
Documentos ISSN 1679-043X Junho, 2011

Produção Sustentável de Algodão

Empresa Brasileira de Pesquisa Agropecuária Embrapa Agropecuária Oeste Ministério da Agricultura, Pecuária e Abastecimento

Documentos 107

Produção Sustentável de Algodão

Fernando Mendes Lamas

Exemplares desta publicação podem ser adquiridos na:

Embrapa Agropecuária Oeste BR 163, km 253,6 - Trecho Dourados-Caarapó Caixa Postal 661 - 79804-970 Dourados, MS Fone: (67) 3416-9700 - Fax: (67) 3416-9721

www.cpao.embrapa.br

E-mail: sac@cpao.embrapa.br

Comitê de Publicações da Unidade

Presidente: Guilherme Lafourcade Asmus Secretário-Executivo: Alexandre Dinnys Roese

Membros: Claudio Lazzarotto, Éder Comunello, Milton Parron Padovan, Silvia Mara Belloni e Walder Antonio Gomes de Albuquerque Nunes Membros suplentes: Alceu Richetti e Oscar Fontão de Lima Filho

Supervisão editorial: Eliete do Nascimento Ferreira Revisão de texto: Eliete do Nascimento Ferreira Normalização bibliográfica: Eli de Lourdes Vasconcelos

Fotos da capa: Fernando Mendes Lamas

Editoração eletrônica: Eliete do Nascimento Ferreira

1ª edição (2011): online

Todos os direitos reservados.

A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei Nº 9.610).

CIP-Catalogação-na-Publicação. Embrapa Agropecuária Oeste.

Lamas, Fernando Mendes

Produção sustentável de algodão / Fernando Mendes Lamas.

- Dourados, MS: Embrapa Agropecuária Oeste, 2011.

27 p.: il. color.; 21 cm. – (Documentos / Embrapa Agropecuária Oeste. ISSN 1679-043X: 107).

Algodão - Produção - Sustentabilidade. I. Embrapa
Agropecuária Oeste. II. Título. III. Série.

Autor

Fernando Mendes Lamas

Engenheiro-Agrônomo, Dr., Pesquisador da Embrapa Agropecuária Oeste, Dourados, MS. E-mail: lamas@cpao.embrapa.br

Apresentação

A busca pela sustentabilidade da cultura do algodoeiro é indispensável para que o cultivo desta espécie possa, definitivamente, ser um dos componentes do sistema de produção agrícola, especialmente no Cerrado.

Este trabalho contém resultados preliminares da pesquisa com o algodoeiro cultivado em Sistema Plantio Direto (SPD), que é um modelo de produção conservacionista, o que irá contribuir para a manutenção e/ou melhoria da produtividade do solo do Cerrado.

Guilherme Lafourcade Asmus Chefe-Geral em Exercício Embrapa Agropecuária Oeste

Sumário

Produção Sustentável de Algodão	9
Resumo	9
Introdução	10
Resultados de Pesquisa	13
Considerações Finais	. 23
Agradecimentos	. 24
Referências	24

Produção Sustentável de Algodão

Fernando Mendes Lamas

Resumo

O sistema convencional de manejo do solo com revolvimento por grades. arados e escarificadores é muito comum nos diferentes sistemas de produção do algodoeiro no Brasil. Esse modelo de produção dá sinais claros de falta de sustentabilidade, tendo-se em vista a quantidade de agrotóxicos e fertilizantes utilizados com o objetivo de assegurar um determinado nível de produtividade física. O algodoeiro é uma excelente alternativa para compor um plano de rotação de culturas. Entretanto, o monocultivo leva invariavelmente ao insucesso da atividade. Em substituição ao modelo de produção predominante deve-se dar prioridade ao Sistema Plantio Direto (SPD), que envolve, simultaneamente, todas as boas práticas conservacionistas. Se adotado corretamente é indispensável para reverter o processo de degradação do solo e, consequentemente, favorecer o desempenho das culturas envolvidas no sistema. Para a implantação do SPD é fundamental que sejam observados alguns requisitos relacionados aos recursos humanos, técnicos e de infraestrutura, destacando-se: conscientização, levantamento dos recursos e planejamento. Por se tratar de um sistema, não existe uma receita pronta e acabada que pode ser utilizada de forma indiscriminada em qualquer situação. Sempre haverá necessidade de estudos detalhados das condições locais, do clima, do solo e das espécies envolvidas, para o efetivo planejamento do sistema sob dada condição. Para

o caso específico do algodoeiro, o SPD é uma alternativa viável sob todos os aspectos; no entanto, é de fundamental importância considerar as características que são inerentes ao algodoeiro. Por proporcionar melhorias dos atributos físicos, químicos e biológicos do solo, devido à ausência de sua movimentação pela introdução da prática de rotação de culturas, é possível a redução dos custos de produção, devido ao menor uso de insumos (fertilizantes, fungicidas e inseticidas), após a estabilização do sistema, que ocorre entre o quarto e sexto ano após sua implantação. Neste trabalho são apresentados e discutidos alguns resultados existentes na literatura, bem como outros obtidos em Primavera do Leste, MT, nos experimentos conduzidos pela Embrapa Agropecuária Oeste e Embrapa Algodão, na área experimental do Instituto Mato-Grossense do Algodão (IMAmt).

Introdução

No Brasil, o algodoeiro é cultivado principalmente nos Estados de Mato Grosso, Bahia, Goiás e Mato Grosso do Sul, sendo que estes estados cultivam o equivalente a 50,62%, 31,14%, 6,25% e 4,62%, respectivamente, da área estimada para a safra 2010/2011, que é de 1.214.500 ha (CONAB, 2010). Analisando-se a produção de fibra ha⁻¹, verifica-se que esta pode ser considerada elevada, superior a 1.500 kg ha⁻¹ nos quatro principais estados produtores. Entretanto, quando as estimativas de custo de produção para a safra 2010/2011 são avaliadas no Município de Chapadão do Sul, em Mato Groso do Sul, verifica-se que fertilizantes e agrotóxicos correspondem a 24,69% e 25,50% do custo total, que é estimado em R\$ 4.479,68. Situação muito semelhante verifica-se em Goiás, onde os percentuais são de 16,49% e 30,34% do custo total, para fertilizantes e agrotóxicos, respectivamente (CONAB, 2010). Em Mato Grosso, fertilizantes e agrotóxicos têm participação significativa no custo de produção, variando entre 22,675% e 26,53% do custo variável, respectivamente (BOLETIM..., 2010).

Esses dados evidenciam o elevado custo de produção de algodão no Brasil decorrente do uso de fertilizantes e agrotóxicos, que são consequências do modelo de produção predominante, baseado na intensa movimentação do

solo e ausência de rotação de culturas. Este modelo proporciona a degradação de atributos físicos, químicos e biológicos do solo, com consequente redução da produtividade do mesmo. A ausência de rotação de culturas torna o ambiente propício para o estabelecimento de insetos-pragas e de agentes causadores de doenças (fungos e bactérias), além do aumento da população de nematoides fitoparasitas. Dessa forma, o modelo predominante de produção do algodoeiro mais utilizado atualmente não é sustentável.

A alternativa mais adequada às condições tropicais no que tange ao manejo do solo é o Sistema Plantio Direto (SPD). Este é fundamentado na rotação de culturas e na manutenção de cobertura do solo ao longo do ano e caracterizase pelo cultivo em terreno coberto por palha e/ou plantas em crescimento e em ausência de preparo do solo (HERNANI; SALTON, 2001). A adoção de todas essas técnicas, em conjunto, nas lavouras brasileiras, vêm garantindo a viabilidade dos cultivos, a sustentabilidade dos ecossistemas, pela maior infiltração de água no solo, e a redução de perdas ocasionadas pela erosão. Esta, além do solo, carrega para os cursos de água adubos e agrotóxicos, que são fontes de poluição e de degradação de rios e outros mananciais (SALTON et al., 1998).

O SPD, desde que manejado segundo seus princípios básicos (ausência de revolvimento, manutenção do solo permanentemente coberto e rotação de culturas), constitui-se em um sistema capaz de promover: a) o aumento do volume de água armazenada no solo disponível às plantas; b) maior crescimento radicular no perfil do solo, pois proporciona condições às plantas para que desenvolvam raízes mais profundas. No SPD, a manutenção da cobertura do solo diminui as perdas de água por evaporação, devido à barreira física formada e à redução da temperatura do solo, e por escoamento superficial, em virtude do aumento da capacidade de infiltração de água associada à proteção da superfície do solo contra o impacto da gota de chuva, o que evita a formação de crostas superficiais. Do mesmo modo, o aumento do teor de matéria orgânica do solo (MOS), associado à menor intensidade de revolvimento, melhora substancialmente a estrutura do solo, o que favorece o desenvolvimento radicular das plantas e, assim, aumenta o tamanho do reservatório de água disponível. Além disso, as melhorias na estrutura do solo, proporcionadas pelo SPD, aumentam a infiltração e retenção de água do solo, favorecendo ainda os fluxos ascendentes de água das camadas mais profundas até as camadas mais superficiais, onde se encontra a maior parte do sistema radicular (FRANCHINI et al., 2009).

Comprovando as vantagens do SPD, Cruz (2009) mostrou que dez anos após a adoção desse sistema de cultivo houve aumento da vida biológica e também dos teores da MOS. Esta passou, em média, de 1,8% para 5%. Quanto ao sistema radicular das plantas, que antes explorava apenas os primeiros 15 cm da camada arável, passou a explorar até 80 cm. Nesse sentido, as culturas tornam-se mais tolerantes aos efeitos de estiagem, com produções maiores que lavouras cultivadas no plantio convencional.

A produtividade do algodoeiro no SPD foi maior que a obtida no sistema convencional de manejo do solo, tanto em monocultivo como em rotação anual de culturas (FERREIRA et al., 2009).

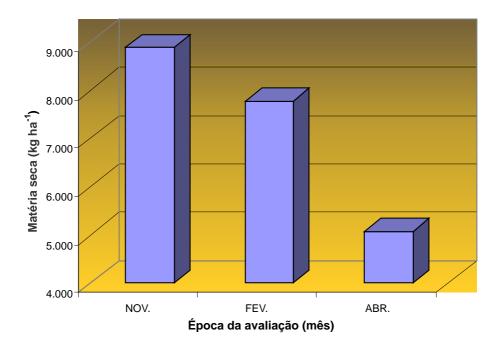
Além de outras vantagens, o SPD pode contribuir de maneira significativa para a redução da emissão de CO₂ para a atmosfera. O sistema proporciona aumento nos estoques de carbono no solo, ao contrário dos sistemas convencionais, com revolvimento sistemático do solo (CORAZZA et al., 1999). Este efeito é ainda maior quando se utiliza um esquema diversificado de rotação de culturas, desde que estejam envolvidas espécies com elevada relação C/N, como, por exemplo, braquiárias (D'ANDRÉA et al., 2004).

Uma prática ainda pouco utilizada é a rotação de culturas, predominando o cultivo do algodoeiro continuamente numa mesma área, o que também contribui para a degradação das propriedades físicas, químicas e biológicas do solo e a consequente queda da produtividade. Também proporciona condições mais favoráveis para a maior ocorrência de doenças, pragas e plantas daninhas. Boquet et al. (2004), comparando a produtividade do algodoeiro em monocultura com o sistema envolvendo a rotação com soja, milho e sorgo, verificaram que a produção de algodão é significativamente maior quando se utiliza a rotação de culturas.

Com um adequado aporte de palha no sistema, o que é fundamental para o SPD, é possível obter nível satisfatório de controle de determinadas doenças. Em trabalhos desenvolvidos com o objetivo de estudar a efetividade do consórcio na redução do inóculo inicial de *Sclerotinia sclerotiorum*, agente causal do mofo-branco em soja, verificou-se que a

palhada de *Urochloa ruziziensis* + milho resulta em maior proporção de escleródios de menor tamanho e altera a proporção entre escleródios maiores e menores do que 2 mm, em comparação à palha de milho safrinha solteiro (GÖRGEN et al., 2010). A utilização de plantas de cobertura do gênero Brachiaria pode ser uma excelente alternativa para o manejo de nematoides da espécie *Rotylenchulus reniformis* (ASMUS et al., 2005).

Uma das grandes dificuldades para o estabelecimento do SPD no bioma cerrado é a elevada taxa de decomposição dos restos vegetais mantidos sobre a superfície do solo, em função das condições ambientais favoráveis à decomposição (temperatura e umidade). Entretanto, no SPD a decomposição de resíduos de milho e soja é mais lenta que a da semeadura convencional (GONÇALVES et al., 2010).


Em trabalhos desenvolvidos por Ferreira et al. (2010), no Estado de Goiás, verificou-se que *Sorghum bicolor*, *Pennisetum glaucum*, *Panicum maximum* cultivares Tanzânia e Mombaça, *Urochloa brizantha* cultivares MG4, BRS Piatã e Xaraés apresentam produção e persistência da matéria seca adequadas para as condições de Cerrado, sendo ideais para rotação com o algodoeiro.

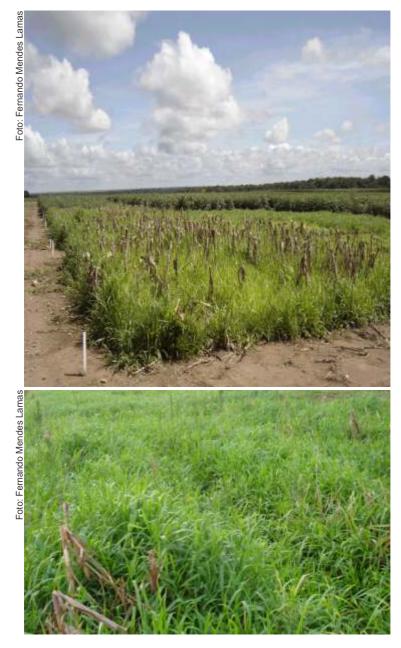
Resultados de Pesquisa

Serão apresentados e comentados resultados de pesquisas com algodoeiro cultivado em SPD, em Primavera do Leste, MT, durante os anos agrícolas de 2004/2005 a 2008/2009. São resultados preliminares de trabalhos em andamento.

Na Figura 1 verifica-se a persistência dos resíduos de *Urochloa ruziziensis*, semeada em março de 2008, em avaliações realizadas em novembro de 2008 e fevereiro e abril de 2009, em Primavera do Leste, MT. Em abril de 2009, por ocasião da abertura dos primeiros capulhos do algodoeiro semeado sobre a braquiária, a quantidade remanescente de biomassa ainda era da ordem 4.800 kg ha⁻¹, quantidade suficiente para assegurar boa cobertura da superfície do solo (Figura 1). Com adequado aporte de palha na superfície do solo, o controle de plantas daninhas pode ser superior a 90% (MATEUS et al., 2004). A palhada produzida pela *U. ruziziensis*, além de

promover boa cobertura do solo durante o ciclo do algodoeiro, reduz a incidência de plantas daninhas (FERREIRA et al., 2007). De acordo com Meschede et al. (2007), o acúmulo de biomassa pelas plantas de cobertura é inversamente proporcional ao da biomassa das plantas daninhas.

Figura 1. Matéria seca de *Urochloa ruziziensis*, na superfície do solo, em avaliações realizadas em novembro de 2008, fevereiro e abril de 2009, em área cultivada com algodoeiro. Primavera do Leste, MT, 2009.


Considerando a quantidade de biomassa existente quando da semeadura do algodoeiro e a sua persistência, *U. ruziziensis*, *U. decumbens*, *Panicum maximum* cv. Mombaça, *P. maximum* cv. Tanzânia e *U. brizanta* cv. Xaraés são adequadas para a produção de palha, quando semeadas imediatamente após a colheita da soja. As espécies referidas não interferem no crescimento, no desenvolvimento e na produtividade de fibra do algodoeiro (LAMAS; STAUT, 2007).

Para as condições do Cerrado, uma alternativa para produção de biomassa visando ao estabelecimento do SPD e/ou a Integração Lavoura-Pecuária é a semeadura da espécie vegetal de cobertura imediatamente após a colheita da soja (Figura 2).

Quando for possível o cultivo do milho segunda safra, realiza-se a semeadura da *U. ruzizienis* em consórcio com milho (Figura 3). Embora nestas condições a biomassa seca da *U. ruziziensis* seja inferior à obtida em cultivo solteiro imediatamente após a soja, quando se computa a biomassa seca do milho, a diferença diminui ou até supera a da *U. ruziziensis* isolada.

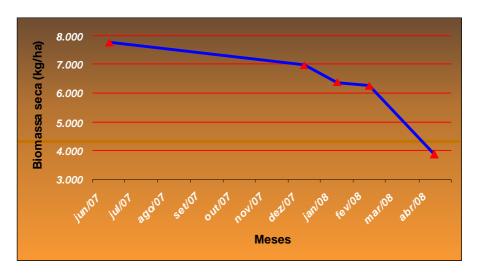

Figura 2. Vista de *Urochloa ruziziensis* semeada após soja, em abril de 2009, em Primavera do Leste, MT.

Figura 3. Vista parcial de área de *Urochloa ruziziensis* estabelecida em consórcio com milho, em Primavera do Leste, MT.

Na Figura 4 são apresentados os resultados das avaliações da biomassa seca de *U. ruziziensis* semeada em janeiro de 2007, na entrelinha do milho. Em dezembro de 2007, 20 dias após o manejo com herbicida, foi realizada a semeadura do algodoeiro. Quando dessa semeadura, a biomassa seca na superfície do solo era de aproximadamente 7.000 kg ha⁻¹. Alvarenga et al. (2001) consideram que, para uma boa cobertura do solo, é necessário pelo menos 6 t ha⁻¹ de resíduos vegetais sobre a superfície do solo. No presente trabalho, tanto na semeadura realizada em janeiro, na entrelinha do milho, como na realizada em março, após a colheita da soja, a produção de biomassa seca pela *U. ruziziensis*, quando da semeadura do algodoeiro em dezembro, foi superior a 7 t ha⁻¹. Os resultados obtidos em Primavera do Leste, MT, permitem concluir que a *U. ruziziensis* é uma excelente alternativa para produção de palha visando à cobertura do solo.

Na Figura 5 tem-se uma vista geral de uma área com *U. ruziziensis* onde foi feito o manejo com herbicidas e posterior semeadura do algodoeiro.

Figura 4. Biomassa seca de *Urochloa ruziziensis* semeada nas entrelinhas do milho, em janeiro de 2007, em avaliações realizadas nos meses de junho e dezembro de 2007 e janeiro, fevereiro e abril de 2008.

Figura 5. Vista de área com *Urochloa ruziziensis*, após a dessecação, imediatamente antes da semeadura do algodoeiro, em Primavera do Leste, MT.

Uma alternativa que deve ser considerada é o cultivo de espécies para cobertura do solo em consórcio. Nesta situação, tem-se maior diversidade de espécies, que é recomendável sob o ponto de vista agronômico, especialmente quando o consórcio é entre espécies com exigências, hábitos de crescimento, ciclo e relação C/N diferentes. Na Figura 6 tem-se uma vista do cultivo de *Crotalaria spectabilis* com *U. ruziziensis*.

Na Figura 7 visualiza-se uma área cultivada com algodoeiro sobre palhada de *U. ruziziensis*, cuja semeadura foi realizada imediatamente após a colheita da soja, em março, e no período de julho-setembro foi utilizada para pastejo de bovinos na fase de engorda. A semeadura do algodoeiro foi realizada após a dessecação.

Outra alternativa para produção de palha visando ao SPD nas condições do Cerrado é o milheto. O ideal é que a semeadura do milheto seja realizada imediatamente após a colheita da soja. Uma característica desfavorável do milheto nas condições do Cerrado é a sua rápida decomposição, proporcionando cobertura do solo durante um período de tempo relativamente curto. Na Figura 8 tem-se uma vista de área de algodoeiro com semeadura realizada sobre palhada de milheto.

Figura 6. Vista de cultivo de *Crotalaria spectabilis* em consórcio com *Urochloa ruziziensis*, em Santa Helena de Goiás, GO.

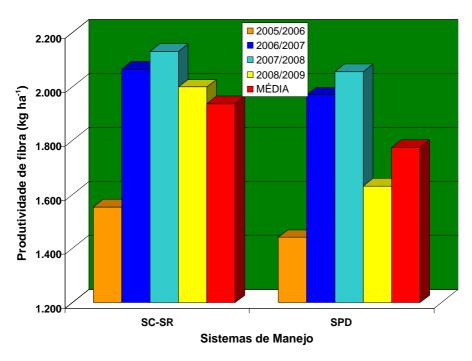

Figura 7. Vista de algodoeiro cultivado sobre palhada de *Urochloa ruziziensis*, com detalhe para a cobertura do solo, em Sorriso, MT.

Figura 8. Vista de algodoeiro semeado sobre palhada de milheto em Primavera do Leste, MT.

Chitarra et al. (2007), avaliando a severidade da mancha-de-ramulária em diferentes sistemas de manejo, constataram que a severidade da doença foi menor no SPD seguido do Sistema Convencional com Rotação Bianual de Culturas. Estes resultados sustentam as informações que é possível reduzir significativamente a incidência de doenças no algodoeiro apenas com a mudança nos sistemas de produção atualmente em uso. Resultados semelhantes foram obtidos por Séguy et al. (2004) em relação à severidade da ramulose (*Colletotrichum gossypii var cephalosporioides*).

Na Figura 9 são apresentados os resultados da produtividade de fibra do algodoeiro, durante o período de 2005-2006 a 2008-2009, comparando-se o Sistema Convencional (intensa movimentação do solo e ausência de rotação de culturas) com o SPD. Em média, a produtividade de fibra do algodoeiro cultivado no sistema conservacionista plantio direto foi ligeiramente inferior à obtida no sistema convencional, o que é normal na fase de estabelecimento do sistema

Figura 9. Produtividade de fibra em função do sistema de manejo de solo, SC-SR (Sistema Convencional sem rotação de culturas) e SPD (Sistema Plantio Direto) no período de 2005-2006 a 2008-2009. Primavera do Leste, MT, 2009.

Em trabalhos desenvolvidos por Ferreira et al. (2009), a produtividade média de algodão em caroço, considerando dois anos, foi de 3.553 kg ha¹ no Sistema Convencional (SC) de manejo do solo e de 4.335 kg ha¹ no SPD. Ou seja, no caso dos trabalhos desenvolvidos em Goiás, já nos primeiros anos verificou-se diferença favorável para a variável produção de algodão em caroço para o SPD. Segundo Franchini et al. (2008), com a cultura da soja, normalmente nos primeiros anos sob plantio direto, observam-se menores produtividades em relação ao plantio convencional. Estes mesmos autores relatam que os três primeiros anos de implantação do SPD são críticos. Esta é a chamada fase de estabilização do sistema. Após esta fase, a produtividade do SPD tende a ser maior e mais estável que a do SC.

Trabalhos desenvolvidos por Mitchell et al. (2008), em experimentos de longa duração (1896-2005), evidenciam os efeitos positivos da rotação de culturas

na produtividade do algodoeiro, especialmente quando são incluídas espécies leguminosas.

Na Figura 10 vê-se o detalhe da cobertura do solo nas entrelinhas do algodoeiro proporcionada pela *U. ruziziensis*, em Primavera do Leste, MT.

Figura 10. Detalhe da cobertura do solo proporcionada pela *Urochloa ruziziensis* em algodoeiro na fase reprodutiva, em Primavera do Leste, MT.

No SPD, em sucessão ao cultivo do algodoeiro, recomenda-se a semeadura de soja. Esta, por ser semeada em espaçamentos estreitos (0,40 m a 0,50 m) entre fileiras, de rápido crescimento e também em função dos herbicidas utilizados para o controle de plantas daninhas, se constitui em uma excelente estratégia para controle da rebrota dos restos culturais do algodoeiro (Figura 11).

Figura 11. Soja cultivada em Sistema Plantio Direto na sequência do algodoeiro, em São Gabriel do Oeste. MS.

Considerações Finais

Pelos dados apresentados fica evidente que o SPD pode se constituir em uma importante estratégia para a sustentabilidade da cultura do algodoeiro na região do Cerrado do Brasil. Vale destacar que esta região apresenta condições climáticas favoráveis para a obtenção de fibra de excelente qualidade, o que a coloca em vantagem em relação a outras regiões produtoras de algodão no Brasil. Entretanto, o modelo de produção utilizado é de baixa sustentabilidade. Assim, com base nos conhecimentos técnicos já disponíveis, é possível inovar na adoção de modelos de produção visando a um sistema mais sustentável. Neste aspecto, o SPD se constitui em uma importante estratégia, pois além de assegurar bons níveis de produtividade proporciona certo grau de estabilidade da produção, o que permite ao

produtor planejar suas atividades, além de ter o seu capital adequadamente remunerado.

A adoção do SPD, além de favorecer os atributos físicos, químicos e biológicos do solo, pode diminuir os gastos com insumos, proporcionando maior sustentabilidade ao sistema.

Agradecimentos

O autor agradece à Fundação Agrisus - Agricultura Sustentável pelo apoio financeiro e ao Instituto Mato-Grossense do Algodão (IMAmt) pelo apoio na condução do experimento e pela disponibilização da área experimental.

Referências

ALVARENGA, C. R.; CABEZAS, W. A. L.; CRUZ, J. C.; SANTAN, D. P. Plantas de cobertura de solo para Sistema Plantio Direto. **Informe Agropecuário**, Belo Horizonte, v. 22, n. 208, p. 25-36, jan. 2001.

ASMUS, G. L.; INOMOTO, M. M.; CARGNIN, R. A. **Efeito de coberturas vegetais na população de** *Rotylenchulus reniformis* **do solo e na produção de algodão**. Dourados: Embrapa Agropecuária Oeste, 2005. 20 p. (Embrapa Agropecuária Oeste. Boletim de pesquisa e desenvolvimento, 25).

BOLETIM SEMANAL DE ALGODÃO. Cuiabá: IMEA, n. 65, 20 dez. 2010. 7 p. Disponível em: http://www.imea.com.br/. Acesso em: 28 dez. 2010.

BOQUET, D. J.; PAXTON, K.; CLAWSON, E.; EBELHAR, W. Crop yields and profitability of rotation with cotton. In: BELTWIDE COTTON CONFERENCES, 2004, San Antonio. **Proceedings**... Memphis: National Cotton Council of America, 2004. p. 2500-2506.

CHITARRA, L. G.; LAMAS, F. M. Severidade da mancha de ramulária e ramulose em função do sistema de manejo do solo em cultivares de algodoeiro. In: CONGRESSO BRASILEIRO DO ALGODÃO, 6., 2007, Uberlândia. **Anais**... Uberlândia: ABRAPA: AMIPA: Embrapa, 2007. 1 CD-ROM.

CONAB. 3° levantamento de grãos 2010/2011 – dezembro, 2010. Brasília, DF, 2010. Disponível em: http://www.conab.gov.br. Acesso em: 28 dez. 2010.

CORAZZA, E. J.; SILVA, J. E.; RESCK, D. V. S.; GOMES, A. C. Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação à vegetação de cerrado. **Revista Brasileira de Ciência do Solo**, Viçosa, MG, v. 23, n. 2, p. 425-432, abr./jun. 1999.

CRUZ J. C. (Ed.). **Cultivo do milho**. 5. ed. Sete Lagoas: Embrapa Milho e Sorgo, 2009. (Embrapa Milho e Sorgo. Sistemas de produção, 2). Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Milho/CultivodoMilho_5ed/index.htm. Acesso em: 10 abr. 2009.

D'ANDRÉA, A.; SILVA, M. N.; CURI, N.; GUILHERME, L. R. G. Estoque de carbono e nitrogênio e formas de nitrogênio mineral em solo submetido a diferentes sistemas de manejo. **Pesquisa Agropecuária Brasileira**, Brasília, DF, v. 39, n. 2, p. 179-186, fev. 2004.

FERREIRA, A. C. de B.; LAMAS, F. M.; BARROS, A. C. de; BARBOSA, K. de A.; TEOBALDO, A. da S. Espécies vegetais para cobertura de solo e seus efeitos na incidência de plantas daninhas na cultura do algodoeiro. In: CONGRESSO BRASILEIRO DO ALGODÃO, 6., 2007, Uberlândia. **Anais**... Uberlândia: ABRAPA: AMIPA: Embrapa, 2007. 1 CD-ROM.

FERREIRA, A. C. de B.; LAMAS, F. M.; CARVALHO, M. da C. S. Comportamento do algodoeiro cultivado em diferentes sistemas de manejo de solo e rotação de culturas. In: CONGRESSO BRASILEIRO DO ALGODÃO, 7., 2009, Foz do Iguaçu. **Sustentabilidade da cotonicultura brasileira e expansão dos mercados**: anais. Campina Grande: Embrapa Algodão, 2009. p. 1173-1179.

FERREIRA, A. C. de B.; LAMAS, F. M.; CARVALHO, M. da C. S.; SALTON, J. C.; SUASSUNA, N. D. Produção de biomassa por cultivos de cobertura do solo e produtividade do algodoeiro em plantio direto. **Pesquisa Agropecuária Brasileira**, Brasília, DF, v. 45, n. 6, p. 546-553, jun. 2010.

FRANCHINI, J. C.; DEBIASI, H.; NEPOMUCENO, A. L.; FARIAS, J. R. B. **Manejo do solo para redução das perdas de produtividade pela seca.** Londrina: Embrapa Soja, 2009. 39 p. (Embrapa Soja. Documentos, 314).

FRANCHINI, J. C.; SARAIVA, O. F.; DEBIASI, H.; GONÇALVES, S. L. **Contribuição** de sistemas de manejo de solo para a produção sustentável da soja. Londrina: Embrapa Soja, 2008. 12 p. (Embrapa Soja. Circular técnica, 58).

GONÇALVES, S. L.; SARAIVA, O. F; FRANCHINI, J. C.; TORRES, E. **Decomposição de resíduos de milho e soja em função do tempo e do manejo do solo.** Londrina: Embrapa Soja, 2010. 20 p. (Embrapa Soja. Boletim de pesquisa e desenvolvimento, 3).

GÖRGEN, C. A.; CIVARDI, E. A.; RAGAGNIN, V. A.; SILVEIRA NETO, A. N.da; CARNEIRO, L. C.; LOBO JUNIOR, M. Redução do inóculo inicial de *Sclerotinia sclerotiorum* em soja cultivada após uso do sistema Santa Fé. **Pesquisa Agropecuária Brasileira**, Brasília, DF, v. 45, n. 10, p. 1102-1108, out. 2010.

HERNANI, L. C.; SALTON, J. C. Manejo e conservação do solo. In: ALGODÃO: tecnologia de produção. Dourados: Embrapa Agropecuária Oeste; Campina Grande: Embrapa Algodão, 2001. p. 76-102.

LAMAS, F. M.; STAUT, L. A. Biomassa seca de diferentes espécies vegetais e o cultivo do algodoeiro em SPD no cerrado. In: CONGRESSO BRASILEIRO DO ALGODÃO, 6., 2007, Uberlândia. **Anais**... Uberlândia: ABRAPA: AMIPA: Embrapa, 2007. 1 CD-ROM.

MATEUS, G. P.; CRUSCIOL, C. A. C.; NEGRISLOI, E. Palhada de sorgo guiné gigante no estabelecimento de plantas daninhas em áreas de plantio direto. **Pesquisa Agropecuária Brasileira**, Brasília, DF, v. 39, n. 6, p.539-542, jun. 2004.

MESCHEDE, D. K.; FERREIRA, A. B.; RIBIERO JÚNIOR, C. C. Avaliação de diferentes coberturas na supressão de plantas daninhas no Cerrado. **Planta Daninha**, Viçosa, MG, v. 25, n. 3, p. 465-471, jul. 2007.

MITCHELL, C. C.; DELANEY, D. P.; BALCKCOM, K. S. A historical summary or Alabama's old rotation (circa 1896): the world's oldest, continuous cotton experiment. **Agronomy Journal**, Madison, v. 100, n. 5, p. 1493-1498, Sept. 2008.

SALTON J. C.; HERNANI, L. C.; FONTES C. Z. (Org.). **Sistema plantio direto**: o produtor pergunta a Embrapa responde. Brasília, DF: Informação Tecnológica; Dourados, Embrapa Agropecuária Oeste, 1998. 248 p. (Coleção 500 perguntas 500 respostas).

SÉGUY, L.; BOUZINAC, S.; BELOT, J. L.; MARTIN, J. Sistemas de produção sustentáveis de algodão para os cerrados úmidos do Brasil Central. In: ZAMBOLIM, L.; SILVA, A. A. da; AGNES, E. L. (Ed.). **Manejo integrado**: integração agricultura-pecuária. Viçosa, MG: Universidade Federal de Viçosa, 2004. p. 385-419.

SILVA, A. A. da; AGNES, E. L. (Ed.). **Manejo integrado**: integração agricultura-pecuária. Viçosa, MG: Universidade Federal de Viçosa, 2004. p. 385-419.

TECNOLOGIAS de produção de soja para a região Central do Brasil 2011. Londrina: Embrapa Soja; Planaltina, DF: Embrapa Cerrados; Dourados: Embrapa Agropecuária Oeste, 2010. 255 p. (Embrapa Soja. Sistemas de produção, 14).

Ministério da
Agricultura, Pecuária
e Abastecimento

