolo 
(MA-01 and MA-16) for poorly drained soils or with a higher concentration of SOM 
(Figure 2a). For soils with reddish colors, the result of grouping by spectrum was 

Latossolo Amarelo (MA-10) with Latossolo Vermelho Amarelo (MA-11), Latossolo 
Vermelho (MA-11) with Nitossolo Vermelho (MA-07), and Luvissolos (MA-06 and 

MA-08). This result comes from the spectral similarity between the soil profiles. 
 

 
Figure 2. Cluster group a (soils with grayisher and brownisher colors) and cluster group b (soils with 

yellowisher and reddisher colors). The selected bands of the different spectra were: vis-NIR-SWIR 
(400 - 700, 1350 - 1450, 1900 - 2370 nm) and Mid-IR (3700 - 3300, 2760 - 2500, 2150 - 1875, 1200 - 
900, 740 - 625 cm-1). 

 

 



 

 

 

 
Conclusions 

The methodological approach using several spectral ranges in a simultaneous 
evaluation demonstrated that complementary discrimination of soil profiles via 

sensors is feasible. The spectral analyses can assess several soil attributes 
important for soil classification, such as mineralogy, color, soil organic matter, 
drainage, and texture. With its specific spectral range, each equipment furnish 

different and additional information to assess the soil attributes and their 
discrimination. Finally, there is no better spectral range, but the information is 

complementary. Each one brings differential information related to the soil properties. 
The combined use of sensors can assist pedologists in soil survey, discrimination, 
and classification, bringing accurate, fast, low cost and environmentally friendly 

information about soil attributes.  
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Abstract 
Objective: use of the multiple linear regression technique to quantify soil organic matter, 
using soil attribute variables, in commercial sugarcane fields in Brazil. The experiment was 
carried out in a sugarcane field in the municipality of Motuca, Guariba, Pradópolis and 
Aparecida do Taboado. The technique used was multiple linear regression and the 
dependent variable was soil organic matter (SOM) and the independent variables were 
available phosphorus (P), cation exchange capacity (CEC), air temperature (Tair), air 
temperature. soil (Ts), particle density (PD) and soil moisture (SM). The multiple linear 
regression learning technique estimated the SOM as a function of the variables P, CEC, Tair, 
Ts, PD and SM, in areas of raw sugarcane, showing the existence of a high relationship 
between independent and dependent variables. Studies like this one, related to the 
determination of soil parameters are important for farmers, as the information generated can 
be used in the management and decision-making of the productive and financial process, 
being an alternative for the characterization not only of SOM, but also of other soil attributes. 
 
Keywords: organic matter; multiple linear regression; soil physical and chemical attributes; 
Multivariate analysis. 
 

Introduction 

The covering formed by the sugarcane straw provides a condition that favors the 
accumulation of carbon in the soil, contributing to the mitigation of greenhouse gases 
(GHGs) in the agricultural production of ethanol and sugar. According to data from 

the National Supply Company - CONAB (2020), in the 2018/2019 harvest the planted 
area was around 8.59 million hectares and production was 620.44 million tons. The 
maintenance of straw in the crop allows the increase of soil organic matter, which 

can generate an amount of residues of 10-20 t ha-1 (TRIVELLIN et al., 2013). Organic 
residues that are formed by animal and vegetable residues, in different stages of 
decomposition (SILVA & MENDONÇA 2007), which is left on the soil after 

harvesting, resulting from the interactions that occur between the straw and the 
atmospheric, physical and chemical attributes of the soil. 
The spatial variability of edaphoclimatic conditions in Brazilian regions directly 

interferes with organic matter, affecting the soil organic carbon dynamics. In this 
context, the objective of this work was to develop a mechanistic-empirical model, 
using the exploratory multivariate analysis of multiple linear regression data to predict 

the influence of each element of the soil-plant-atmosphere system in the soil organic 
matter quantification process, using the variables of the physical and chemical 



 

 

 

 

attributes of the soil and climatic data, in commercial areas cultivated with the 
sugarcane culture in Brazil. 
 

Methodology 
The study was carried out in a commercial area with sugarcane cultivation, under the 
raw cane management system, in Guariba - SP, Pradópolis - SP, Motuca - SP and 

Aparecida do Taboado - MS. In SP, the soils were classified as Latossolo Vermelho 
Eutroférrico and in MS as Latossolo Vermelho Distroférrico. Both had a clayey 
texture and the climate was Aw, with an average annual temperature of 23.7 ºC. Soil 

temperature was recorded by the LI-COR system (LI-8100). Soil moisture (SM) was 
measured by TDR equipment (Time Domain Reflectometry - Hydrosense TM, 
Campbell Scientific, Australia). After completion of the measurements, soil samples 

were collected at a depth of 0 to 0.10 m and later sieved in a 2 mm mesh. For 
chemical analysis, the following attributes were extracted: cation exchange capacity 
(CEC) and available phosphorus (P) content of the soil (RAIJ et al., 2001). From 

these same samples, the PD was also determined (EMBRAPA, 1997). the air 
temperature (Tair) was obtained by the NASA Power platform. All assessments were 
carried out at the beginning of the sugarcane crop development phase. Data were 

initially analyzed using descriptive statistics and the Shapiro-Wilk test at a 5% 
probability level. Then, the correlation matrix was performed using the Pearson 
method. The statistical technique used for the elaboration of the empirical-

mechanistic model was the exploratory analysis of the multiple linear regression 
data. To evaluate the performance of the model, the following statistical indices were 
used: Coefficient of determination (R2), Adjusted coefficient of determination (R2 adj), 

Mean squared error (MSE), Mean squared error (RMSE), Akaike information criterion 
(AIC) and Schwarz Bayesian Criterion (BIC). For the realization of the model, 24 
were used, with 18 points being used for the prediction of the model and 6 sampling 

points for validation. 
 

Results and discussion 

The multiple linear regression equation that was estimated to explain the SOM as a 
function of the variables P, CEC, Tair, Ts, PD and SM was represented by Equation 
1:  

SOM = - 62.8932 - 0.5957 P + 0.4946 CEC – 3.2200 e-15 Tair – 5.3290 e-15 Ts + 
22.4228 PD – 2.2200 e-15 SM 
Where: SOM: soil organic matter (g dm-3); P: available phosphorus (mg dm-3); 

CEC: cation exchange capacity (mmolc dm-3); Tair: air temperature up to 2 meters 
above the ground (°C); Ts: soil temperature (°C); SM = soil moisture (% of volume); 
PD: particle density (kg dm-3); SM: Soil moisture (mm). 

The value of the coefficient of determination of this model was R2 = 0.999, and its 
respective adjusted value was, that is, 98.5% of the variations in the SOM estimate 
can be explained by variations in the values of the independent variables. The 

remaining 1.5% are sources of variations that are explained by other factors. 
Regarding the likelihood study of the model, the Akaike test (AIC) was performed, 
whose value was -1430 and the Schwarz Bayesian Criterion test (BIC), whose 

measured value was -1422.  In both cases, it’s observed that the independent  



 

 

 

 

variables showed strong relationships with the dependent variable, showing that 
there is a strong relationship between the studied variables. 
As a function of the predicted model for the SOM, the value of the linear coefficient 

was -62.8932 and presented statistical significance within the model (p-value = 
0.000), showing that this coefficient strongly impacts the determination of the model. 
When the slopes were analyzed, the following results were obtained for the 

dependent variables: P = -0.5957, CEC = 0.4946, Tair = -3.2200e-15, Ts = -5.3290e-

15, PD = 22.4228 and SM = -2.2200e-15. Regarding the level of significance, p-values 
of 0.000, 0.000, 0.477, 0.433, 0.000 and 0.516, respectively, were observed. The 

variables that showed strong explanatory power in the model, through the level of 
significance, were P, CEC and PD. The SM, Tair and Ts variables did not show a 
significant level that could impact the model, but if this model is replicated for another 

data set, a greater relationship can be observed. 
 
Observed SOM versus Estimated SOM 

The linear regression formula that was estimated to validate the estimated SOM 
values as a function of the observed values was represented by Equation 2:  
SOM_estimated = -1.243e-14 + 1.000 SOM_observed 

Where: SOM_estimated: soil organic matter (g dm-3) estimated; SOM_observed: soil 
organic matter (g dm-3) observed.  
Similar to the study of the prediction of SOM, the value of the coefficient of 

determination of this model was R2 = 0.999, and the value of the adjusted coefficient 
of determination was that is, 98.5% of the variations in the estimate of the SOM can 
be explained by variations in values of the independent variables. The remaining 

1.5% are sources of variations that are explained by factors. In addition, the Akaike 
test (AIC) was also performed, whose value was -1468. The value found by the 
Schwarz Bayesian Criterion (BIC) to describe the interactions between the variables 

that maximize the probability of choosing the true model, whose measured value was 
-1466. For the two evaluative parameters, strong interactions of the independent 
variable with the dependent variable were observed, evidencing the strong 

linteraction of the observed SOM with the estimated SOM. 

 
Figure 1. Plotting observed SOM data versus estimated SOM by the regression 

equation. 



 

 

 

 

Figure 1 shows the graph of observed SOM versus estimated SOM. It is observed 
that the straight line angle, in relation to the linear fit was 45 degrees, characterizing 
the strong relationship between the observed SOM and the estimating SOM. In 

addition, also obtained the values of the RMSE (root mean squared error) which 
means the "root mean squared error" and also the MSE (mean squared error) which 
means the "mean squared error", values of 0 were found. stops the two parameters, 

showing that the observed and estimated values had high correlations. 
 
Conclusions 

It was observed that the multiple linear regression learning technique was able to 
estimate the SOM as a function of the variables P, CEC, Tair, Ts, PD and SM, in 
areas of raw sugarcane, showing the existence of a high relationship between 

independent and dependent variables. 
Studies like this one, related to the determination of soil parameters are important for 
farmers, as the information generated can be used in the management and decision-

making of the productive and financial process, being an alternative for the 
characterization not only of SOM, but also of other soil attributes. 
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Abstract 
Objective: To determine the structure of spatial variability of soil carbon losses, expressed by 
k, and its relationship with soil attributes, in sugarcane fields in the Brazilian Cerrado. The 
experiment was carried out in a sugarcane field in the municipality of Aparecida do Taboado 
(APT), in the state of Mato Grosso do Sul. The determination of CO2 emissions from the soil 
was recorded by the LI-COR system (LI-8100). Principal components 1 and 2 (CP1 and 
CP2) explained 40.57% and 23.66% of the total variability of the data, respectively. The 
physical attributes of the soil correlates independently with CP1, linked to soil water. For CP2 
the correlations were observed with chemical attributes, linked to soil fertility. The analysis of 
parameters corresponding to the spatial patterns of k with CP1 and CP2 previous and equal. 
The potential for carbon accumulation in the soil presents high spatial variability on a small 
scale, determined by changes in spatial patterns of k, proposing specific management 
regions. 
 
Keywords: Spatial variability; principal component analysis; soil physical and chemical 
attributes, FCO2; Multivariate analysis. 
 

Introduction 
The covering formed by the sugarcane straw provides a condition that favors the 

accumulation of carbon in the soil, contributing to the mitigation of GHGs in the 
agricultural production of ethanol and sugar. According to data from the National 
Supply Company - CONAB (2019), in the 2018/2019 harvest the planted area was 

around 8.59 million hectares and production was 620.44 million tons. The State of 
São Paulo was the largest producer in the country, with 4.43 million hectares and 
production of 332.88 million tons, representing 53.65% of the processed sugarcane. 

The state of Mato Grosso do Sul is the fourth largest producer in the country, with 
647.4 thousand hectares and production of 49.50 million tons, where it was 
responsible for 7.54% of Brazilian production. The proper use of soil management 

practices is of great importance for the process of mitigating GHG emissions in the 
soil. The practices of eliminating stumps by preparing the soil in sugarcane areas can 
lead to significant losses of soil carbon due to CO2 emissions. The soil attributes that 

most influence the process of production and transfer of CO2 into the soil are: soil 
density, soil texture, free water porosity, soil temperature and soil moisture 
(MOITINHO et al., 2015). The objective of this work was to determine the multivariate 

structure of the spatial variability of carbon losses, via CO2 emissions, in agricultural 



 

 

 

 

soils of the Brazilian Cerrado, under a commercial area cultivated with sugarcane, 
and to analyze its relationship with the attributes. physical and chemical soil. 
 

 

Methodology 

The study was carried out in a commercial area under the cultivation of sugarcane, in 
the raw cane management system, in Motuca – SP and Aparecida do Taboado – 
MS. The soils were classified as Eutroferric Red Latosol and Dystroferric Red Latosol 

respectively. Both had a clayey texture and the climate was Aw, with an average 
annual temperature of 23.7 ºC. Soil CO2 emission (Fm) and soil temperature were 
recorded by the LI-COR system (LI-8100). Soil moisture (Us) was measured by TDR 

equipment (Time Domain Reflectometry - Hydrosense TM, Campbell Scientific, 
Australia). The carbon stock (Estc) was calculated for a depth of 0.10 m (Estc = 
(CO.Ds.E).0.1; Estc = carbon stock (Mg ha-1); CO = organic carbon content 

oxidizable (g kg-1); Ds = soil density (kg dm-3); E = thickness of the studied layer 
(0.10 m)). After completion of the measurements, soil samples were collected at a 
depth from 0 to 0.10 m and later sieved in a 2 mm mesh. For chemical analysis, the 

following attributes were extracted: cation exchange capacity (CTC) and available 
phosphorus (P) content of the soil (RAIJ et al., 2001). From these same samples, the 
Ds was also determined (EMBRAPA, 1997). All assessments were carried out at the 
beginning of the sugarcane crop development stage. Data were initially analyzed 

using descriptive statistics and the Shapiro-Wilk test at a 5% probability level. Then, 
the correlation matrix was performed using the Pearson method. The Factor Analysis 
multivariate statistical method was used to determine the processes between CO2 

flux and soil attributes. To determine the explanatory power of the main components, 
the data covariance matrix was used, from which the eigenvalues that originate the 
eigenvectors were extracted (Kaiser, 1958). 

 

Results and discussion 

The first principal component, CP1, explained 59.20% of the total variance of the soil 
properties, while 14.36% was explained by CP2, totaling 73.56% of the variability of 
the soil properties. The formation of two groups was also observed: group I, with 

greater dispersion of points in the two-dimensional representation, located on the left 
side of the biplot plot of points, from the experimental area of Motuca, and group II, 
located to the right of CP1 and formed by Aparecida do Taboado. In the first main 

component and in order of importance, the attributes that presented the highest 
correlation coefficients were free water porosity - PLA (0.949), soil moisture - Um (-
0.940), cation exchange capacity - CTC ( -0.939), carbon stock – EstC (-0.742), 

available phosphorus – P (-0.724) and Macroporosity - Macro (0.564). In the second 
component, the only variable that showed importance was the emission of CO2 from 
the soil – Fm (0.890). There was a contrast with respect to soil attributes, where 

Motuca had higher values of P, CTC, Um and EstC, when compared to Aparecida do 
Taboado, which in turn had higher PLA and Macro. These relationships directly 
interfered with the stability of carbon in the soil, directly impacting the processes of 

decomposition of organic matter and the flow of carbon in the soil (Figure 1). 



 

 

 

 

 
Figure 1. Biplot plot of CP1 and CP2 principal components of the principal 
component analysis with all sampling points and the following variables: soil CO2 

emission (Fm), soil carbon stock (Estc), free water porosity (PLA), available 
phosphorus (P), macroporosity (Macro), cation exchange capacity (CTC) and soil 
moisture (Um). 

CP1 - main components 1; CP2 - main components 2; Fm = CO2 emission factor 
(μmol m-2s-1); Um = soil moisture (%); Macro = macroporosity (%); P = available 
phosphorus (mg dm-3); CTC = cation exchange capacity (mmolc dm-3); Estc = soil 

carbon stock (Mg ha-1); PLA = water free porosity (%). 
 
In the cluster analysis, a contrast was observed between the points of high (A) and 

low (B) emissions in Motuca, which also happened in Aparecida do Taboado - MS, 
but the formation of an overlapping region, located more to the center, with points of 
high (A) and low (B) emissions, with a separation at the end, but with low intensity 

(Figure 2). The attributes of the soils that most influenced the Fm process were PLA, 
Um, CTC and P. When comparing this information with the cluster analysis, it is 
evident that the values of higher emissions represented by A are positively correlated 

with PLA, CTC, P and negatively with Um; whereas, for the points with higher 
emission, there is high PLA, CTC, P. For lower values of Fm, higher values of Um 
are observed. 

 



 

 

 

 

Figure 2: Variables in three classes of soil CO2 emission groups for Motuca (1) and 
Aparecida do Taboado (2). 
 

Conclusions 
Significant correlation coefficients were observed between the main components and 

the k factor in all study areas, where the physical attributes of the soil were the main 
responsible for CO2 emissions, in areas of raw sugarcane, in the municipality of 
Motuca, in the state of Sao Paulo. In the municipality of Aparecida do Taboado - MS, 

the chemical properties of the soil were the main responsible for changing the spatial 
patterns of stability of carbon in the soil. 
The results showed that within the same area, there were changes in the spatial 

patterns of k, leading to the occurrence of regions with potential accumulation or 
sequestration of carbon in the soil in sugarcane cultivation areas. used to improve 
the performance of agricultural practices, especially those related to soil preparation, 

use of agricultural inputs, accumulation of OM in the form of straw, water 
management, soil water content and mainly to promote the mitigation of greenhouse 
gases. 

 

Acknowledgements 
Coordination for the Improvement of Higher Education Personnel (CAPES), 

Universidade Estadual Paulista (UNESP), Soil Characterization for Specific 
Management Purposes (CSME) and the Group of Agrometeorological Studies (GAS) 
for their support. 

 

References 
MOITINHO, M. R., PADOVAN, M. P., PANOSSO, A. R., TEIXEIRA, D. B., 

FERRAUDO, A. S., LA SCALA, N. On the spatial and temporal dependence of CO2 
emission on soil properties in sugarcane (Saccharum spp.) production, Amsterdam, 
Soil and Tillage Research, v. 148, p. 127-132, 2015. 

 
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA-CNPS). 
Manual de métodos de análise de solo (In Portuguese), Centro Nacional De 

Pesquisa De Solos (2nd ed). Rio de Janeiro, Brazil, 1997. 
 
KAISER, H. F. The varimax criterion for analytic rotation in factor analysis. New York, 

Psychometrika, v. 23, p. 187-200, 1958. 
 
RAIJ, B.V. Análise química para avaliação da fertilidade de solos tropicais.  

Campinas: Instituto Agronômico, 2001, 285 p.  
 

 

 

 

 

 



Field Navigation Mobile App – Agroecological zoning of the Mato Grosso 
do Sul state – ZAE/MS 

 
Bhering, Silvio Barge1; Dias, Hiran Silva2; Carvalho Junior, Waldir1; Chagas, 
Cesar da Silva1; Pereira, Nilson Rendeiro1; Oliveira, Aline Pacobahyba; Lopes, 
Carlos Henrique Lemos3 

1
Embrapa Solos, {silvio.bhering;waldir.carvalho; nilson.pereira; cesar.chagas; 

aline.oliveira}@embrapa.br; 
2
Serviço Geológico do Brasil - CPRM, hiran.dias@cprm.gov.br 

3
Secretaria de Estado de Meio Ambiente, Desenvolvimento Econômico, Produção e Agricultura 

Familiar – SEMAGRO,chlopes@semagro.ms.gov.br 
 

Thematic Session: Pedometrics guidelines to systematics soil survey 

Abstract 

Obtaining primary soil data to support zoning studies is rare in Brazil. Navigation and 
adequate location of defined sampling points are limitations in the application of 
sampling design statistical techniques in large areas. The development of an mobile 
app, based on a platform of geographic information system for orientation and 
adequate location of sampling points, presented facilities compared to traditional 
navigation techniques in the field. 
Keywords: soil survey; pedrometrics; sample design 

Introduction 

Zoning studies are a traditional instrument of planning and ordering. Zoning studies 
may have various aspects, its land use and occupation are widely applied in urban and 
rural areas. 

Due to the lack of data on natural resources in Brazil at compatible scales 
(=>1:100,000), these studies are traditionally based on secondary data. This zoning 
study is entirely based on the use of primary soil data and of pedometric techniques 
and it presented some new challenges. 

Despite the advances made in the preparation of soil surveys, particularly with the 
adoption of digital soil mapping, either for attributes or for soil classes, the exact 
location and access by statistical techniques to predefined sampling points has been a 
great challenge. 

This work presents the solution adopted in the Agroecological Zoning of the State of 
Mato Grosso do Sul (under development by Embrapa in partnership with the State 
Government) for navigation and access to description points and soil samples 
gathering. 

Methodology 

The environmental covariates used to classify were selected from an initial set of 25 
covariates. From this set, the variables were selected by eliminating the ones with high 
correlation (nonlinear correlation above 95%) to avoid the collinearity effect. In a 
second stage, among the categorical variables, those with high similarity were 
identified. Afterwards, the most important variables were ranked using the “Importance” 
function of the Randon Forest algorithm. The final set were composed of eight 
covariates. The morphometric variables related to the terrain were obtained through the 
R software with the R-Saga package, from the Digital Elevation Model (NASA JPL, 
2020). 

https://www.embrapa.br/busca-de-publicacoes/-/publicacao/list/autoria/nome/carlos-henrique-l-lopes?p_auth=o5n81Ksa
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/list/autoria/nome/carlos-henrique-l-lopes?p_auth=o5n81Ksa


Categorical maps of the main geomorphological compartments of the state were 
additionally used, in addition to the lithology, based on the geological map (IBGE, 
2021), vegetation (IBGE, 2021), soils (IBGE, 2021) and geodiversity (CPRM, 2009). 

The sampling points were obtained through the geographically distributed stratified 
random sampling technique. Spatial restriction of a distance of less than 250m from the 
access roads available in the information plan of the basic cartographic material was 
used to favor access to the points. Latin Hypercube Conditioning method available in 
the R software (R Core team, 2020) was used in this procedure. 

The first challenge in browser development was planning all the content (information 
layers and their features). The information layers, the form of presentation, display 
scales and symbologies used were defined in this stage. The entire set of basic 
information, including the basemap, consists of a satellite image and needs to be 
configured individually. The set is later encapsulated to enable its operation in offline 
mode since in areas with large geographic coverage and far from municipal 
headquarters internet connection is normally not available. 

 

The municipal division with the location of the respective municipal headquarters, the 
access roads, individualized by type of pavement and jurisdiction, the hydrography and 
the mapping of categorical covariates already used in the definition of the sampling 
design were used as support information layers. This happened in this construction to 
facilitate access to predefined sampling points in the sampling design. 

 

The application for field navigation was developed using ArcGis Explorer. All steps are 
performed in ArcGis Pro and the generated files are encapsulated for loading in the 
ArcGis Explorer software in this construction. 

Results and discussion 

Relevant aspect to be considered in the sampling design refers to the possible 
concentration of points in top elevation areas associated with water dividers, preferred 
location of most access roads. Thus, performing geographically distributed adjustments 
to the sampling plan with the adoption of toposequences was totally satisfactory for 
navigation and sampling (Figure 1). 

Therefore, the indication of the spatial location of the soil samples corresponds to the 
spatial distribution of the covariates. 

 



 

Figure 1. Sampling design for Agroecological Zoning of Mato Grosso do Sul 
state – Phase 3. 
 

The standardization of maximum and minimum viewing scales of information layers in 
the file inserted in the application is associated with the need for visual details 
necessary for full navigation and with the size of the file generated for encapsulation. 
Though its size is limited by the mobile device hardware characteristics. 

The standard area to be covered must be taken into account in the file development to 
be into the application used for field navigation. This area should be determined by 
maximum zoom scale desired. The scale must be suitable for navigating visual detail 
that can be identified by standard and alternative access to sampling points and the 
size of the file to be encapsulated. 

Two example screens of the navigation application for mobile devices are presented 
below. It shows the navigation screen with the estimated location of points, the basic 
map used for navigation and in another a list of information layers enabled for support 
and information. 

 



  

Figure 2. Navigation mobile appscreens. 

Conclusions 

Field Navigator use enabled the adoption of the sampling statistics technique since the 
main challenge encountered was orientation difficulty and sampling points access. 

This difficulty was consolidated by the use of traditional global positioning system 
devices associated with outdated altimetric bases and satellite images in printed 
media. 

The application overcame the traditional techniques difficulties which incorporated a 
high time consumption,  navigation uncertainty and accessbility difficulty of 
alternative routes. 
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