Comunicado 193 Técnico ISSN 1679-0162 Sete Lagoas, MG Dezembro, 2011

Olive Property of the control of the

Identificação de Proteínas que Interagem com o Fator de Elongação EF1α no Endosperma do Grão do Milho

Andrea Almeida Carneiro¹ Newton Portilho Carneiro²

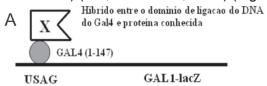
Introdução

O perfeito funcionamento de sistemas biológicos depende, dentre outros fatores, de interações celulares que ocorrem entre moléculas. Interações entre proteínas estão presentes em todos os processos celulares. O mapeamento destas interações é de crucial importância para a manipulação da expressão gênica que pode levar à criação de cultivares mais adaptadas a diferentes estresses bióticos e abióticos, bem como mais nutritivos, via engenharia genética.

O milho é uma importante fonte de proteínas e energia tanto para humanos quanto para animais. Cerca de 80% das proteínas presentes no grão do milho são provenientes do endosperma. As proteínas mais abundantes do endosperma, também conhecidas como zeínas, apresentam baixa concentração dos aminoácidos essenciais lisina, treonina e triptofano, diminuindo consequentemente o valor nutricional do grão.

A lisina é o aminoácido mais limitante do endosperma do milho.

Os níveis de expressão do fator EF1a apresentaram correlação com os níveis de lisina no endosperma de milho (HABBEN et al., 1995). A proteína EF1α é conhecida por ligar o sítio aminoacil-tRNA ao sítio (A) do ribossomo durante a síntese proteica, mas outras funções já foram atribuídas a essa proteína, como ativação da fosfatidilinositol 4-quinase na via de lipídeos (YANG et al., 1993) e o agrupamento da proteína actina no citoesqueleto (GROSS; KINZY, 2005). A proteína EF1α representa cerca de 1 a 2% da proteína total do endosperma, contudo, conta apenas com 2 a 3% da lisina ligada à proteína (SUN et al., 1997). Uma das possíveis explicações para a alta correlação entre a concentração EF1α e o conteúdo de lisina no endosperma do milho é a sua associação física e estrutural com outras proteínas ricas em


²Ph.D em Biotecnologia, Biologia Molecular, Embrapa Milho e Sorgo. Cx. P 151. 35701-970 Sete Lagoas, MG. newtonc@cnpms.embrapa.br

Ph.D em Biotecnologia, Biologia Molecular, Embrapa Milho e Sorgo. Cx. P 151, 35701-970 Sete Lagoas, MG. andreac@cnpms.embrapa.br

lisina. Uma das maneiras de testar essa hipótese é utilizando o sistema de duplo-híbrido em levedura.

O sistema de duplo-híbrido em levedura é uma técnica que possibilita o estudo de possíveis interações entre proteínas (YOUNG et al., 1998) e/ou proteína-DNA (JOUNG et al., 2000; HURT et al., 2003) in vivo. Este sistema, inicialmente descrito por Fields e Song (1989), foi criado a partir de estudos da funcionalidade de fatores de transcrição em organismos eucarióticos (KEEGAN et al., 1986), utilizando principalmente o fator de transcrição Gal4 na levedura Saccharomyces cerevisae. Este ativador de transcrição possui dois domínios: (i) o domínio de ligação de DNA, localizado na porção N-terminal (aminoácidos 1 a 147) (KEEGAN et al., 1986) e (ii) o domínio de ativação transcricional na extremidade C-terminal da proteína (aminoácidos 768 a 881) (MA; PTASHNE, 1987) (Figura 1).

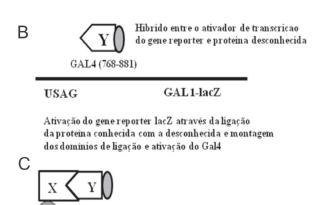
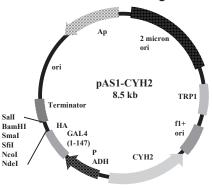


Figura 1. Esquema da proteína Gal4 com os domínios de ligação do DNA e ativação transcricional de expressão do gene repórter e sua utilização na identificação de proteínas que interagem com a proteína de interesse (EF1α); (A) domínio de ligação ao DNA da proteína Gal4 com o EF1α (B) domínio de ativação de expressão da proteína Gal4 com a proteína desconhecida; (C) interação entre o EF1α e a proteína desconhecida e ativação do gene repórter *lacZ* (modificação de CHIEN et al., 1991).

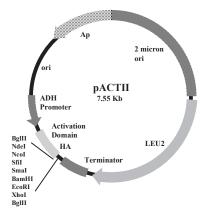
O principal fator que possibilita a utilização do sistema de duplo-híbrido em levedura para estudar interações entre proteínas é a capacidade dos domínios N e C terminais da proteína Gal4 ativarem a transcrição gênica quando estão próximos sem necessariamente precisarem estar ligados. Dessa forma, é possível testar a interação entre duas proteínas clonando cada uma em cada um dos domínios mencionados acima. A primeira gera um híbrido entre o domínio da proteína Gal4 de ligação ao DNA e a proteína conhecida. A segunda gera um híbrido entre o domínio de ativação transcricional da proteína Gal4 e uma segunda proteína, da qual se quer testar a interação. Estas duas construções recombinantes são inseridas na levedura modificada para tal fim e, caso exista interação entre as duas proteínas, a transcrição de um gene repórter presente na própria levedura é ativado (FIELDS; SONG, 1989). Um dos genes repórter codifica a enzima β-galactosidase (*lacZ*) produzindo uma levedura de coloração azul (JOUNG et al., 2000). Um segundo gene repórter é um da via metabólica da histidina e permite à levedura crescer na presença do inibidor 3-aminiotriazole – 3-AT da enzima imidazole glicerol fosfate [IGP] desidratase dessa via (KISHORE; SLAH, 1988). O uso de dois genes repórteres na mesma levedura ajuda a diminuir o número de falsos positivos.

O presente estudo teve como objetivo identificar proteínas que possam estar interagindo com a EF1α através do uso do sistema de duplo-híbrido de levedura. Através da triagem de bibliotecas de cDNA de endosperma de milho foram identificadas 12 proteínas que interagem com a proteína EF1α. Esses resultados são importantes para o melhor entendimento das funções dessas proteínas e sua relação com o conteúdo de lisina nesse tecido.

Material e métodos


Plasmídeos, bactéria e levedura

A região codificadora do gene da proteína EF1α foi isolada por RT-PCR de RNA de endosperma da linhagem de milho B73 utilizando os primers das extremidades 5' (F - CCACCATGGGTAAGGAGAAGAC) e 3' (R – ATCGGATCCATTTCTTCTTGGCGGC CGCCTTGG). O produto de PCR foi clivado com as enzimas Ncol-BamHI e clonado no vetor pAS2 clivado com as mesmas enzimas. Após sequenciamento da região 3' de 96 clones representando o gene EF1α, foi determinado que há cinco alelos dessa proteína com frequências distintas para o endosperma de 14-26 dias após polinização (DAP). Para os testes do sistema de duplo-híbrido de levedura, foram utilizados os clones que representam a primeira e segunda sequências completas mais frequentes da proteína EF1α. Para a identificação dos domínios importantes na interação da proteína EF1α mais abundante, foram feitas clonagens do gene com deleções representando 30 e 60% utilizando os primers F 320 (CCACCATGGTCATTGATGCCCCTGGACACC) e 750.


(CCA<u>CCATGG</u>CTTGACCAGATACACCGAGCC) e o R (ATC<u>GGATCC</u>TTTCTTCTGG CGGCCGCCTTGG). Os primers F para a montagem das deleções foram ajustados para colocar o quadro de leitura de forma correta.

A biblioteca de cDNA foi feita utilizando RNA poli(A) de polissomos livres (não ligados a membrana) de endosperma de 14 a 26 DAP. O cDNA foi construído utilizando o kit ZAP II Express com clonagem direcional 5'-EcoRI - XhoI - 3' de acordo com as instruções do fabricante (Stratagene - La Jolla, CA). Os cDNAs foram clonados no vetor pACT2 e transformados em Escherichia coli por choque térmico (Sambrook et al. 1989). A representatividade da biblioteca foi calculada pelo número total de colônias de E. coli (6 X 106 colônias). O tamanho médio dos insertos na biblioteca foi entre 200 e 500 pb. Como controle positivo da interação proteínaproteína foi utilizado o gene da actina. O gene da actina foi clonado por PCR utilizando um clone já isolado com os primers BamHI (GGGATCCAAATGGCTGATGGTGAG) e T3 (AATTAACCCTCACTAAAGGG). O produto de PCR representando o gene da actina foi clivado e clonado nos plasmídeos pAS2 e pACT2 (também

clivado com as mesmas enzimas) e usado como controle da interação positiva da proteína com ela mesma (actina-actina). Os controles negativos utilizados na interação proteína-proteína foram os genes das proteínas CDK2, SNF1, p53 e lamin clonados no pACT2. Esses genes estão relacionados com ciclo celular (Fields e Song, 1989). A levedura usada para a montagem da biblioteca e verificação da interação proteínaproteína foi a Sacharomyces cerevisae Y190 (MATa, gal4, gal80, his3, trp1-901, ade2-101, ura3-52, leu2-3, -112, +URA3::GAL -->LacZ, LYS2::GAL(UAS) -->HIS3 cyhr). A estirpe de E. coli usada para amplificação da biblioteca de cDNA e montagem de estoques foi a BNN:132 (JM107 λKC lysogen) endA1 gyr96 hsdR17 relA1 supE44 thi ∆(lac-proAB)[F' traD36 proAB+ laclqZ M15] λ KC (*Kan-cre*). Os plasmídeos pAS2 e pACT2 estão ilustrados na Figura 2.

Figura 2. Mapa dos vetores pAS2 e pACT2 (BAI; ELLEDGE, 1996).

Transformação da levedura

Uma colônia de levedura Y190 foi crescida em meio YEDP líquido (1% extrato de levedura, 2% peptona e 2% dextrose) até uma OD₆₀₀ = 0,5 a 0,8. A cultura foi centrifugada e o pellet ressuspendido em 50 ml de tampão LISORB (100 mM LiOAC, 10 mM Tris-HCI [pH 8], 1 mM EDTA, 1 M Sorbitol) e mantido no gelo. Um microlitro de plasmídeo recombinante (1µg/µl) foi adicionado a uma alíquota de 100 µl de células ressuspendidas em LISORB e essa mistura foi incubada sem agitação por um período de 30 min a 30 °C e 7 min a 42 °C. Após essa incubação, as células foram plaqueadas em meio de seleção e incubadas a 30 °C por 48 horas. Para seleção do plasmídeo pAS2, foi utilizado o meio completo menos leucina. Para o pACT2 foi utilizado o meio completo menos triptofano. Para a seleção da transformação simultânea dos dois plasmídeos, foi utilizado o meio completo menos leucina, histina e triptofano suplementado com 25 mM AT (3-aminotriazole).

Ensaio X-Gal

As leveduras crescidas no meio completo -His, -Trp, -Leu suplementado com 25 mM AT foram transferidas para membrana de nitrocelulose. Estas foram colocadas em placas de petri com papel cromatográfico Whatman 3MM (Clifton, NJ) umedecido com tampão Z (1,61 % Na₂HPO₄ 7H₂O, 0,55 % NaH₂PO4 H₂O, 0,075% KCI, 0,025% MgSO₄ 7H₂O, [pH 7,0]; 0.27% 2-mercaptoetanol e 1% X-Gal). Os resultados foram baseados na intensidade da cor azul determinada visualmente.

Resultados e Discussão

Pelo sistema de duplo-híbrido em levedura, utilizando EF1α como a proteína de interesse, foi possível isolar 12 colônias que cresceram em meio seletivo e apresentavam coloração azul na presença de X-Gal. Tanto os alelos da proteína de EF1α quanto os das proteínas encontradas na biblioteca de cDNA foram isolados no

endosperma do milho B73 na mesma fase de desenvolvimento (14 a 26 DAP).

Para verificar se existem diferenças de interação proteína-proteína entre dois alelos das proteínas de EF1α, o segundo alelo mais abundante dessa proteína (EF1α') foi clonado no pAS2 (pAS2-EF1α') e foram realizados os testes de crescimento em meio seletivo e X-Gal. O alelo EF1α possui um ácido glutâmico e o alelo EF1α', um ácido aspártico na posição do aminoácido 178. De acordo com a intensidade da cor azul gerada pelo teste de X-Gal e pelo crescimento em meio seletivo, os dois alelos (EF1α e EF1α') apresentaram funções celulares distintas (Figura 3).

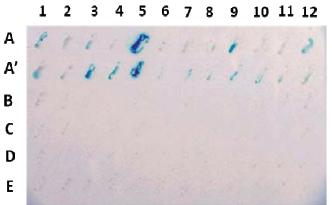


Figura 3. Membrana de nitrocelulose contendo X-gal para seleção de interação proteína-proteína. A intensidade de cor é proporcional à força da interação. A e A' representam os alelos EF1α e EF1α' respectivamente; B, C, D e E são controles negativos conforme descritos no material e métodos. Os números de 1 a 12 representam as proteínas encontradas que interagiram com o EF1α.

Para identificar domínios importantes na interação entre a proteína EF1α com as 12 proteínas encontradas no endosperma do milho, foram feitos testes com deleções de 30 e 60% desse gene da região N-terminal em membrana de nitrocelulose com X-Gal e crescimento em meio completo His, -Trp, -Leu +25 mM AT (Figura 4).

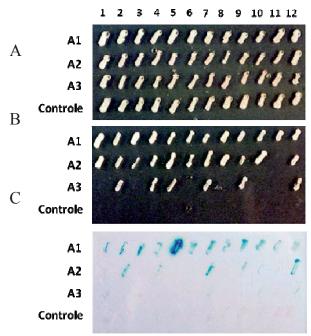


Figura 4. Teste de interação proteína-proteína entre a proteína EF1α com as deleções de 30 e 60% e as 12 proteínas encontradas no endosperma do grão de milho. (A) placa com meio de cultura rico; (B) placa de meio de cultura completo -His, -Trp, -Leu +25 mM AT; (C) membrana de nylon contendo X-Gal: (A1) = sequência completa; (A2) = deleção de 30% na região N terminal; (A3) = deleção de 60% na região N terminal. Controle = proteína que não interage com as proteínas 1 a 12.

Conforme resultados mostrados na Figura 4, foi verificado que todas as colônias contendo os dois plasmídeos cresceram na placa com meio rico (Placa A), contudo, o mesmo não ocorreu quando foram feitas as deleções 30 e 60% na extremidade N-terminal nas versões A1 e A2. A placa B representa meio mínimo com todos os componentes exceto His, Trp, Leu e com a adição de 25 mM AT com as mesmas colônias crescidas na placa A. Apenas as colônias que tiverem interação entre as duas proteínas crescem na placa B. A placa C é uma réplica das colônias crescidas na placa B em membrana de nitrocelulose contendo X-gal. As colônias que crescerem na fileira A2 e A3 são aquelas que não dependem nos primeiros 30 e 60% da região N-terminal da proteína EF1α, respectivamente. Conforme mostra a Figura 4, as proteínas 1, 3, 6, 8 e 10 interagem com a região intermediária entre 30 e 60% da proteína EF1α enquanto a proteína

11 interage com os primeiros 30% do N-terminal da proteína EF1α. As proteínas 2, 4, 5, 7 e 9 dependem apenas dos últimos 40% C-terminal da proteína.

A descoberta de que a concentração de EF1a serve como índex para o conteúdo de lisina no endosperma poderá ter um grande impacto nos programas de melhoramento de milho para o aumento da qualidade nutricional do grão. Torna-se importante entender a razão pela qual os níveis de EF1a correlacionam-se com os de lisina no endosperma. Um processo que pode dar indicativos de como essa correlação existe é a identificação da estrutura de proteínas que se ligam ao EF1α pelo método de duplo-híbrido em levedura. Os clones dessas 12 proteínas serão sequenciados e comparados com alelos completos já descritos em bancos gênicos públicos. Além dessa informação ser importante para determinar a concentração de lisina nessas proteínas, será também usada para a montagem de possíveis modelos funcionais da proteína EF1α no endosperma do milho. Esse tipo de informação é essencial para entender os mecanismos biológicos dessa proteína na célula incluindo sua relação com os níveis de lisina no endosperma do grão do milho.

Conclusões

No presente trabalho foram identificadas 12 proteínas que interagem com domínios específicos da proteína EF1 α . Além disso, foi demonstrado que essas interações não ocorrem da mesma forma com o segundo alelo (EF1 α ') mais abundante, indicando que esse pode ter funções distintas na célula.

Referências

BAI, C.; ELLEDGE, S. J. Gene identification using the yeast two-hybrid system. **Methods in Enzymology**, New York, v. 273, p. 331-347, 1996

CARNEIRO, N. P.; HUGHES, P. A.; BRIAN, A.; LARKINS, B. A. The eEFIA gene family is differentially expressed in maize endosperm.

Plant Molecular Biology, Dordrecht, v. 41, n. 6, p. 801-814, 1999.

CHIEN, C. T.; BARTEL, P. L.; STERNGLANZ, R.; FIELD, S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proceedings of the **National Academy of Sciences of the United** States of America, Washington, v. 88, p. 9578-9582, 1991.

DURFEE, T.; BECHERER, K.; CHEN, P.; YEH, S.; YANG, Y.; KILBURN, A. E.; LEE, W.; ELLEDGE, S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes and Development, New York, v. 7, p. 555-569, 1993,

FIELDS, S.; SONG, O. "A novel genetic system to detect protein-protein interactions" (abstract). **Nature**, London, v. 340, n. 6230, p. 245-246, 1989.

GROSS, S. R.; KINZY, T. G. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nature Structural & Molecular Biology, New York, v. 12, p. 772-778, 2005.

KEEGAN, L.; GILL, G.; PTASHNE, M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science, Washington, v. 231, p. 699-704, 1986.

HABBEN, J. E.; MORO, G. L.; HUNTER, B. G.; HAMAKER, B. R.; LARKINS, B. A. Elongation factor 1a concentration is highly correlated with the lysine content of maize endosperm. **Proceedings of the National Academy of** Sciences of the United States of America,

Washington, v. 92, p. 8640-8644, 1995.

HURT, J.; THIBODEAU, S.; HIRSH, A.; PABO, C.; JOUNG, J. "Highly specific zinc finger proteins obtained by directed domain shuffling and cellbased selection". Proceedings of the National Academy of Sciences of the United States of **America**, Washington, v. 100, n. 21, p. 12271-12276, 2003,

KISHORE, G. M.; SHAH, D. M. Amino acid biosynthesis inhibitor as herbicides. Annual Review of Biochemistry, Palo Alto, v. 57, p. 627-663, 1988.

JOUNG, J.; RAMM, E.; PABO, C. "A bacterial twohybrid selection system for studying protein-DNA and protein-protein interactions". Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 97, n. 13, p. 7382-7387, 2000.

MA, J.; PTASHNE, M. Detection analysis of GAL4 defines two transcriptional activating segments. **Cell**, Cambridge, v. 48, p. 847-853, 1987.

SUN, Y.; CARNEIRO, N.; CLORE, A. M.; MORO, G. L.; HABBEN, J. E.; LARKINS, B. A. Characterization of maize elongation factor 1A and its relationship to protein quality in the endosperm. Plant Physiology, Bethesda, v. 115, p. 1101-1107, 1997.

YANG, W.; BURKHART, W.; CAVALLIUS, J.; MERRICK, W. C.; BOSS, W. F. Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. Journal of. Biological **Chemistry**, Baltimore, v. 265, p. 392-398, 1993.

YOUNG, K. "Yeast two-hybrid: so many interactions, (in) so little time." Biology of **Reprodution**, Champaign, v. 58, n. 2, p. 302-311, 1998.

Técnico, 193

Comunicado Exemplares desta edição podem ser adquiridos na: Embrapa Milho e Sorgo

> Endereco: Rod. MG 424 km 45 Caixa Postal 151 CEP 35701-970 Sete Lagoas, MG

Fone: (31) 3027 1100 Fax: (31) 3027 1188

E-mail: sac@cnpms.embrapa.br

1ª edição

1ª impressão (2011): on line

Ministério da Agricultura, Pecuária e Abastecimento

Comitê de publicações

Presidente: Presidente: Sidnev Netto Parentoni. Secretário-Executivo: Elena Charlotte Landau. Membros: Flávia Cristina dos Santos Flávio Dessaune Tardin, Eliane Aparecida Gomes, Paulo Afonso Viana, Guilherme Ferreira Viana e Rosângela Lacerda de Castro.

Expediente

Revisão de texto: Antonio Claudio da Silva Barros. Normalização bibliográfica: Rosângela Lacerda de Castro.

Tratamento das ilustrações: Tânia Mara A. Barbosa. Editoração eletrônica: Tânia Mara A. Barbosa.