Empresa Brasileira de Pesquisa Agropecuária Embrapa Solos Ministério da Agricultura, Pecuária e Abastecimento Secretaria de Desenvolvimento Agropecuário e Cooperativismo Departamento de Propriedade Intelectual e Tecnologia da Agropecuária

GEOESTATÍSTICA APLICADA NA AGRICULTURA DE PRECISÃO UTILIZANDO O VESPER

Ronaldo Pereira de Oliveira Célia Regina Grego Ziany Neiva Brandão Editores Técnicos

Embrapa

Brasília, DF 2015

Capítulo 6

Ronaldo Pereira de Oliveira

Predição Espacial

6.1 Krigagem no Vesper

Com base nas definições e fundamentos dos métodos de interpolação por krigagem discutidos anteriormente nos Itens 3.5 e 3.6, este capítulo apresenta as opções de processamento da krigagem disponíveis na aba "*Kriging*" da janela principal do Vesper, onde, apenas as opções de menu e a lógica sequencial dos procedimentos são ilustradas com base nas aplicações e conceitos típicos já apresentados.

O Vesper executa métodos clássicos de krigagem, como a krigagem simples e a krigagem ordinária, segundo estimativas de variogramas globais e locais, respectivamente. O processamento ainda inclui as opções de interpolação por pontos ou por blocos. Uma interface amigável permite ao usuário criar, interativamente, um contorno limítrofe da área considerada, e a geração de uma grade regular de interpolação. O principal diferencial do Vesper está numa abordagem de análise automática de variogramas locais, que tem a capacidade de ajustar o processo estimação segundo as diferenças locais na estrutura de variação espacial da variável considerada.

De maneira simples, a krigagem é um método de predição espacial do valor de uma variável regionalizada em um determinado local não observado, dentro da área de interesse. É um procedimento de interpolação exato, que leva em consideração os valores observados dentro de uma vizinhança do ponto a ser estimado. Na estimativa por krigagem, as distâncias de ponderação entre os vizinhos mais próximos são embasadas em parâmetros obtidos na análise variográfica, levando em consideração a distância entre amostras e a sua estrutura de agrupamento. De maneira bem pragmática, Camargo et al. (2004) resumem as seguintes características da krigagem:

- Método geoestatístico estimador que leva em consideração as características espaciais de autocorrelação de variáveis regionalizadas;
- Nas variáveis regionalizadas uma certa continuidade espacial é esperada, o que permite que os dados obtidos por amostragem de certos pontos possam ser usados para parametrizar a estimação de pontos onde o valor da variável seja desconhecido;
- Ao ser constatado que a variável não possui continuidade espacial na área estudada, não há sentido lógico em estimar/interpolar usando-se a krigagem.

6.2 Definição de Parâmetros de Krigagem

A aba "*Kriging*" na janela principal do Vesper (Figura 6.1) resume os parâmetros necessários para o processamento de krigagem ordinária. Estes podem ser subdivididos em quatro blocos distintos. O lado direito da aba concentra os campos de definição da grade regular de interpolação, sendo a resolução espacial da grade, em metros, e o limite de interpolação, seja por uma área retangular ou por um contorno, definido pelo usuário. Os campos de opções "*Method*" e "*Block Kriging*" definem o tipo de krigagem, se por pontos ou blocos, e, para a segunda opção, as dimensões do bloco. Os campos localizados no centro da aba, "*Search Radius*" e "*Neighborhood for interpolation*", definem as condições de vizinhança da análise. E por fim, na parte inferior, apresenta três outros parâmetros opcionais que serão detalhados a diante.

VESPER ©MMII ACPA		;
Run Kriging Program	Save Control File	Register Exit
Files	Kriging	Variogram
Method Punctual kriging Method Punctual kriging Calculate radius Calculate radius Calculate radius Calculate radius Calculate radius Too non-negative weight sigma2 (data uncettaint 0.0	Block Kriging Block size x 10 y 10 <	Rectangle Interpolation Distance between interpolation 1 • Interpolate data from min to max • Define limit min max × 0 0 y 0 0 Generate Grid • • © Define field boundary • • © Define Grid File • •

Figura 6.1. Aba de krigagem (i.e.: *"Kriging"*) na janela principal do Vesper, com as opções para definição dos parâmetros da krigagem como: resolução da grade de interpolação, limite da área para interpolação, modo de krigagem (i.e.: por ponto ou por bloco), condições de vizinhança e outros parâmetros alternativos.

6.3 Geração da Grade e do Contorno de Interpolação

A interpolação por krigagem tem base em uma grade regular de estimação. Ou seja, uma matriz de pontos regularmente espaçados, para os quais os valores da variável são desconhecidos e serão preditos a partir dos pontos vizinhos onde o valor absoluto da variável é conhecido. No Vesper esta grade pode ser gerada de diferentes maneiras.

Na opção "*Rectangle Interpolation*", o limite da área a ser interpolada pode considerar os limites mínimos e máximos da extensão do retângulo envolvente dos dados, ou uma subárea retangular, definida pelos pares de coordenadas de uma diagonal, onde o espaçamento regular entre os pontos da grade é definido por uma distância em metros, gerando uma grade regularmente espaçada com contorno retangular. Estas opções se aplicam em casos onde o talhão tem dimensões retangulares bem definidas, não havendo necessidade do delineamento de um contorno, pois a própria extensão da nuvem de dados define o contorno limítrofe da área. Na opção "Generate Grid", o arquivo do contorno limítrofe da interpolação pode ser carregado, se previamente gerado no Vesper ou por outro sistema (e.g.: coordenadas coletadas com GNSS). O botão "Generate Boundary", se ativado, abrirá uma sub-janela interativa, onde os pontos do arquivo de dados brutos serão plotados (Figura 6.2.a), e um contorno vetorial poderá ser definido manualmente, por meio de vértices, com o uso do *mouse*. A definição manual do contorno se aplica quando o talhão tem geometria irregular, triangular ou poligonal, onde o contorno toma a forma que engloba toda a nuvem de pontos e confina a geração da grade na superfície delimitada.

Para interagir no delineamento do contorno, o seguinte procedimento é necessário:

- No ponto onde se pretende iniciar o contorno, clicar com o botão direito do mouse;
- Em seguida, clicar com o botão esquerdo do mouse nos locais onde se pretende definir os vértices do contorno, de forma recursiva, no sentido horário ou anti-horário, até completar todo o contorno da nuvem de pontos.
- Ao retorna nas proximidades do ponto inicial, e após definir o último vértice; pressione o botão direito do mouse, outra vez, para finalizar o contorno.
- 4. Ao encerrar o contorno, a sub-janela de confirmação "Vesper Interface" vai confirmar se o arquivo texto do contorno será salvo (Figura 6.2.b). Caso confirmado, a janela "Save boundary as ..." vai permitir o arquivo de contorno ser salvo na pasta e com o nome desejados.

Uma vez salvo, o arquivo de contorno poderá ser carregado para fins de processamento e geração de uma grade regular delimitada pelo contorno. Para isto, deve-se:

- 1. Selecionar o botão radial "Define field boundary";
- 2. A sub-janela "*Open Boundary File …*" abrirá automaticamente, para a seleção do arquivo de contorno gerado no procedimento anterior;
- Após selecionado o arquivo de contorno, a sub-janela "Grid Generator" abrirá automaticamente para definição do nome e do local de armazenamento da grade de interpolação gerada;

97

4. No campo "*Distance between interpolation*", dimensionar a resolução espacial da grade, em metros, e depois clicar em "*Go*".

Uma última opção "**Define Grid File**" considera a existência de uma grade regular previamente definida, seja ela delimitada por um contorno irregular ou por uma região retangular. Neste caso, basta selecionar o botão radial "**Define Grid File**" e clicar no botão de seleção da pasta e do nome do arquivo da grade já existente.

Após todas as definições para geração do contorno e da grade de interpolação, outros parâmetros relativos ao método de interpolação por krigagem podem ser definidos em relação a: a) dimensão espacial da estimativa, se por ponto ou por bloco; b) vizinhança do ponto sendo estimado; e c) transformações matemáticas alternativas.

Figura 6.2. Sub-janelas da aba de krigagem para geração interativa do contorno e da grade regular de interpolação, sendo: a) delineamento manual do contorno limítrofe da grade de interpolação; b) arquivo de texto delimitado contendo os pares de coordenadas dos vértices do contorno; e c) definição da resolução espacial (i.e.: distância entre os pontos interpolados) para geração da grade de estimação.

6.4 Krigagem por Ponto ou por Bloco

A escolha do método para krigagem é feita na parte superior esquerda da aba de krigagem (Figura 6.3), no campo método de estimação, "*Method*"; selecionando-se alternativamente entre os botões radiais com as opções de krigagem pontual, "*Punctual kriging*", ou por blocos, "*Block kriging*". O outro campo relativo a esta definição do método de krigagem está associado ao tamanho do bloco, "*Block Kriging*", onde a largura e o comprimento do bloco são definidos em metros. As caraterísticas destas abordagens são detalhadas no Item 3.6, onde:

- A krigagem por pontos estima um valor exato para cada ponto da grade de interpolação, favorecendo assim a representação de fenômenos com mudanças mais abruptas na variação espacial de seus valores; e
- A krigagem por blocos prediz um valor segundo a média ponderada das observações de uma área centrada nos pontos da grade de interpolação, tendendo a suavizar mais os valores estimados, quanto maior for o tamanho do bloco. Em contrapartida, um bloco de 0 m² é equivalente a krigagem por pontos. O tamanho de bloco é pré-definido no Vesper (i,e.: 10 m²) considerando uma resolução espacial do cálculo que é compatível com a área definida pela largura típica das plataformas e a velocidade de operação das colheitadeira usadas na AP. O que permite analisar a variabilidade na mesma escala em que a variável foi monitorada.

VESPER ©MMII ACPA					
Run Kriging Program	Save Control File				
Files	Kriging				
Method C Punctual kriging C Block kriging	Block Kriging Block size x 10 y 10				

Figura 6.3. Escolha da dimensão espacial para o cálculo de interpolação, sendo o método pontual, ou por blocos.

6.5 Parâmetros de Vizinhança

Os números mínimos e máximos de pontos vizinhos a serem considerados na krigagem são definidos no campo de vizinhança da interpolação, "*Neighbourhood for interpolation*" (Figura 6.4), onde um mínimo de 90 pontos é predefinido considerando a krigagem com ajuste local do variograma. Este valor tem base na formulação matemática, considerando que um grupamento de vizinhos com menos de 90 pontos pode comprometer a estatística para o cálculo preciso do variograma. No caso da amostragem de atributos de solo por grade regular, em geral com poucos pontos observados em relação a área sendo analisada, este valor tem que ser diminuído para viabilizar a busca pelo número mínimo de vizinhos.

No campo que define o raio de busca por vizinhos, "Search Radius", é possível definir uma distância até a qual, um ponto conhecido vai ser considerado como vizinho do ponto da grade de interpolação sendo estimado. Com a opção "Calculate radius" selecionada o raio de busca é calculado de forma automática em função da densidade amostral. A opção é predefinida e indicada pela equipe envolvida no desenvolvimento do Vesper.

Search Radius		
 Calculate radius 	- Neighborhood for interpolation)
O Set radius	Min no. data (min 4)	90
100	Maxino, data (max 300)	100

Figura 6.4. Parâmetros de busca por pontos vizinhos na ponderação do cálculo do ponto sendo estimado na grade de interpolação.

6.6 Parâmetros Alternativos

Os parâmetros de krigagem localizados na parte inferior da aba são de caráter de pesquisa, não visando aplicações genéricas e sendo pouco documentados no manual do usuário em inglês. Por tanto, são pouco utilizados. Caso haja dúvidas ou interesse no uso destas funções, a equipe responsável pelo desenvolvimento deverá ser contatada. Os parâmetros alternativos de krigagem são:

"Lognormal Kriging"	Executa a transformação log-normal nos dados de entrada antes da interpolação, podendo ser útil quando a análise exploratória indica que a variável não apresenta normalidade na sua distribuição;
"Non-negative weight"	Função utilizada para evitar valores extremos (e.g.: probabilidades, densidades ou concentrações negativas); e
"Sigma2 (data uncertainty)"	Fornece uma estimativa da variância ou incerteza nos dados.

6.7 Execução da Krigagem

A execução da interpolação por krigagem só poderá ser iniciada após a definição de todos os parâmetros necessários aos seguintes blocos de procedimentos como já descritos, sendo:

- Definição do método de krigagem (i.e.: por ponto ou bloco) e das condições de busca pelo grupamento de vizinhos para a interpolação (i.e.: raio de busca, número mínimo e máximo de pontos);
- Definição do limite e da resolução da grade de interpolação; e
- Definição do modo de ajuste do variograma, sendo local ou global (Item 5.1). O ajuste em modo local é automático, basicamente aceitando ou alterando valores predefinidos na aba "Variogram" para as variáveis de cálculo e ajuste do variograma. Em modo global, o ajuste deverá ser feito clicando clicar no botão operacional "Fit Variogram" para ativação da sub-janela "Variogram Model".

Para iniciar a execução é necessário o clicar no botão operacional "*Run Kriging Program*" da janela principal como descrito no Item 4.2 (Figura 4.7). A janela de execução em tempo real é automaticamente ativada e inicia o processamento caso todas as definições estejam bem definidas (Figura 6.5). No lado esquerdo da janela o cálculo e ajuste do variograma acontece dinamicamente em modo local para cada grupamento de vizinhos dos pontos da grade de interpolação, e em modo global apresenta um variograma estático como ajustado na sub-janela "Variogram Model" para todos os pontos observados. Do lado direito no topo é apresentada a janela móvel da krigagem com ajuste local, onde o ponto azul claro representa o local da grade de interpolação sendo computado, e a núvem de pontos em magenta o grupamento de vizinhos dentro do raio de busca. No modo global, a grade amostral é representada por pontos fixos em magenta. Na parte inferior do lado direito, o mapa resultante da krigagem vai sendo construído ponto a ponto na resolução da grade de interpolação com o valor estimado da variável em análise, representado por uma legenda distribuída entre valores mínimos, em vermelho, e máximos, em azul. Ao fim o usuário é indagado se deseja abrir a janela de apresentação dos resultados com o mapa da predição dos valores e do erro associado as estimativas.

Quando os arquivos de entrada têm mais de 5.000 registros, as funções de predição espacial são facilitadas com a opção de krigagem utilizando o ajuste de variogramas locais. Nada impede que o modo local seja usado com acervos de dados em alta densidade, apenas resultando numa interpolação mais suavizada. Já o inverso não é viável, pois arquivos com um número limitado de registros não propiciarão um número de vizinhos suficientes para permitir estimativas locais. Durante a execução da krigagem, o Vesper emite uma janela de alerta nestes dois casos. Para arquivos com menos de 100 pontos (Figura 6.6), restringindo a krigagem de se o modo local estiver selecionado e indicando o uso do modo global. Para arquivos com mais de 5000 pontos (Figura 6.7), sugerindo o uso do modo local se o modo global estiver selecionado.

Figura 6.5. Sub-janela de krigagem com dados em alta densidade amostral, apresentando o ajuste dinâmico de variogramas locais a esquerda e, a direita, o ponto sendo estimado em azul, o grupamento de vizinhos em magenta e o mapa das estimativas atualizado em tempo real.

Figura 6.6. Janela de alerta restringindo a krigagem em modo local para arquivos com menos de 100 observações, neste caso indicando o uso do modo global

Figura 6.7. Janela de alerta sugerindo a krigagem em modo local para arquivos com mais de 5000 observações.